87 datasets found
  1. d

    Map Data | Asia & MENA | Premium Demographics & Point-of-Interest Data To...

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps, Map Data | Asia & MENA | Premium Demographics & Point-of-Interest Data To Optimise Business Decisions | GIS Data | Demographic Data [Dataset]. https://datarade.ai/data-products/gapmaps-global-map-data-asia-mena-150m-x-150m-grids-cu-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset authored and provided by
    GapMaps
    Area covered
    Indonesia, Saudi Arabia, Malaysia, India, Singapore, Philippines, Asia
    Description

    Sourcing accurate and up-to-date map data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.

    GapMaps Map Data uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent demographics data across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.

    GapMaps Map Data also includes the latest Point-of-Interest (POI) Data for leading retail brands across a range of categories including Fast Food/ QSR, Health & Fitness, Supermarket/Grocery and Cafe sectors which is updated monthly.

    With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:

    • Better understand your customers
    • Identify optimal locations to expand your retail footprint
    • Define sales territories for franchisees
    • Run targeted marketing campaigns.

    GapMaps Map Data for Asia and MENA can be utilized in any GIS platform and includes the latest estimates (updated annually) on:

    1. Population (how many people live in your local catchment)
    2. Demographics (who lives within your local catchment)
    3. Worker population (how many people work within your local catchment)
    4. Consuming Class and Premium Consuming Class (who can can afford to buy goods & services beyond their basic needs and /or shop at premium retailers)
    5. Retail Spending (Food & Beverage, Grocery, Apparel, Other). How much are consumers spending on retail goods and services by category.

    Primary Use Cases for GapMaps Map Data:

    1. Retail Site Selection - identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular 150m x 150m grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.
    6. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    7. Customer Profiling
    8. Target Marketing
    9. Market Share Analysis
  2. d

    POI Data United States | 24M+ USA POIs

    • datarade.ai
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). POI Data United States | 24M+ USA POIs [Dataset]. https://datarade.ai/data-products/poi-data-united-states-24m-usa-pois-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    InfobelPRO
    Area covered
    United States
    Description

    Our USA Point of Interest (POI) data supports various location intelligence projects and facilitates the development of precise mapping and navigation tools, location analysis, address validation, and much more. Gain access to highly accurate, clean, and USA scaled POI data featuring over 24 million verified locations across the United States of America. We have been providing this data to companies worldwide for 30 years.

    • Develop mapping and navigation tools and software.
    • Identify new areas and locations suitable for business development.
    • Analyze the presence of competitors and nearby populations.
    • Optimize routes to enhance delivery efficiency.
    • Evaluate property values based on nearby infrastructure.
    • Support disaster management by identifying high-risk areas.
    • Promote your products and services using geotargeting strategies.

    Our use cases demonstrate how our data has been beneficial and helped our customers in several key areas: 1. Gaining a Competitive Edge: Utilize point of interest (POI) data to analyze competitors, identify high-opportunity areas, and attract more customers. 2. Enhancing Customer Journeys: Leverage location intelligence to provide personalized, real-time recommendations that boost customer engagement. 3. Optimizing Store Expansion: Select the most profitable locations by analyzing foot traffic, demographics, and competitor insights. 4. Streamlining Deliveries: Improve fulfillment accuracy through address validation, reducing failed shipments and increasing customer satisfaction. 5. Driving Smarter Campaigns: Use geospatial insights to effectively target the right audiences, enhance outreach, and maximize campaign impact.

  3. d

    NYSERDA Low- to Moderate-Income New York State Census Population Analysis...

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ny.gov (2025). NYSERDA Low- to Moderate-Income New York State Census Population Analysis Dataset: Average for 2013-2015 [Dataset]. https://catalog.data.gov/dataset/nyserda-low-to-moderate-income-new-york-state-census-population-analysis-dataset-aver-2013
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    data.ny.gov
    Area covered
    New York
    Description

    How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015. Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population. The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight. The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).

