Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.
Table legend: SD = standard deviation; FSIQ = Full Scale Intelligence Quotient.
This product will include topics such as age, sex, race, Hispanic or Latino origin, household type, family type, relationship to householder, group quarters population, housing occupancy and housing tenure. Some tables will be iterated by race and ethnicity.
The table CT- Demographic Data is part of the dataset Demographic Data, available at https://columbia.redivis.com/datasets/fh74-90v3ge9m2. It contains 2317689 rows across 699 variables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
The table HI- Demographic Data is part of the dataset Demographic Data, available at https://columbia.redivis.com/datasets/fh74-90v3ge9m2. It contains 767560 rows across 699 variables.
Descriptive statistics of dependent, main independent, and extraneous (socio-demographic) variables.
Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
Demographic variables of 7574 Polling Booth Catchments (PBCs) in Australia. The CCDs at the 2001 Census of Population and Housing were spatially allocated to a nearest polling booth location to form polling booth catchments within each of the 150 Electoral Divisions. The 150 booth catchments layers were then merged into one Australia booth catchments layer. The demographic variables were derived from 2001 census.
Midyear population estimates and projections for all countries and areas of the world with a population of 5,000 or more // Source: U.S. Census Bureau, Population Division, International Programs Center// Note: Total population available from 1950 to 2100 for 227 countries and areas. Other demographic variables available from base year to 2100. Base year varies by country and therefore data are not available for all years for all countries. For the United States, total population available from 1950-2060, and other demographic variables available from 1980-2060. See methodology at https://www.census.gov/programs-surveys/international-programs/about/idb.html
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Statistics geared to demographics by region, sex, variable, observations and year
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
aOral benign conditions.bOral HK/EH+OED cases.cOral SCCA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table concerns jobs of employees from abroad within the age range of 18 up to 74 years. A distinction is made between employees who are registered as a resident in the Dutch population register (BRP; formerly known as the GBA) and those not registered as a resident in the BRP. Furthermore, the table can be broken down into gender, age, hourly wage class, employment contract type, and the Dutch standard industrial classification (SBI 2008). All employees registered as resident were at least 18 years old when they immigrated to the Netherlands. Likewise, the non-resident employees were at least 18 years old at the start of their stay in the Netherlands. The variable “migration background/nationality” is included as a background variable. Migration background is used for employees registered as resident. Nationality is used for non-resident employees.
Data available from: 2010-2017
Status of the figures: The statistics in this table are definite.
Changes as of April 20, 2020: None, this table is discontinued.
When will new figures be published? Not applicable anymore. This table is replaced by Foreign-born employees. resident/non-resident, demographic variables, See paragraph 3.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Demographic Analysis of Shopping Behavior: Insights and Recommendations
Dataset Information: The Shopping Mall Customer Segmentation Dataset comprises 15,079 unique entries, featuring Customer ID, age, gender, annual income, and spending score. This dataset assists in understanding customer behavior for strategic marketing planning.
Cleaned Data Details: Data cleaned and standardized, 15,079 unique entries with attributes including - Customer ID, age, gender, annual income, and spending score. Can be used by marketing analysts to produce a better strategy for mall specific marketing.
Challenges Faced: 1. Data Cleaning: Overcoming inconsistencies and missing values required meticulous attention. 2. Statistical Analysis: Interpreting demographic data accurately demanded collaborative effort. 3. Visualization: Crafting informative visuals to convey insights effectively posed design challenges.
Research Topics: 1. Consumer Behavior Analysis: Exploring psychological factors driving purchasing decisions. 2. Market Segmentation Strategies: Investigating effective targeting based on demographic characteristics.
Suggestions for Project Expansion: 1. Incorporate External Data: Integrate social media analytics or geographic data to enrich customer insights. 2. Advanced Analytics Techniques: Explore advanced statistical methods and machine learning algorithms for deeper analysis. 3. Real-Time Monitoring: Develop tools for agile decision-making through continuous customer behavior tracking. This summary outlines the demographic analysis of shopping behavior, highlighting key insights, dataset characteristics, team contributions, challenges, research topics, and suggestions for project expansion. Leveraging these insights can enhance marketing strategies and drive business growth in the retail sector.
References OpenAI. (2022). ChatGPT [Computer software]. Retrieved from https://openai.com/chatgpt. Mustafa, Z. (2022). Shopping Mall Customer Segmentation Data [Data set]. Kaggle. Retrieved from https://www.kaggle.com/datasets/zubairmustafa/shopping-mall-customer-segmentation-data Donkeys. (n.d.). Kaggle Python API [Jupyter Notebook]. Kaggle. Retrieved from https://www.kaggle.com/code/donkeys/kaggle-python-api/notebook Pandas-Datareader. (n.d.). Retrieved from https://pypi.org/project/pandas-datareader/
This layer shows the age statistics in Tucson by neighborhood, aggregated from block level data, between 2010-2019. For questions, contact GIS_IT@tucsonaz.gov. The data shown is from Esri's 2019 Updated Demographic estimates.Esri's U.S. Updated Demographic (2019/2024) Data - Population, age, income, sex, race, home value, and marital status are among the variables included in the database. Each year, Esri's Data Development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of U.S. geographies.Additional Esri Resources:Esri DemographicsU.S. 2019/2024 Esri Updated DemographicsEssential demographic vocabularyPermitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.
