Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in the United States decreased to 65.10 percent in the first quarter of 2025 from 65.70 percent in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
The 2006 Second Edition TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER database. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on the latest available governmental unit boundaries. The Census TIGER database represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The 2006 Second Edition TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. This shapefile represents the current State Senate Districts for New Mexico as posted on the Census Bureau website for 2006.
Knowing who your consumers are is essential for businesses, marketers, and researchers. This detailed demographic file offers an in-depth look at American consumers, packed with insights about personal details, household information, financial status, and lifestyle choices. Let's take a closer look at the data:
Personal Identifiers and Basic Demographics At the heart of this dataset are the key details that make up a consumer profile:
Unique IDs (PID, HHID) for individuals and households Full names (First, Middle, Last) and suffixes Gender and age Date of birth Complete location details (address, city, state, ZIP) These identifiers are critical for accurate marketing and form the base for deeper analysis.
Geospatial Intelligence This file goes beyond just listing addresses by including rich geospatial data like:
Latitude and longitude Census tract and block details Codes for Metropolitan Statistical Areas (MSA) and Core-Based Statistical Areas (CBSA) County size codes Geocoding accuracy This allows for precise geographic segmentation and localized marketing.
Housing and Property Data The dataset covers a lot of ground when it comes to housing, providing valuable insights for real estate professionals, lenders, and home service providers:
Homeownership status Dwelling type (single-family, multi-family, etc.) Property values (market, assessed, and appraised) Year built and square footage Room count, amenities like fireplaces or pools, and building quality This data is crucial for targeting homeowners with products and services like refinancing or home improvement offers.
Wealth and Financial Data For a deeper dive into consumer wealth, the file includes:
Estimated household income Wealth scores Credit card usage Mortgage info (loan amounts, rates, terms) Home equity estimates and investment property ownership These indicators are invaluable for financial services, luxury brands, and fundraising organizations looking to reach affluent individuals.
Lifestyle and Interests One of the most useful features of the dataset is its extensive lifestyle segmentation:
Hobbies and interests (e.g., gardening, travel, sports) Book preferences, magazine subscriptions Outdoor activities (camping, fishing, hunting) Pet ownership, tech usage, political views, and religious affiliations This data is perfect for crafting personalized marketing campaigns and developing products that align with specific consumer preferences.
Consumer Behavior and Purchase Habits The file also sheds light on how consumers behave and shop:
Online and catalog shopping preferences Gift-giving tendencies, presence of children, vehicle ownership Media consumption (TV, radio, internet) Retailers and e-commerce businesses will find this behavioral data especially useful for tailoring their outreach.
Demographic Clusters and Segmentation Pre-built segments like:
Household, neighborhood, family, and digital clusters Generational and lifestage groups make it easier to quickly target specific demographics, streamlining the process for market analysis and campaign planning.
Ethnicity and Language Preferences In today's multicultural market, knowing your audience's cultural background is key. The file includes:
Ethnicity codes and language preferences Flags for Hispanic/Spanish-speaking households This helps ensure culturally relevant and sensitive communication.
Education and Occupation Data The dataset also tracks education and career info:
Education level and occupation codes Home-based business indicators This data is essential for B2B marketers, recruitment agencies, and education-focused campaigns.
Digital and Social Media Habits With everyone online, digital behavior insights are a must:
Internet, TV, radio, and magazine usage Social media platform engagement (Facebook, Instagram, LinkedIn) Streaming subscriptions (Netflix, Hulu) This data helps marketers, app developers, and social media managers connect with their audience in the digital space.
Political and Charitable Tendencies For political campaigns or non-profits, this dataset offers:
Political affiliations and outlook Charitable donation history Volunteer activities These insights are perfect for cause-related marketing and targeted political outreach.
Neighborhood Characteristics By incorporating census data, the file provides a bigger picture of the consumer's environment:
Population density, racial composition, and age distribution Housing occupancy and ownership rates This offers important context for understanding the demographic landscape.
Predictive Consumer Indexes The dataset includes forward-looking indicators in categories like:
Fashion, automotive, and beauty products Health, home decor, pet products, sports, and travel These predictive insights help businesses anticipate consumer trends and needs.
Contact Information Finally, the file includes ke...
