Sourcing accurate and up-to-date map data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.
GapMaps Map Data uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent demographics data across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.
GapMaps Map Data also includes the latest Point-of-Interest (POI) Data for leading retail brands across a range of categories including Fast Food/ QSR, Health & Fitness, Supermarket/Grocery and Cafe sectors which is updated monthly.
With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:
GapMaps Map Data for Asia and MENA can be utilized in any GIS platform and includes the latest estimates (updated annually) on:
Primary Use Cases for GapMaps Map Data:
Our USA Point of Interest (POI) data supports various location intelligence projects and facilitates the development of precise mapping and navigation tools, location analysis, address validation, and much more. Gain access to highly accurate, clean, and USA scaled POI data featuring over 24 million verified locations across the United States of America. We have been providing this data to companies worldwide for 30 years.
Our use cases demonstrate how our data has been beneficial and helped our customers in several key areas: 1. Gaining a Competitive Edge: Utilize point of interest (POI) data to analyze competitors, identify high-opportunity areas, and attract more customers. 2. Enhancing Customer Journeys: Leverage location intelligence to provide personalized, real-time recommendations that boost customer engagement. 3. Optimizing Store Expansion: Select the most profitable locations by analyzing foot traffic, demographics, and competitor insights. 4. Streamlining Deliveries: Improve fulfillment accuracy through address validation, reducing failed shipments and increasing customer satisfaction. 5. Driving Smarter Campaigns: Use geospatial insights to effectively target the right audiences, enhance outreach, and maximize campaign impact.
How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015. Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population. The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight. The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data belong to a paper that empirically examines the correlation between population growth and real interest rates. Although this correlation is well founded in macroeconomic theory, the corresponding empirical results have been rather tenuous. Demographic interest rate theories are typically based on long-term relationships across generations. Accordingly, key population trends appear often only across decades, if not centuries, worth of data. To capture these trends, a distinction is made between population growth resulting from a birth surplus and net migration. Within a panel covering 12 countries and the years since 1820, the paper find robust evidence that the birth surplus is significantly correlated with the real interest rate.
The previous review in this series introduced the notion of data description and outlined some of the more common summary measures used to describe a dataset. However, a dataset is typically only of interest for the information it provides regarding the population from which it was drawn. The present review focuses on estimation of population values from a sample.
The National Population Database (NPD) is a point-based Geographical Information System (GIS) dataset that combines locational information from providers like the Ordnance Survey with population information about those locations, mainly sourced from Government statistics. The points (and sometimes polygons) represent individual buildings, so the NPD allows detailed local analysis for anywhere in Great Britain.
The Health & Safety Laboratory (HSL) working with Staffordshire University originally created the NPD in 2004 to help its parent organisation, the Health and Safety Executive (HSE), assess the risks to society of major hazard sites e.g. oil refineries, chemical works and gas holders. Of particular interest to HSE were 'sensitive' populations e.g. schools and hospitals where the people at those locations may be more vulnerable to harm and potentially harder to evacuate in an emergency. The data is split into 5 themes: residential, sensitive populations, transport, workplaces and leisure.
More information about the NPD can be found here:
https://www.hsl.gov.uk/what-we-do/better-decisions/geoanalytics/national-population-database
The NPD was created using various datasets available within Government as part of the Public Sector Mapping Agreement (PSMA) and contains other intellectual property so is only available under license and for a fee. Please contact the HSL GIS Team if you would like to discuss gaining access to the sample or full dataset.
GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent GIS data at 150m grid levels across Asia and MENA. Understand who lives in a catchment, where they work and their spending potential.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Auxiliary Data.gdb: Land_use: original land use data POI_name: interests-point-data from the Amap platform (name indicates category)
New_gridded_population_dataset(.gdb): experimental result data, i.e., a gridded population map of mainland China with a resolution of 100 meters
New_minus_WorldPop_PopulationResidual(.gdb): pixel-level residuals of the new gridded population dataset with the Worldpop dataset
POI_Correlation_Coefficient: Zonal statistical output of POI kernel density values: summary of various POI kernel densities in residential areas of administrative units Summary of POI Pearson correlation coefficients: sum of Pearson's correlation coefficients for 13 types of POIs at a certain bandwidth
PopulationData_AdministrativeUnitLevel.gdb: Population_data_mainlandChina_level3: population data at the district and county level in mainland China Population_data_Name_level4_Table: township and street-level population data for provinces and municipalities
Note: Due to the storage space limitation, 3D building, nighttime light, and WorldPop datasets have not been uploaded. To access these publicly available data, please visit the official website via the "Related links" at the bottom. In addition, we are not authorized to share data for the fourth level of administrative boundaries, so we only share the corresponding population data in tabular form.
A broad and generalized selection of 2014-2018 US Census Bureau 2018 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We would like to inform you that the updated GlobPOP dataset (2021-2022) have been available in version 2.0. The GlobPOP dataset (2021-2022) in the current version is not recommended for your work. The GlobPOP dataset (1990-2020) in the current version is the same as version 1.0.
Thank you for your continued support of the GlobPOP.