  4. o

    Data from: Real Interest Rates and Population Growth across Generations

    • openicpsr.org
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nils Herger (2023). Real Interest Rates and Population Growth across Generations [Dataset]. http://doi.org/10.3886/E193943V1
    Explore at:
    Dataset updated
    Sep 20, 2023
    Dataset provided by
    Study Center Gerzensee
    Authors
    Nils Herger
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data belong to a paper that empirically examines the correlation between population growth and real interest rates. Although this correlation is well founded in macroeconomic theory, the corresponding empirical results have been rather tenuous. Demographic interest rate theories are typically based on long-term relationships across generations. Accordingly, key population trends appear often only across decades, if not centuries, worth of data. To capture these trends, a distinction is made between population growth resulting from a birth surplus and net migration. Within a panel covering 12 countries and the years since 1820, the paper find robust evidence that the birth surplus is significantly correlated with the real interest rate.

  5. d

    Statistics review 2: Samples and populations

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institutes of Health (2025). Statistics review 2: Samples and populations [Dataset]. https://catalog.data.gov/dataset/statistics-review-2-samples-and-populations
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    National Institutes of Health
    Description

    The previous review in this series introduced the notion of data description and outlined some of the more common summary measures used to describe a dataset. However, a dataset is typically only of interest for the information it provides regarding the population from which it was drawn. The present review focuses on estimation of population values from a sample.

  6. w

    National Population Database

    • data.wu.ac.at
    • gimi9.com
    wms
    Updated Apr 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health and Safety Laboratory (2018). National Population Database [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/NzJkOGJmNjMtN2NjMi00OGI2LThkOTctYTg1ZDQ4MmJmMjlj
    Explore at:
    wmsAvailable download formats
    Dataset updated
    Apr 20, 2018
    Dataset provided by
    Health and Safety Laboratory
    Area covered
    707bd9bad8997440d5674b70bc61d21f4a31c9b2
    Description

    The National Population Database (NPD) is a point-based Geographical Information System (GIS) dataset that combines locational information from providers like the Ordnance Survey with population information about those locations, mainly sourced from Government statistics. The points (and sometimes polygons) represent individual buildings, so the NPD allows detailed local analysis for anywhere in Great Britain.

    The Health & Safety Laboratory (HSL) working with Staffordshire University originally created the NPD in 2004 to help its parent organisation, the Health and Safety Executive (HSE), assess the risks to society of major hazard sites e.g. oil refineries, chemical works and gas holders. Of particular interest to HSE were 'sensitive' populations e.g. schools and hospitals where the people at those locations may be more vulnerable to harm and potentially harder to evacuate in an emergency. The data is split into 5 themes: residential, sensitive populations, transport, workplaces and leisure.

    More information about the NPD can be found here:

    https://www.hsl.gov.uk/what-we-do/better-decisions/geoanalytics/national-population-database

    The NPD was created using various datasets available within Government as part of the Public Sector Mapping Agreement (PSMA) and contains other intellectual property so is only available under license and for a fee. Please contact the HSL GIS Team if you would like to discuss gaining access to the sample or full dataset.

  7. g

    GIS Data | Asia & MENA | 150m x 150m Grids| Accurate and Granular...

    • datastore.gapmaps.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps, GIS Data | Asia & MENA | 150m x 150m Grids| Accurate and Granular Demographics & Point of Interest (POI) Data | Map Data | Demographic Data [Dataset]. https://datastore.gapmaps.com/products/gapmaps-global-gis-data-asia-mena-150m-x-150m-grids-cu-gapmaps
    Explore at:
    Dataset authored and provided by
    GapMaps
    Area covered
    Saudi Arabia, India, Malaysia, Indonesia, Singapore, Philippines, Asia
    Description

    GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent GIS data at 150m grid levels across Asia and MENA. Understand who lives in a catchment, where they work and their spending potential.

  8. m

    Data for:Improved Population Mapping for China Using the 3D Build-ing,...