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
SELECTED HOUSING CHARACTERISTICS SELECTED MONTHLY OWNER COSTS AS A PERCENTAGE OF HOUSEHOLD INCOME (SMOCAPI) - DP04 Universe - Housing units with a mortgage and Housing units without a mortgage Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 The information on selected monthly owner costs as a percentage of household income is the computed ratio of selected monthly owner costs to monthly household income. The ratio was computed separately for each unit and rounded to the nearest whole percentage. The data are tabulated only for owner-occupied units.
UK Government House Price Index (HPI) data, up to and including August 2022.
**UPDATE (19/4/2023): Version 2 of this dataset contains data up to February 2023 in the file 'UK-HPI-full-file-2023-02.csv' ** The dataset consists of various metrics calculated from individual property transaction records. This data is stored on a regional basis with records made for each date period split based on averages across property type (Flat, Terraced, SemiDetached, Detached), method of purchase (Cash, Mortgage), buyer type (First Time Buyer, Former Owner Occupier) and property status (New Build, Existing (Old)).
Each of these subsets has data regarding average prices (normal and seasonally adjusted), sales volume, 12-month percentage price change, 1-month percentage price change, plus an index value which uses hedonic regression - matching sale price data with the attributes of a property (such as number of bedrooms, floor space, etc) to give an overview of the market.
Contains HM Land Registry data © Crown copyright and database right 2020. This data is licensed under the Open Government Licence v3.0.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Real Estate DataSet’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/arslanali4343/real-estate-dataset on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Concerns housing values in suburbs of Boston.
Number of Instances: 506
Number of Attributes: 13 continuous attributes (including "class" attribute "MEDV"), 1 binary-valued attribute.
Attribute Information:
Missing Attribute Values: None.
--- Original source retains full ownership of the source dataset ---
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Homeownership Rate in the United States (RHORUSQ156N) from Q1 1965 to Q1 2025 about homeownership, housing, rate, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Prairie Home by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Prairie Home across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 54.21% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Prairie Home Population by Race & Ethnicity. You can refer the same here
Data on resident buyers who are persons that purchased a residential property in a market sale and filed their T1 tax return form: number of and incomes of residential property buyers, sale price, price-to-income ratio by the number of buyers as part of a sale, age groups, first-time home buyer status, buyer characteristics (sex, family type, immigration status, period of immigration, admission category).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Sweet Home population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Sweet Home. The dataset can be utilized to understand the population distribution of Sweet Home by age. For example, using this dataset, we can identify the largest age group in Sweet Home.
Key observations
The largest age group in Sweet Home, OR was for the group of age 60-64 years with a population of 833 (8.57%), according to the 2021 American Community Survey. At the same time, the smallest age group in Sweet Home, OR was the 80-84 years with a population of 210 (2.16%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Sweet Home Population by Age. You can refer the same here
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]
How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.
The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.
Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.
Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.
[1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.
[2] Ibid.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A company has a fleet of devices transmitting daily sensor readings. They would like to create a predictive maintenance solution to proactively identify when maintenance should be performed. This approach promises cost savings over routine or time based preventive maintenance, because tasks are performed only when warranted.
The task is to build a predictive model using machine learning to predict the probability of a device failure. When building this model, be sure to minimize false positives and false negatives. The column you are trying to Predict is called failure with binary value 0 for non-failure and 1 for failure.