Summary File 1 Data Profile 1 (SF1 Table DP-1) for Census Tracts in the Minneapolis-St. Paul 7 County metropolitan area is a subset of the profile of general demographic characteristics for 2000 prepared by the U.S. Census Bureau.
This table (DP-1) includes: Sex and Age, Race, Race alone or in combination with one or more otehr races, Hispanic or Latino and Race, Relationship, Household by Type, Housing Occupancy, Housing Tenure
US Census 2000 Demographic Profiles: 100-percent and Sample Data
The profile includes four tables (DP-1 thru DP-4) that provide various demographic, social, economic, and housing characteristics for the United States, states, counties, minor civil divisions in selected states, places, metropolitan areas, American Indian and Alaska Native areas, Hawaiian home lands and congressional districts (106th Congress). It includes 100-percent and sample data from Census 2000. The DP-1 table is available as part of the Summary File 1 (SF 1) dataset, and the other three tables are available as part of the Summary File 3 (SF 3) dataset.
The US Census provides DP-1 thru DP-4 data at the Census tract level through their DataFinder search engine. However, since the Metropolitan Council and MetroGIS participants are interested in all Census tracts within the seven county metropolitan area, it was quicker to take the raw Census SF-1 and SF-3 data at tract levels and recreate the DP1-4 variables using the appropriate formula for each DP variable. This file lists the formulas used to create the DP variables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains measures of socioeconomic and demographic characteristics by US census tract 1990-2010. Example measures include population density; population distribution by race, ethnicity, age, and income; and proportion of population living below the poverty level, receiving public assistance, and female-headed families. The dataset also contains a set of index variables to represent neighborhood disadvantage and affluence.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Morgan Hill, CA population pyramid, which represents the Morgan Hill population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Morgan Hill Population by Age. You can refer the same here
2016-2020 ACS 5-Year estimates of demographic variables (see below) compiled at the tract level.The American Community Survey (ACS) 5 Year 2016-2020 demographic information is a subset of information available for download from the U.S. Census. Tables used in the development of this dataset include: B01001 - Sex By Age; B03002 - Hispanic Or Latino Origin By Race; B11001 - Household Type (Including Living Alone); B11005 - Households By Presence Of People Under 18 Years By Household Type; B11006 - Households By Presence Of People 60 Years And Over By Household Type; B16005 - Nativity By Language Spoken At Home By Ability To Speak English For The Population 5 Years And Over; B25010 - Average Household Size Of Occupied Housing Units By Tenure, and; B15001 - Sex by Educational Attainment for the Population 18 Years and Over; To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_ACS 5-Year Demographic Estimate Data by TractDate of Coverage: 2016-2020
https://www.icpsr.umich.edu/web/ICPSR/studies/39413/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39413/terms
The American Community Survey (ACS), conducted by the U.S. Census Bureau, replaced the long form of the decennial census in 2000. The ACS allows researchers, policy makers, and others access to timely information about the U.S. population to make decisions about infrastructure and distribution of federal funds. The monthly survey is sent to a sample of approximately 3.5 million U.S. addresses, including the District of Columbia and Puerto Rico. The ACS includes questions on topics not included in the decennial census, such as those about occupations and employment, education, and key areas of infrastructure like internet access and transportation. When studying large geographic areas, such as states, researchers can use a single year's worth of ACS data to create population-level estimates. However, the study of smaller groups of the population, such as those employed in arts-related fields, requires additional data for more accurate estimation. Specifically, researchers often use 5-year increments of ACS data to draw conclusions about smaller geographies or slices of the population. Note, the Census Bureau produced 3-year estimates between 2005 and 2013 (resulting in seven files: 2005-2007, 2006-2008, 2007-2009, . . . 2011-2013), which remain available but no additional 3-year estimate files have been created. Individuals wishing to describe people working in occupations related to the arts or culture should plan to use at least five years' worth of data to generate precise estimates. When selecting data from the U.S. Census Bureau or IPUMS USA, users should select data collected over 60 months, such as 2020-2024. NADAC's Guide to Creating Artist Extracts and Special Tabulations of Artists from the American Community Survey provides information about the occupation codes used to identify artists.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Births by Maternal Demographic Characteristics - 5-Year Aggregations reports the 5-year average number and percentage of births in certain categories by maternal demographic characteristics (mother's age, race, and ethnicity).
Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.