    • data.mendeley.com
    Updated Sep 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhen Lei (2024). Data for:Improved Population Mapping for China Using the 3D Build-ing, Nighttime Light, Points-of-interest, and Land Use/Cover Data Within a Multiscale Geographically Weighted Regression Model [Dataset]. http://doi.org/10.17632/hwz54s535n.1
    Explore at:
    Dataset updated
    Sep 4, 2024
    Authors
    Zhen Lei
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China
    Description

    Auxiliary Data.gdb: Land_use: original land use data POI_name: interests-point-data from the Amap platform (name indicates category)

    New_gridded_population_dataset(.gdb): experimental result data, i.e., a gridded population map of mainland China with a resolution of 100 meters

    New_minus_WorldPop_PopulationResidual(.gdb): pixel-level residuals of the new gridded population dataset with the Worldpop dataset

    POI_Correlation_Coefficient: Zonal statistical output of POI kernel density values: summary of various POI kernel densities in residential areas of administrative units Summary of POI Pearson correlation coefficients: sum of Pearson's correlation coefficients for 13 types of POIs at a certain bandwidth

    PopulationData_AdministrativeUnitLevel.gdb: Population_data_mainlandChina_level3: population data at the district and county level in mainland China Population_data_Name_level4_Table: township and street-level population data for provinces and municipalities

    Note: Due to the storage space limitation, 3D building, nighttime light, and WorldPop datasets have not been uploaded. To access these publicly available data, please visit the official website via the "Related links" at the bottom. In addition, we are not authorized to share data for the fourth level of administrative boundaries, so we only share the corresponding population data in tabular form.

  9. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2020). American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/adecfea6-fcd7-4c41-8165-165c4490a9da/metadata/FGDC-STD-001-1998.html
    Explore at:
    kml(5), csv(5), xls(5), json(5), geojson(5), zip(5), gml(5), shp(5)Available download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2018
    Area covered
    New Mexico, West Bounding Coordinate -109.050173 East Bounding Coordinate -103.001964 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.332172
    Description

    A broad and generalized selection of 2014-2018 US Census Bureau 2018 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  10. GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version...

    • zenodo.org
    tiff
    Updated Sep 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie (2024). GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version 2.0-test-alpha) [Dataset]. http://doi.org/10.5281/zenodo.11071249
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Sep 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Usage Notice

    This version is not recommended for download. Please check the newest version.

    We would like to inform you that the updated GlobPOP dataset (2021-2022) have been available in version 2.0. The GlobPOP dataset (2021-2022) in the current version is not recommended for your work. The GlobPOP dataset (1990-2020) in the current version is the same as version 1.0.

    Thank you for your continued support of the GlobPOP.

    If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.

    Introduction

    Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.

    Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.

    With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.

    Data description

    The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)

    Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:

    GlobPOP_Count_30arc_1990_I32

    Field 1: GlobPOP(Global gridded population)
    Field 2: Pixel unit is population "Count" or population "Density"
    Field 3: Spatial resolution is 30 arc seconds
    Field 4: Year "1990"
    Field 5: Data type is I32(Int 32) or F32(Float32)

    More information

    Please refer to the paper for detailed information:

    Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.

    The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.

  11. m

    Factori Point of Interest(POI) Data/Global Visitation Data

    • app.mobito.io
    Updated Feb 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Factori Point of Interest(POI) Data/Global Visitation Data [Dataset]. https://app.mobito.io/data-product/factori-point-of-interest(poi)-dataglobal-visitation-data
    Explore at:
    Dataset updated
    Feb 22, 2024
    Area covered
    Tonga, Papua New Guinea, Dominican Republic, Nauru, Cameroon, Israel, Bahamas, South Africa, Armenia, Syria
    Description

    Our POI Data connects people's movements to over 14M physical locations globally. These are aggregated and anonymized data that are only used to offer context for the volume and patterns of visits to certain locations. This data feed is compiled from different data sources around the world. Reach: Location Intelligence data brings the POI/Place/OOH level insights calculated based on Factori’s Mobility & People Graph data aggregated from multiple data sources globally. To achieve the desired foot-traffic attribution, specific attributes are combined to bring forward the desired reach data. For instance, to calculate the foot traffic for a specific location, a combination of location ID, day of the week, and part of the day can be combined to give specific location intelligence data. There can be a maximum of 40 data records possible for one POI based on the combination of these attributes. Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method at a suitable interval (daily/weekly/monthly). Use Cases: Credit Scoring: Financial services can use alternative data to score an underbanked or unbanked customer by validating locations and persona. Retail Analytics: Analyze footfall trends in various locations and gain an understanding of customer personas. Market Intelligence: Study various market areas, the proximity of points or interests, and the competitive landscape Urban Planning: Build cases for urban development, public infrastructure needs, and transit planning based on fresh population data. Data Attributes: Location ID n_visitors day_of_week distance_from_home do_date month part_of_day travelled_countries Visitor_country_origin Visitor_home_origin Visitor_work_origin year

  12. e

    Level of other people's interest in what is happening by gender and age...

