Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of State Line City by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for State Line City. The dataset can be utilized to understand the population distribution of State Line City by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in State Line City. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for State Line City.
Key observations
Largest age group (population): Male # 55-59 years (17) | Female # 60-64 years (9). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Line City Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of State Line by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for State Line. The dataset can be utilized to understand the population distribution of State Line by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in State Line. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for State Line.
Key observations
Largest age group (population): Male # 40-44 years (98) | Female # 50-54 years (73). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Line Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of State Center by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for State Center. The dataset can be utilized to understand the population distribution of State Center by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in State Center. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for State Center.
Key observations
Largest age group (population): Male # 15-19 years (97) | Female # 45-49 years (114). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Center Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of State College by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for State College. The dataset can be utilized to understand the population distribution of State College by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in State College. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for State College.
Key observations
Largest age group (population): Male # 20-24 years (9,133) | Female # 15-19 years (6,378). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State College Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of State College by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for State College. The dataset can be utilized to understand the population distribution of State College by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in State College. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for State College.
Key observations
Largest age group (population): Male # 20-24 years (9,348) | Female # 20-24 years (7,262). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State College Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the State Line, ID population pyramid, which represents the State Line population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Line Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the State Center, IA population pyramid, which represents the State Center population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Center Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the State College, PA population pyramid, which represents the State College population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State College Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the State Line City, IN population pyramid, which represents the State Line City population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Line City Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Labour Force Participation Rate: Modeled ILO Estimate: Ratio of Female to Male data was reported at 81.641 % in 2017. This records a decrease from the previous number of 81.668 % for 2016. United States US: Labour Force Participation Rate: Modeled ILO Estimate: Ratio of Female to Male data is updated yearly, averaging 80.555 % from Dec 1990 (Median) to 2017, with 28 observations. The data reached an all-time high of 82.223 % in 2010 and a record low of 74.649 % in 1990. United States US: Labour Force Participation Rate: Modeled ILO Estimate: Ratio of Female to Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Labour Force. Labor force participation rate is the proportion of the population ages 15 and older that is economically active: all people who supply labor for the production of goods and services during a specified period. Ratio of female to male labor force participation rate is calculated by dividing female labor force participation rate by male labor force participation rate and multiplying by 100.; ; Derived using data from International Labour Organization, ILOSTAT database. Data retrieved in September 2018.; Weighted average; Data up to 2016 are estimates while data from 2017 are projections. National estimates are also available in the WDI database. Caution should be used when comparing ILO estimates with national estimates.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides comprehensive information about the employment-to-population ratio and the actual population in the United States, spanning from 1979 to 2022.
The employment-to-population ratio signifies the percentage of the civilian noninstitutional population that is employed.
If you find this dataset useful, please consider giving it an upvote! 😊💝
Poverty-Level Wages in the USA Dataset
Productivity and Hourly Compensation
Health Insurance Coverage in the USA
| Field | Description | Type |
|---|---|---|
| year | The year for which the data is recorded | int |
| all | Employment-to-population ratio for the entire population | float |
| 16-24 | Employment-to-population ratio for individuals aged 16-24 | float |
| 25-54 | Employment-to-population ratio for individuals aged 25-54 | float |
| 55-64 | Employment-to-population ratio for individuals aged 55-64 | float |
| 65+ | Employment-to-population ratio for individuals aged 65 years and older | float |
| less_than_hs | Employment-to-population ratio for individuals with less than a high school education | float |
| high_school | Employment-to-population ratio for individuals with a high school education | float |
| some_college | Employment-to-population ratio for individuals with some college education | float |
| bachelors_degree | Employment-to-population ratio for individuals with a bachelor's degree | float |
| advanced_degree | Employment-to-population ratio for individuals with an advanced degree | float |
| women | Employment-to-population ratio for women of all age groups | float |
| women_16-24 | Employment-to-population ratio for women aged 16-24 | float |
| women_25-54 | Employment-to-population ratio for women aged 25-54 | float |