There is a newer and more authoritative version of this layer here! It is owned by the University of Richmond's Digital Scholarship Lab and contains data on many more cities.The Home Owners' Loan Corporation (HOLC) was created in the New Deal Era and trained many home appraisers in the 1930s. The HOLC created a neighborhood ranking system infamously known today as redlining. Local real estate developers and appraisers in over 200 cities assigned grades to residential neighborhoods. These maps and neighborhood ratings set the rules for decades of real estate practices. The grades ranged from A to D. A was traditionally colored in green, B was traditionally colored in blue, C was traditionally colored in yellow, and D was traditionally colored in red. A (Best): Always upper- or upper-middle-class White neighborhoods that HOLC defined as posing minimal risk for banks and other mortgage lenders, as they were "ethnically homogeneous" and had room to be further developed.B (Still Desirable): Generally nearly or completely White, U.S. -born neighborhoods that HOLC defined as "still desirable" and sound investments for mortgage lenders.C (Declining): Areas where the residents were often working-class and/or first or second generation immigrants from Europe. These areas often lacked utilities and were characterized by older building stock.D (Hazardous): Areas here often received this grade because they were "infiltrated" with "undesirable populations" such as Jewish, Asian, Mexican, and Black families. These areas were more likely to be close to industrial areas and to have older housing.Banks received federal backing to lend money for mortgages based on these grades. Many banks simply refused to lend to areas with the lowest grade, making it impossible for people in many areas to become homeowners. While this type of neighborhood classification is no longer legal thanks to the Fair Housing Act of 1968 (which was passed in large part due to the activism and work of the NAACP and other groups), the effects of disinvestment due to redlining are still observable today. For example, the health and wealth of neighborhoods in Chicago today can be traced back to redlining (Chicago Tribune). In addition to formerly redlined neighborhoods having fewer resources such as quality schools, access to fresh foods, and health care facilities, new research from the Science Museum of Virginia finds a link between urban heat islands and redlining (Hoffman, et al., 2020). This layer comes out of that work, specifically from University of Richmond's Digital Scholarship Lab. More information on sources and digitization process can be found on the Data and Download and About pages. This layer includes 7,148 neighborhoods spanning 143 cities across the continental United States. NOTE: As mentioned above, over 200 cities were redlined and therefore this is not a complete dataset of every city that experienced redlining by the HOLC in the 1930s. More cities are available in this feature layer from University of Richmond.Cities included in this layerAlabama: Birmingham, Mobile, MontgomeryCalifornia: Fresno, Los Angeles, Sacramento, San Diego, San Francisco, San Jose, StocktonColorado: DenverConnecticut: East Hartford, New Britain, New Haven, StamfordFlorida: Jacksonville, Miami, St. Petersburg, TampaGeorgia: Atlanta, Augusta, Chattanooga, Columbus, MaconIllinois: Aurora, Chicago, Decatur, Joliet, GaryIndiana: Evansville, Fort Wayne, Indianapolis, Gary, Muncie, South Bend, Terre HauteKansas: Greater Kansas City, WichitaKentucky: Lexington, LouisvilleLouisiana: New OrleansMassachusetts: Arlington, Belmont, Boston, Braintree, Brockton, Brookline, Cambridge, Chelsea, Dedham, Everett, Haverhill, Holyoke Chicopee, Lexington, Malden, Medford, Melrose, Milton, Needham, Newton, Quincy, Revere, Saugus, Somerville, Waltham, Watertown, Winchester, WinthropMaryland: BaltimoreMichigan: Battle Creek, Bay City, Detroit, Flint, Grand Rapids, Kalamazoo, Muskegon, Pontiac, Saginaw, ToledoMinnesota: Duluth, MinneapolisMissouri: Greater Kansas City, Springfield, St. Joseph, St. LouisNorth Carolina: Asheville, Charlotte, Durham, Greensboro, Winston SalemNew Hampshire: ManchesterNew Jersey: Atlantic City, Bergen Co., Camden, Essex County, Hudson County, TrentonNew York: Bronx, Brooklyn, Buffalo, Elmira, Binghamton/Johnson City, Lower Westchester Co., Manhattan, Niagara Falls, Poughkeepsie, Queens, Rochester, Staten Island, Syracuse, UticaOhio: Akron, Canton, Cleveland, Columbus, Dayton, Hamilton, Lima, Lorrain, Portsmouth, Springfield, Toledo, Warren, YoungstownOregon: PortlandPennsylvania: Altoona, Erie, Johnstown, New Castle, Philadelphia, PittsburghSouth Carolina: AugustaTennessee: Chattanooga, KnoxvilleTexas: DallasVirginia: Lynchburg, Norfolk, Richmond, RoanokeWashington: Seattle, Spokane, TacomaWisconsin: Kenosha, Milwaukee, Oshkosh, RacineWest Virginia: Charleston, WheelingAn example of a map produced by the HOLC of Philadelphia:
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978.
Input features in order: 1) CRIM: per capita crime rate by town 2) ZN: proportion of residential land zoned for lots over 25,000 sq.ft. 3) INDUS: proportion of non-retail business acres per town 4) CHAS: Charles River dummy variable (1 if tract bounds river; 0 otherwise) 5) NOX: nitric oxides concentration (parts per 10 million) [parts/10M] 6) RM: average number of rooms per dwelling 7) AGE: proportion of owner-occupied units built prior to 1940 8) DIS: weighted distances to five Boston employment centres 9) RAD: index of accessibility to radial highways 10) TAX: full-value property-tax rate per $10,000 [$/10k] 11) PTRATIO: pupil-teacher ratio by town 12) B: The result of the equation B=1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town 13) LSTAT: % lower status of the population
Output variable: 1) MEDV: Median value of owner-occupied homes in $1000's [k$]
StatLib - Carnegie Mellon University
Harrison, David & Rubinfeld, Daniel. (1978). Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management. 5. 81-102. 10.1016/0095-0696(78)90006-2. LINK
Belsley, David A. & Kuh, Edwin. & Welsch, Roy E. (1980). Regression diagnostics: identifying influential data and sources of collinearity. New York: Wiley LINK
Most of the text in this description originally appeared on the Mapping Inequality Website. Robert K. Nelson, LaDale Winling, Richard Marciano, Nathan Connolly, et al., “Mapping Inequality,” American Panorama, ed. Robert K. Nelson and Edward L. Ayers, "HOLC staff members, using data and evaluations organized by local real estate professionals--lenders, developers, and real estate appraisers--in each city, assigned grades to residential neighborhoods that reflected their "mortgage security" that would then be visualized on color-coded maps. Neighborhoods receiving the highest grade of "A"--colored green on the maps--were deemed minimal risks for banks and other mortgage lenders when they were determining who should received loans and which areas in the city were safe investments. Those receiving the lowest grade of "D," colored red, were considered "hazardous." Conservative, responsible lenders, in HOLC judgment, would "refuse to make loans in these areas [or] only on a conservative basis." HOLC created area descriptions to help to organize the data they used to assign the grades. Among that information was the neighborhood's quality of housing, the recent history of sale and rent values, and, crucially, the racial and ethnic identity and class of residents that served as the basis of the neighborhood's grade. These maps and their accompanying documentation helped set the rules for nearly a century of real estate practice. " HOLC agents grading cities through this program largely "adopted a consistently white, elite standpoint or perspective. HOLC assumed and insisted that the residency of African Americans and immigrants, as well as working-class whites, compromised the values of homes and the security of mortgages. In this they followed the guidelines set forth by Frederick Babcock, the central figure in early twentieth-century real estate appraisal standards, in his Underwriting Manual: "The infiltration of inharmonious racial groups ... tend to lower the levels of land values and to lessen the desirability of residential areas." These grades were a tool for redlining: making it difficult or impossible for people in certain areas to access mortgage financing and thus become homeowners. Redlining directed both public and private capital to native-born white families and away from African American and immigrant families. As homeownership was arguably the most significant means of intergenerational wealth building in the United States in the twentieth century, these redlining practices from eight decades ago had long-term effects in creating wealth inequalities that we still see today. Mapping Inequality, we hope, will allow and encourage you to grapple with this history of government policies contributing to inequality." Data was copied from the Mapping Inequality Website for communities in Western Pennsylvania where data was available. These communities include Altoona, Erie, Johnstown, Pittsburgh, and New Castle. Data included original and georectified images, scans of the neighborhood descriptions, and digital map layers. Data here was downloaded on June 9, 2020.
How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015. Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population. The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight. The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in Russia increased to 92.60 percent in 2023 from 92 percent in 2022. This dataset provides the latest reported value for - Russia Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset provides information about the median City property tax as a percentage of median family income (SD23 measure GTW.A.1). The Travis County Appraisal District (TCAD) property value file, the annually adopted City property tax rate, and median income data from the U.S. Department of Housing and Urban Development (HUD) all contribute to the data supporting this measure.
This data can be used to help understand trends of affordability and the cost of city services over time in Austin.
View more details and insights related to this dataset on the story page: https://data.austintexas.gov/stories/s/7kz2-s6y2
Residential homes for older people, clients aged 80-84, on 31 Dec Tables Residential Homes For Older People Clients Aged 80 84 On 31 DecTSV The indicator gives the number of clients aged 80-84 who live in residential homes for older people at the end of the year .Residential home care:Institutional care for older people in social care (the unit has been defined as an institution by the Social Insurance Institution).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Two People House Plan1 is a dataset for semantic segmentation tasks - it contains Rouka annotations for 561 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in the United States decreased to 65.10 percent in the first quarter of 2025 from 65.70 percent in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.