If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.
Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.
Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.
With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.
The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)
Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:
GlobPOP_Count_30arc_1990_I32
Field 1: GlobPOP(Global gridded population)
Field 2: Pixel unit is population "Count" or population "Density"
Field 3: Spatial resolution is 30 arc seconds
Field 4: Year "1990"
Field 5: Data type is I32(Int 32) or F32(Float32)
Please refer to the paper for detailed information:
Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.
The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.
Our POI Data connects people's movements to over 14M physical locations globally. These are aggregated and anonymized data that are only used to offer context for the volume and patterns of visits to certain locations. This data feed is compiled from different data sources around the world. Reach: Location Intelligence data brings the POI/Place/OOH level insights calculated based on Factori’s Mobility & People Graph data aggregated from multiple data sources globally. To achieve the desired foot-traffic attribution, specific attributes are combined to bring forward the desired reach data. For instance, to calculate the foot traffic for a specific location, a combination of location ID, day of the week, and part of the day can be combined to give specific location intelligence data. There can be a maximum of 40 data records possible for one POI based on the combination of these attributes. Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method at a suitable interval (daily/weekly/monthly). Use Cases: Credit Scoring: Financial services can use alternative data to score an underbanked or unbanked customer by validating locations and persona. Retail Analytics: Analyze footfall trends in various locations and gain an understanding of customer personas. Market Intelligence: Study various market areas, the proximity of points or interests, and the competitive landscape Urban Planning: Build cases for urban development, public infrastructure needs, and transit planning based on fresh population data. Data Attributes: Location ID n_visitors day_of_week distance_from_home do_date month part_of_day travelled_countries Visitor_country_origin Visitor_home_origin Visitor_work_origin year
https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
Table of INEBase Level of other people's interest in what is happening by gender and age groups. Population of 15 and older. National. European Health Survey
This annual study provides selected income and tax items classified by State, ZIP Code, and the size of adjusted gross income. These data include the number of returns, which approximates the number of households; the number of personal exemptions, which approximates the population; adjusted gross income; wages and salaries; dividends before exclusion; and interest received. Data are based who reported on U.S. Individual Income Tax Returns (Forms 1040) filed with the IRS. SOI collects these data as part of its Individual Income Tax Return (Form 1040) Statistics program, Data by Geographic Areas, ZIP Code Data.
Our consumer data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.
Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.
Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:
Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).
Consumer Graph Use Cases:
360-Degree Customer View:Get a comprehensive image of customers by the means of internal and external data aggregation.
Data Enrichment:Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment
Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.
Advertising & Marketing:Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.
Using Factori Consumer Data graph you can solve use cases like:
Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.
Lookalike Modeling
Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers
And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data
Here's the schema of Consumer Data:
person_id
first_name
last_name
age
gender
linkedin_url
twitter_url
facebook_url
city
state
address
zip
zip4
country
delivery_point_bar_code
carrier_route
walk_seuqence_code
fips_state_code
fips_country_code
country_name
latitude
longtiude
address_type
metropolitan_statistical_area
core_based+statistical_area
census_tract
census_block_group
census_block
primary_address
pre_address
streer
post_address
address_suffix
address_secondline
address_abrev
census_median_home_value
home_market_value
property_build+year
property_with_ac
property_with_pool
property_with_water
property_with_sewer
general_home_value
property_fuel_type
year
month
household_id
Census_median_household_income
household_size
marital_status
length+of_residence
number_of_kids
pre_school_kids
single_parents
working_women_in_house_hold
homeowner
children
adults
generations
net_worth
education_level
occupation
education_history
credit_lines
credit_card_user
newly_issued_credit_card_user
credit_range_new
credit_cards
loan_to_value
mortgage_loan2_amount
mortgage_loan_type
mortgage_loan2_type
mortgage_lender_code
mortgage_loan2_render_code
mortgage_lender
mortgage_loan2_lender
mortgage_loan2_ratetype
mortgage_rate
mortgage_loan2_rate
donor
investor
interest
buyer
hobby
personal_email
work_email
devices
phone
employee_title
employee_department
employee_job_function
skills
recent_job_change
company_id
company_name
company_description
technologies_used
office_address
office_city
office_country
office_state
office_zip5
office_zip4
office_carrier_route
office_latitude
office_longitude
office_cbsa_code
office_census_block_group
office_census_tract
office_county_code
company_phone
company_credit_score
company_csa_code
company_dpbc
company_franchiseflag
company_facebookurl
company_linkedinurl
company_twitterurl
company_website
company_fortune_rank
company_government_type
company_headquarters_branch
company_home_business
company_industry
company_num_pcs_used
company_num_employees
company_firm_individual
company_msa
company_msa_name
company_naics_code
company_naics_description
company_naics_code2
company_naics_description2
company_sic_code2
company_sic_code2_desc...