| women_55-64 | Employment-to-population ratio for women aged 55-64 | float |
| women_65+ | Employment-to-population ratio for women aged 65 years and older | float |
| women_less_than_hs | Employment-to-population ratio for women with less than a high school education | float |
| women_high_school | Employment-to-population ratio for women with a high school education | float |
| women_some_college | Employment-to-population ratio for women with some college education | float |
| women_bachelors_degree | Employment-to-population ratio for women with a bachelor's degree | float |
| women_advanced_degree | Employment-to-population ratio for women with an advanced degree | float |
| men | Employment-to-population ratio for men of all age groups | float |
| men_16-24 | Employment-to-population ratio for men aged 16-24 | float |
| men_25-54 | Employment-to-population ratio for men aged 25-54 | float |
| men_55-64 | Employment-to-population ratio for men aged 55-64 | float |
| men_65+ | Employment-to-population ratio for men aged 65 years and older | float |
| men_less_than_hs | Employment-to-population ratio for men with less than a high school education | float |
| men_high_school | Employment-to-population ratio for men with a high school education | float |
| men_some_college | Employment-to-population ratio for men with some college education | float |
| men_bachelors_degree | Employment-to-population ratio for men with a bachelor's degree | float |
| men_advanced_degree | Employment-to-population ratio for men with a... |
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
AbstractObjective: To generate a national multiple sclerosis (MS) prevalence estimate for the United States by applying a validated algorithm to multiple administrative health claims (AHC) datasets. Methods: A validated algorithm was applied to private, military, and public AHC datasets to identify adult cases of MS between 2008 and 2010. In each dataset, we determined the 3-year cumulative prevalence overall and stratified by age, sex, and census region. We applied insurance-specific and stratum-specific estimates to the 2010 US Census data and pooled the findings to calculate the 2010 prevalence of MS in the United States cumulated over 3 years. We also estimated the 2010 prevalence cumulated over 10 years using 2 models and extrapolated our estimate to 2017. Results: The estimated 2010 prevalence of MS in the US adult population cumulated over 10 years was 309.2 per 100,000 (95% confidence interval [CI] 308.1–310.1), representing 727,344 cases. During the same time period, the MS prevalence was 450.1 per 100,000 (95% CI 448.1–451.6) for women and 159.7 (95% CI 158.7–160.6) for men (female:male ratio 2.8). The estimated 2010 prevalence of MS was highest in the 55- to 64-year age group. A US north-south decreasing prevalence gradient was identified. The estimated MS prevalence is also presented for 2017. Conclusion: The estimated US national MS prevalence for 2010 is the highest reported to date and provides evidence that the north-south gradient persists. Our rigorous algorithm-based approach to estimating prevalence is efficient and has the potential to be used for other chronic neurologic conditions. Usage notesPrev of MS in the US-E-Appendix-Feb-19-2018
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The purpose of this data set is to allow exploration between various types of data that is commonly collected by the US government across the states and the USA as a whole. The data set consists of three different types of data:
When creating the data set, I combined data from many different types of sources, all of which are cited below. I have also provided the fields included in the data set and what they represent below. I have not performed any research on the data yet, but am going to dive in soon. I am particularly interested in the relationships between various types of data (i.e. GDP or birth rate) in prediction algorithms. Given that I have compiled 5 years’ worth of data, this data set was primarily constructed with predictive algorithms in mind.
An additional note before you delve into the fields: * There could have been many more variables added across many different fields of metrics. I have stopped here, but it could potentially be beneficial to observe the interaction of these variables with others (i.e. the GDP of certain industries, the average age in a state, the male/female gender ratio, etc.) to attempt to find additional trends.
As noted from the census:
Net international migration for the United States includes the international migration of both native and foreign-born populations. Specifically, it includes: (a) the net international migration of the foreign born, (b) the net migration between the United States and Puerto Rico, (c) the net migration of natives to and from the United States, and (d) the net movement of the Armed Forces population between the United States and overseas. Net international migration for Puerto Rico includes the migration of native and foreign-born populations between the United States and Puerto Rico.
Codes for most of the data, information about the geographic terms and coditions, and more information about the methodology behind the population estimates can be found on the US Census website.
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the US English General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of English speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world US English communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade English speech models that understand and respond to authentic American accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of US English. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple English speech and language AI applications:
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the US Spanish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Spanish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world US Spanish communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Spanish speech models that understand and respond to authentic US accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of US Spanish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Spanish speech and language AI applications:
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the US English Scripted Monologue Speech Dataset tailored for the BFSI (Banking, Financial Services, and Insurance) domain. This dataset empowers the development of advanced English speech recognition systems, natural language understanding models, and conversational AI solutions focused on the BFSI sector.
This dataset includes over 6,000 scripted prompt recordings in US English, covering a wide range of realistic banking and finance-related scenarios to support robust ASR and voice AI systems.
This dataset spans multiple BFSI-related themes to simulate practical customer interaction scenarios:
To make the dataset as context-rich as possible, each prompt integrates commonly encountered real-world BFSI elements:
Every audio file is paired with verbatim transcription to streamline ASR and NLP model development.
Each data point is enriched with detailed metadata for advanced training and analysis:
This BFSI-focused dataset is
Facebook
TwitterScientific contributions (lectures and posters) to the American Association of Orthodontists (AAO) annual sessions from 2013 to 2023 were investigated with the aims of analysing the contributions of each country and their efficiency, presentation trends, and gender differences during these years as well as the most frequent topics and their evolution. Official data were requested from and provided by the AAO secretary. The year and type of presentation; the name, country and gender of the first author; and the full title of the presentation were considered. In addition, six national indicators that could determine the quantity and quality of scientific production were obtained from the Our World in Data website with regard to the countries that made the greatest contributions to the AAO annual sessions. The USA featured the largest number of lecturers (69.44%), while the presentations of posters were more balanced among the 4 countries that exhibited the highest levels of production (i.e., Brazil, the USA, Mexico and South Korea). Brazil was the main country to perform above expectations. The COVID-19 pandemic resulted in a significant reduction in the number of poster presentations. The male/female ratio was close to 3:1 in terms of lectures and close to 1:1 in terms of posters. In 2023, women presented more posters than did men. The terms clear/aligners and digital were strongly present, and the terms maxillary, adults, and expansion were used increasingly frequently, while the use of the terms brackets or cephalometry decreased. American lecturers included terms that differentiated them from lecturers in other countries. The nationalities of lecturers are not closely related to those of posters, particularly with regard to the USA, Brazil, Canada, Mexico and Turkey. Research spending and economic level are the most significant factors with respect to the type and number of a country’s contributions. Concerning gender, a clear imbalance in favour of men persists among lecturers. Increased distance from the USA makes it more difficult for women to serve as lecturers. An emergent paradigm shift in current topics towards a focus on the terms clear/aligners and digital in lectures is evident.
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the US Spanish Scripted Monologue Speech Dataset tailored for the BFSI (Banking, Financial Services, and Insurance) domain. This dataset empowers the development of advanced Spanish speech recognition systems, natural language understanding models, and conversational AI solutions focused on the BFSI sector.
This dataset includes over 6,000 scripted prompt recordings in US Spanish, covering a wide range of realistic banking and finance-related scenarios to support robust ASR and voice AI systems.
This dataset spans multiple BFSI-related themes to simulate practical customer interaction scenarios:
To make the dataset as context-rich as possible, each prompt integrates commonly encountered real-world BFSI elements:
Every audio file is paired with verbatim transcription to streamline ASR and NLP model development.
Each data point is enriched with detailed metadata for advanced training and analysis:
This BFSI-focused dataset is ideal
Facebook
TwitterAs of January 2024, Instagram was slightly more popular with men than women, with men accounting for 50.6 percent of the platform’s global users. Additionally, the social media app was most popular amongst younger audiences, with almost 32 percent of users aged between 18 and 24 years.
Instagram’s Global Audience
As of January 2024, Instagram was the fourth most popular social media platform globally, reaching two billion monthly active users (MAU). This number is projected to keep growing with no signs of slowing down, which is not a surprise as the global online social penetration rate across all regions is constantly increasing.
As of January 2024, the country with the largest Instagram audience was India with 362.9 million users, followed by the United States with 169.7 million users.
Who is winning over the generations?
Even though Instagram’s audience is almost twice the size of TikTok’s on a global scale, TikTok has shown itself to be a fierce competitor, particularly amongst younger audiences. TikTok was the most downloaded mobile app globally in 2022, generating 672 million downloads. As of 2022, Generation Z in the United States spent more time on TikTok than on Instagram monthly.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of State Line City by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for State Line City. The dataset can be utilized to understand the population distribution of State Line City by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in State Line City. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for State Line City.
Key observations
Largest age group (population): Male # 55-59 years (17) | Female # 60-64 years (9). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Line City Population by Gender. You can refer the same here