    • data.europa.eu
    unknown
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Instituto Nacional de Estadística (2025). Level of other people's interest in what is happening by gender and age groups. Population of 15 and older. (API identifier: 47627) [Dataset]. https://data.europa.eu/data/datasets/urn-ine-es-tabla-tpx-47627?locale=en
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    Instituto Nacional de Estadística
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Description

    Table of INEBase Level of other people's interest in what is happening by gender and age groups. Population of 15 and older. National. European Health Survey

  13. d

    Individuals, ZIP Code Data

    • catalog.data.gov
    • gimi9.com
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics of Income (SOI) (2024). Individuals, ZIP Code Data [Dataset]. https://catalog.data.gov/dataset/zip-code-data
    Explore at:
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    Statistics of Income (SOI)
    Description

    This annual study provides selected income and tax items classified by State, ZIP Code, and the size of adjusted gross income. These data include the number of returns, which approximates the number of households; the number of personal exemptions, which approximates the population; adjusted gross income; wages and salaries; dividends before exclusion; and interest received. Data are based who reported on U.S. Individual Income Tax Returns (Forms 1040) filed with the IRS. SOI collects these data as part of its Individual Income Tax Return (Form 1040) Statistics program, Data by Geographic Areas, ZIP Code Data.

  14. d

    Factori USA Consumer Graph Data | socio-demographic, location, interest and...

    • datarade.ai
    .json, .csv
    Updated Jul 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Factori (2022). Factori USA Consumer Graph Data | socio-demographic, location, interest and intent data | E-Commere |Mobile Apps | Online Services [Dataset]. https://datarade.ai/data-products/factori-usa-consumer-graph-data-socio-demographic-location-factori
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jul 23, 2022
    Dataset authored and provided by
    Factori
    Area covered
    United States of America
    Description

    Our consumer data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.

    Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.

    1. Geography - City, State, ZIP, County, CBSA, Census Tract, etc.
    2. Demographics - Gender, Age Group, Marital Status, Language etc.
    3. Financial - Income Range, Credit Rating Range, Credit Type, Net worth Range, etc
    4. Persona - Consumer type, Communication preferences, Family type, etc
    5. Interests - Content, Brands, Shopping, Hobbies, Lifestyle etc.
    6. Household - Number of Children, Number of Adults, IP Address, etc.
    7. Behaviours - Brand Affinity, App Usage, Web Browsing etc.
    8. Firmographics - Industry, Company, Occupation, Revenue, etc
    9. Retail Purchase - Store, Category, Brand, SKU, Quantity, Price etc.
    10. Auto - Car Make, Model, Type, Year, etc.
    11. Housing - Home type, Home value, Renter/Owner, Year Built etc.

    Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:

    Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).

    Consumer Graph Use Cases:

    360-Degree Customer View:Get a comprehensive image of customers by the means of internal and external data aggregation.

    Data Enrichment:Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment

    Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.

    Advertising & Marketing:Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.

    Using Factori Consumer Data graph you can solve use cases like:

    Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.

    Lookalike Modeling

    Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers

    And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data

    Here's the schema of Consumer Data: person_id first_name last_name age gender linkedin_url twitter_url facebook_url city state address zip zip4 country delivery_point_bar_code carrier_route walk_seuqence_code fips_state_code fips_country_code country_name latitude longtiude address_type metropolitan_statistical_area core_based+statistical_area census_tract census_block_group census_block primary_address pre_address streer post_address address_suffix address_secondline address_abrev census_median_home_value home_market_value property_build+year property_with_ac property_with_pool property_with_water property_with_sewer general_home_value property_fuel_type year month household_id Census_median_household_income household_size marital_status length+of_residence number_of_kids pre_school_kids single_parents working_women_in_house_hold homeowner children adults generations net_worth education_level occupation education_history credit_lines credit_card_user newly_issued_credit_card_user credit_range_new
    credit_cards loan_to_value mortgage_loan2_amount mortgage_loan_type
    mortgage_loan2_type mortgage_lender_code
    mortgage_loan2_render_code
    mortgage_lender mortgage_loan2_lender
    mortgage_loan2_ratetype mortgage_rate
    mortgage_loan2_rate donor investor interest buyer hobby personal_email work_email devices phone employee_title employee_department employee_job_function skills recent_job_change company_id company_name company_description technologies_used office_address office_city office_country office_state office_zip5 office_zip4 office_carrier_route office_latitude office_longitude office_cbsa_code
    office_census_block_group
    office_census_tract office_county_code
    company_phone
    company_credit_score
    company_csa_code
    company_dpbc
    company_franchiseflag
    company_facebookurl company_linkedinurl company_twitterurl
    company_website company_fortune_rank
    company_government_type company_headquarters_branch company_home_business
    company_industry
    company_num_pcs_used
    company_num_employees
    company_firm_individual company_msa company_msa_name
    company_naics_code
    company_naics_description
    company_naics_code2 company_naics_description2
    company_sic_code2
    company_sic_code2_desc...

  15. e

    Synthetic Administrative Data: Census 1991, 2023 - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Oct 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Synthetic Administrative Data: Census 1991, 2023 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/6f71c471-1b89-5932-b354-700afb58cb5c
    Explore at:
    Dataset updated
    Oct 11, 2024
    Description

    We create a synthetic administrative dataset to be used in the development of the R package for calculating quality indicators for administrative data (see: https://github.com/sook-tusk/qualadmin) that mimic the properties of a real administrative dataset according to specifications by the ONS. Taking over 1 million records from a synthetic 1991 UK census dataset, we deleted records, moved records to a different geography and duplicated records to a different geography according to pre-specified proportions for each broad ethnic group (White, Non-white) and gender (males, females). The final size of the synthetic administrative data was 1033664 individuals.National Statistical Institutes (NSIs) are directing resources into advancing the use of administrative data in official statistics systems. This is a top priority for the UK Office for National Statistics (ONS) as they are undergoing transformations in their statistical systems to make more use of administrative data for future censuses and population statistics. Administrative data are defined as secondary data sources since they are produced by other agencies as a result of an event or a transaction relating to administrative procedures of organisations, public administrations and government agencies. Nevertheless, they have the potential to become important data sources for the production of official statistics by significantly reducing the cost and burden of response and improving the efficiency of such systems. Embedding administrative data in statistical systems is not without costs and it is vital to understand where potential errors may arise. The Total Administrative Data Error Framework sets out all possible sources of error when using administrative data as statistical data, depending on whether it is a single data source or integrated with other data sources such as survey data. For a single administrative data, one of the main sources of error is coverage and representation to the target population of interest. This is particularly relevant when administrative data is delivered over time, such as tax data for maintaining the Business Register. For sub-project 1 of this research project, we develop quality indicators that allow the statistical agency to assess if the administrative data is representative to the target population and which sub-groups may be missing or over-covered. This is essential for producing unbiased estimates from administrative data. Another priority at statistical agencies is to produce a statistical register for population characteristic estimates, such as employment statistics, from multiple sources of administrative and survey data. Using administrative data to build a spine, survey data can be integrated using record linkage and statistical matching approaches on a set of common matching variables. This will be the topic for sub-project 2, which will be split into several topics of research. The first topic is whether adding statistical predictions and correlation structures improves the linkage and data integration. The second topic is to research a mass imputation framework for imputing missing target variables in the statistical register where the missing data may be due to multiple underlying mechanisms. Therefore, the third topic will aim to improve the mass imputation framework to mitigate against possible measurement errors, for example by adding benchmarks and other constraints into the approaches. On completion of a statistical register, estimates for key target variables at local areas can easily be aggregated. However, it is essential to also measure the precision of these estimates through mean square errors and this will be the fourth topic of the sub-project. Finally, this new way of producing official statistics is compared to the more common method of incorporating administrative data through survey weights and model-based estimation approaches. In other words, we evaluate whether it is better 'to weight' or 'to impute' for population characteristic estimates - a key question under investigation by survey statisticians in the last decade. This is a synthetic administrative dataset with only 6 variables to enable the calculation of quality indicators in the R package: https://github.com/sook-tusk/qualadmin See also the user manual. The dataset was created from a 1991 synthetic UK census dataset containing over 1 million records by deleting, moving and duplicating records across geographies according to pre-specified proportions within broad ethnic group and gender. The geography variable includes 6 local authorities but they are completely anonymized and labelled 1,2..6. Other variables are (number of categories in parentheses): sex (2), age groups (14), ethnic groups (5) and employment (3). The final size of the synthetic administrative data is 1033664 individuals. The description of the variables are in the data dictionary that is uploaded with the data.

  16. World Population Statistics - 2023

    • kaggle.com
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhavik Jikadara (2024). World Population Statistics - 2023 [Dataset]. https://www.kaggle.com/datasets/bhavikjikadara/world-population-statistics-2023
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 9, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bhavik Jikadara
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description
    • The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on Earth, which far exceeds the world population of 7.2 billion in 2015. Our estimate based on UN data shows the world's population surpassing 7.7 billion.
    • China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.
    • The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.
    • Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.
    • In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added yearly.
    • This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Content

    • In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc. >Dataset Glossary (Column-Wise):
    • Rank: Rank by Population.
    • CCA3: 3 Digit Country/Territories Code.
    • Country/Territories: Name of the Country/Territories.
    • Capital: Name of the Capital.
    • Continent: Name of the Continent.
    • 2022 Population: Population of the Country/Territories in the year 2022.
    • 2020 Population: Population of the Country/Territories in the year 2020.
    • 2015 Population: Population of the Country/Territories in the year 2015.
    • 2010 Population: Population of the Country/Territories in the year 2010.
    • 2000 Population: Population of the Country/Territories in the year 2000.
    • 1990 Population: Population of the Country/Territories in the year 1990.
    • 1980 Population: Population of the Country/Territories in the year 1980.
    • 1970 Population: Population of the Country/Territories in the year 1970.
    • Area (km²): Area size of the Country/Territories in square kilometers.
    • Density (per km²): Population Density per square kilometer.
    • Growth Rate: Population Growth Rate by Country/Territories.
    • World Population Percentage: The population percentage by each Country/Territories.
  17. f

    Population characteristics according to the outcome of interest.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Mar 19, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guillen-Bravo, Sonia; Chung-Delgado, Kocfa; Revilla-Montag, Alejandro; Bernabe-Ortiz, Antonio (2015). Population characteristics according to the outcome of interest. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001876188
    Explore at:
    Dataset updated
    Mar 19, 2015
    Authors
    Guillen-Bravo, Sonia; Chung-Delgado, Kocfa; Revilla-Montag, Alejandro; Bernabe-Ortiz, Antonio
    Description
    • P-values were calculated using Log-rank test.Population characteristics according to the outcome of interest.
  18. D

    ARCHIVED: American Community Survey Population Estimates

    • data.sfgov.org
    csv, xlsx, xml
    Updated Jun 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). ARCHIVED: American Community Survey Population Estimates [Dataset]. https://data.sfgov.org/dataset/ARCHIVED-American-Community-Survey-Population-Esti/d9je-8qc2
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Jun 1, 2021
    Description

    This dataset is replaced with the San Francisco Population and Demographic Dataset: https://data.sfgov.org/d/4qbq-hvtt. To request new census data please email support@datasf.org

    --

    A. SUMMARY This dataset contains population estimates from the American Community Survey on San Francisco. This data only contains select high-level, citywide summaries: total population, population by age and sex, and population by race/ethnicity.

    Data is for 2019 5-year estimates.

    B. HOW THE DATASET IS CREATED Data is simply a cleaned and re-shaped version of this public data from the Census: https://data.census.gov/cedsci/table?q=population%20san%20francisco&tid=ACSDP5Y2019.DP05

    C. UPDATE PROCESS Data will update annually.

    D. HOW TO USE THIS DATASET Filter the data by variable_concept to get the variables of interest - whether that be sex by age, or race, etc. Then, the variable_label will describe the population in each row. Check the reliability of each estimate by looking at the moe, cv, and the cv_quality_flags. Citywide data is typically reliable. Note that some categories do not have reliability measures as they cannot be calculated.

  19. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2020). American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/92f102fa-5d6c-41b6-8cf9-132f78a30e02/metadata/FGDC-STD-001-1998.html
    Explore at:
    csv(5), zip(5), json(5), gml(5), geojson(5), xls(5), shp(5), kml(5)Available download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2017
    Area covered
    New Mexico, West Bounding Coordinate -109.050173 East Bounding Coordinate -103.001964 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.332172
    Description

    A broad and generalized selection of 2013-2017 US Census Bureau 2017 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  20. HHS COVID-19 Small Area Estimations Survey - Primary Vaccine Series - Wave...

    • catalog.data.gov
    • healthdata.gov
    • +3more
    Updated Jul 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health and Human Services (2025). HHS COVID-19 Small Area Estimations Survey - Primary Vaccine Series - Wave 12 [Dataset]. https://catalog.data.gov/dataset/hhs-covid-19-small-area-estimations-survey-primary-vaccine-series-wave-12
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Description

    The goal of the Monthly Outcome Survey (MOS) Small Area Estimations (SAE) is to generate estimates of the proportions of adults, by county and month, who were in the population of interest for the U.S. Department of Health and Human Services’ (HHS) We Can Do This COVID-19 Public Education Campaign. These data are designed to be used by practitioners and researchers to understand how county-level COVID-19 vaccination hesitancy changed over time in the United States.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GapMaps, Map Data | Asia & MENA | Premium Demographics & Point-of-Interest Data To Optimise Business Decisions | GIS Data | Demographic Data [Dataset]. https://datarade.ai/data-products/gapmaps-global-map-data-asia-mena-150m-x-150m-grids-cu-gapmaps

Map Data | Asia & MENA | Premium Demographics & Point-of-Interest Data To Optimise Business Decisions | GIS Data | Demographic Data

Explore at:
.json, .csvAvailable download formats
Dataset authored and provided by
GapMaps
Area covered
Indonesia, Saudi Arabia, Malaysia, India, Singapore, Philippines, Asia
Description

Sourcing accurate and up-to-date map data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.

GapMaps Map Data uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent demographics data across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.

GapMaps Map Data also includes the latest Point-of-Interest (POI) Data for leading retail brands across a range of categories including Fast Food/ QSR, Health & Fitness, Supermarket/Grocery and Cafe sectors which is updated monthly.

With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:

  • Better understand your customers
  • Identify optimal locations to expand your retail footprint
  • Define sales territories for franchisees
  • Run targeted marketing campaigns.

GapMaps Map Data for Asia and MENA can be utilized in any GIS platform and includes the latest estimates (updated annually) on:

  1. Population (how many people live in your local catchment)
  2. Demographics (who lives within your local catchment)
  3. Worker population (how many people work within your local catchment)
  4. Consuming Class and Premium Consuming Class (who can can afford to buy goods & services beyond their basic needs and /or shop at premium retailers)
  5. Retail Spending (Food & Beverage, Grocery, Apparel, Other). How much are consumers spending on retail goods and services by category.

Primary Use Cases for GapMaps Map Data:

  1. Retail Site Selection - identify optimal locations for future expansion and benchmark performance across existing locations.
  2. Customer Profiling: get a detailed understanding of the demographic profile of your customers, where they work and their spending potential
  3. Analyse your trade areas at a granular 150m x 150m grid levels using all the key metrics
  4. Target Marketing: Develop effective marketing strategies to acquire more customers.
  5. Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.
  6. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
  7. Customer Profiling
  8. Target Marketing
  9. Market Share Analysis
Search
Clear search
Close search
Google apps
Main menu