We create a synthetic administrative dataset to be used in the development of the R package for calculating quality indicators for administrative data (see: https://github.com/sook-tusk/qualadmin) that mimic the properties of a real administrative dataset according to specifications by the ONS. Taking over 1 million records from a synthetic 1991 UK census dataset, we deleted records, moved records to a different geography and duplicated records to a different geography according to pre-specified proportions for each broad ethnic group (White, Non-white) and gender (males, females). The final size of the synthetic administrative data was 1033664 individuals.National Statistical Institutes (NSIs) are directing resources into advancing the use of administrative data in official statistics systems. This is a top priority for the UK Office for National Statistics (ONS) as they are undergoing transformations in their statistical systems to make more use of administrative data for future censuses and population statistics. Administrative data are defined as secondary data sources since they are produced by other agencies as a result of an event or a transaction relating to administrative procedures of organisations, public administrations and government agencies. Nevertheless, they have the potential to become important data sources for the production of official statistics by significantly reducing the cost and burden of response and improving the efficiency of such systems. Embedding administrative data in statistical systems is not without costs and it is vital to understand where potential errors may arise. The Total Administrative Data Error Framework sets out all possible sources of error when using administrative data as statistical data, depending on whether it is a single data source or integrated with other data sources such as survey data. For a single administrative data, one of the main sources of error is coverage and representation to the target population of interest. This is particularly relevant when administrative data is delivered over time, such as tax data for maintaining the Business Register. For sub-project 1 of this research project, we develop quality indicators that allow the statistical agency to assess if the administrative data is representative to the target population and which sub-groups may be missing or over-covered. This is essential for producing unbiased estimates from administrative data. Another priority at statistical agencies is to produce a statistical register for population characteristic estimates, such as employment statistics, from multiple sources of administrative and survey data. Using administrative data to build a spine, survey data can be integrated using record linkage and statistical matching approaches on a set of common matching variables. This will be the topic for sub-project 2, which will be split into several topics of research. The first topic is whether adding statistical predictions and correlation structures improves the linkage and data integration. The second topic is to research a mass imputation framework for imputing missing target variables in the statistical register where the missing data may be due to multiple underlying mechanisms. Therefore, the third topic will aim to improve the mass imputation framework to mitigate against possible measurement errors, for example by adding benchmarks and other constraints into the approaches. On completion of a statistical register, estimates for key target variables at local areas can easily be aggregated. However, it is essential to also measure the precision of these estimates through mean square errors and this will be the fourth topic of the sub-project. Finally, this new way of producing official statistics is compared to the more common method of incorporating administrative data through survey weights and model-based estimation approaches. In other words, we evaluate whether it is better 'to weight' or 'to impute' for population characteristic estimates - a key question under investigation by survey statisticians in the last decade. This is a synthetic administrative dataset with only 6 variables to enable the calculation of quality indicators in the R package: https://github.com/sook-tusk/qualadmin See also the user manual. The dataset was created from a 1991 synthetic UK census dataset containing over 1 million records by deleting, moving and duplicating records across geographies according to pre-specified proportions within broad ethnic group and gender. The geography variable includes 6 local authorities but they are completely anonymized and labelled 1,2..6. Other variables are (number of categories in parentheses): sex (2), age groups (14), ethnic groups (5) and employment (3). The final size of the synthetic administrative data is 1033664 individuals. The description of the variables are in the data dictionary that is uploaded with the data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is replaced with the San Francisco Population and Demographic Dataset: https://data.sfgov.org/d/4qbq-hvtt. To request new census data please email support@datasf.org
--
A. SUMMARY This dataset contains population estimates from the American Community Survey on San Francisco. This data only contains select high-level, citywide summaries: total population, population by age and sex, and population by race/ethnicity.
Data is for 2019 5-year estimates.
B. HOW THE DATASET IS CREATED Data is simply a cleaned and re-shaped version of this public data from the Census: https://data.census.gov/cedsci/table?q=population%20san%20francisco&tid=ACSDP5Y2019.DP05
C. UPDATE PROCESS Data will update annually.
D. HOW TO USE THIS DATASET Filter the data by variable_concept to get the variables of interest - whether that be sex by age, or race, etc. Then, the variable_label will describe the population in each row. Check the reliability of each estimate by looking at the moe, cv, and the cv_quality_flags. Citywide data is typically reliable. Note that some categories do not have reliability measures as they cannot be calculated.
A broad and generalized selection of 2013-2017 US Census Bureau 2017 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
The goal of the Monthly Outcome Survey (MOS) Small Area Estimations (SAE) is to generate estimates of the proportions of adults, by county and month, who were in the population of interest for the U.S. Department of Health and Human Services’ (HHS) We Can Do This COVID-19 Public Education Campaign. These data are designed to be used by practitioners and researchers to understand how county-level COVID-19 vaccination hesitancy changed over time in the United States.
Sourcing accurate and up-to-date map data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.
GapMaps Map Data uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent demographics data across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.
GapMaps Map Data also includes the latest Point-of-Interest (POI) Data for leading retail brands across a range of categories including Fast Food/ QSR, Health & Fitness, Supermarket/Grocery and Cafe sectors which is updated monthly.
With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:
GapMaps Map Data for Asia and MENA can be utilized in any GIS platform and includes the latest estimates (updated annually) on:
Primary Use Cases for GapMaps Map Data: