100+ datasets found
  1. N

    Person County, NC Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Person County, NC Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis [Dataset]. https://www.neilsberg.com/research/datasets/632aebb9-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Person County, North Carolina
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Person County, NC population pyramid, which represents the Person County population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Person County, NC, is 26.9.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Person County, NC, is 31.4.
    • Total dependency ratio for Person County, NC is 58.3.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Person County, NC is 3.2.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Person County population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Person County for the selected age group is shown in the following column.
    • Population (Female): The female population in the Person County for the selected age group is shown in the following column.
    • Total Population: The total population of the Person County for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Person County Population by Age. You can refer the same here

  2. N

    Person County, NC Age Group Population Dataset: A Complete Breakdown of...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Person County, NC Age Group Population Dataset: A Complete Breakdown of Person County Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/aaafc1bc-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Person County, North Carolina
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Person County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Person County. The dataset can be utilized to understand the population distribution of Person County by age. For example, using this dataset, we can identify the largest age group in Person County.

    Key observations

    The largest age group in Person County, NC was for the group of age 60 to 64 years years with a population of 3,232 (8.26%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Person County, NC was the 80 to 84 years years with a population of 793 (2.03%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Person County is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Person County total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Person County Population by Age. You can refer the same here

  3. O

    Employee Demographics: Race

    • data.mesaaz.gov
    • citydata.mesaaz.gov
    csv, xlsx, xml
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Human Resources (2025). Employee Demographics: Race [Dataset]. https://data.mesaaz.gov/Human-Resources/Employee-Demographics-Race/6kd3-uaks
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Aug 4, 2025
    Dataset authored and provided by
    Human Resources
    Description

    This transformed view of Employee Demographics - Public dataset counts the number of and percentage of city employees by race as self-reported by employee based on EEOC classification. This information is used by "City Employee vs. Community Demographics dataset" at https://citydata.mesaaz.gov/Economic-Development/Chart-Data-for-City-Employee-vs-Community-Demograp/bt2n-zimw

  4. U

    United States Population: All Ages

    • ceicdata.com
    Updated May 15, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2009). United States Population: All Ages [Dataset]. https://www.ceicdata.com/en/united-states/population-by-age/population-all-ages
    Explore at:
    Dataset updated
    May 15, 2009
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 1, 2006 - Jun 1, 2017
    Area covered
    United States
    Variables measured
    Population
    Description

    United States Population: All Ages data was reported at 325,719.000 Person th in 2017. This records an increase from the previous number of 323,406.000 Person th for 2016. United States Population: All Ages data is updated yearly, averaging 176,356.000 Person th from Jun 1900 (Median) to 2017, with 118 observations. The data reached an all-time high of 325,719.000 Person th in 2017 and a record low of 76,094.000 Person th in 1900. United States Population: All Ages data remains active status in CEIC and is reported by US Census Bureau. The data is categorized under Global Database’s United States – Table US.G002: Population by Age. Series Remarks Population data for the years 1900 to 1949 exclude the population residing in Alaska and Hawaii. Population data for the years 1940 to 1979 cover the resident population plus Armed Forces overseas. Population data for all other years cover only the resident population.

  5. f

    Shows the demographic dataset of the people living with HIV.

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Mar 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lippman, Sheri A.; Mujugira, Andrew; Castelnuovo, Barbara; King, Rachel; Nekesa, Nicolate; Okoboi, Stephen (2025). Shows the demographic dataset of the people living with HIV. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0002095959
    Explore at:
    Dataset updated
    Mar 13, 2025
    Authors
    Lippman, Sheri A.; Mujugira, Andrew; Castelnuovo, Barbara; King, Rachel; Nekesa, Nicolate; Okoboi, Stephen
    Description

    Shows the demographic dataset of the people living with HIV.

  6. N

    Dataset for Person County, NC Census Bureau Demographics and Population...

    • neilsberg.com
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for Person County, NC Census Bureau Demographics and Population Distribution Across Age // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/b7ac6527-5460-11ee-804b-3860777c1fe6/
    Explore at:
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Person County, North Carolina
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Person County population by age. The dataset can be utilized to understand the age distribution and demographics of Person County.

    Content

    The dataset constitues the following three datasets

    • Person County, NC Age Group Population Dataset: A complete breakdown of Person County age demographics from 0 to 85 years, distributed across 18 age groups
    • Person County, NC Age Cohorts Dataset: Children, Working Adults, and Seniors in Person County - Population and Percentage Analysis
    • Person County, NC Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  7. u

    Annual Population Survey: Well-Being, April 2011 - March 2015: Secure Access...

    • beta.ukdataservice.ac.uk
    Updated 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Survey Division Office For National Statistics (2016). Annual Population Survey: Well-Being, April 2011 - March 2015: Secure Access [Dataset]. http://doi.org/10.5255/ukda-sn-7961-1
    Explore at:
    Dataset updated
    2016
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    Social Survey Division Office For National Statistics
    Description

    The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS) (held at the UK Data Archive under GN 33246), all of its associated LFS boosts and the APS boost. Thus, the APS combines results from five different sources: the LFS (waves 1 and 5); the English Local Labour Force Survey (LLFS), the Welsh Labour Force Survey (WLFS), the Scottish Labour Force Survey (SLFS) and the Annual Population Survey Boost Sample (APS(B) - however, this ceased to exist at the end of December 2005, so APS data from January 2006 onwards will contain all the above data apart from APS(B)). Users should note that the LLFS, WLFS, SLFS and APS(B) are not held separately at the UK Data Archive. For further detailed information about methodology, users should consult the Labour Force Survey User Guide, selected volumes of which have been included with the APS documentation for reference purposes (see 'Documentation' table below).

    The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples such as the WLFS and SLFS, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.

    APS Well-Being data
    Since April 2011, the APS has included questions about personal and subjective well-being. The responses to these questions have been made available as annual sub-sets to the APS Person level files. It is important to note that the size of the achieved sample of the well-being questions within the dataset is approximately 165,000 people. This reduction is due to the well-being questions being only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. As a result some caution should be used when using analysis of responses to well-being questions at detailed geography areas and also in relation to any other variables where respondent numbers are relatively small. It is recommended that for lower level geography analysis that the variable UACNTY09 is used.

    As well as annual datasets, three-year pooled datasets are available. When combining multiple APS datasets together, it is important to account for the rotational design of the APS and ensure that no person appears more than once in the multiple year dataset. This is because the well-being datasets are not designed to be longitudinal e.g. they are not designed to track individuals over time/be used for longitudinal analysis. They are instead cross-sectional, and are designed to use a cross-section of the population to make inferences about the whole population. For this reason, the three-year dataset has been designed to include only a selection of the cases from the individual year APS datasets, chosen in such a way that no individuals are included more than once, and the cases included are approximately equally spread across the three years. Further information is available in the 'Documentation' section below.

    Secure Access APS Well-Being data
    Secure Access datasets for the APS Well-Being include additional variables not included in either the standard End User Licence (EUL) versions (see under GN 33357) or the Special Licence (SL) access versions (see under GN 33376). Extra variables that typically can be found in the Secure Access version but not in the EUL or SL versions relate to:

    • geography, including:
      • Postcodes
      • Census Area Statistics (CAS) Wards
      • Census Output Areas
      • Nomenclature of Units for Territorial Statistics (NUTS) level 2 and 3 areas
      • Lower and Middle Layer Super Output Areas
      • Travel to Work Areas
      • Unitary authority / Local Authority District of place of work (main job)
      • region of place of work for first and second jobs
    • qualifications, education and training including level of highest qualification, qualifications from Government schemes, qualifications related to work, qualifications from school, qualifications from university of college and qualifications gained from outside the UK
    • detailed ethnic group for Scottish respondents
    • detailed religious denomination for Northern Irish respondents
    • length health problem has limited activity
    • learning difficulty or learning disability
    • occupation in apprenticeship or second job
    • number of bedrooms
    • number of dependent children in household aged under 19
    Prospective users of the Secure Access version of the APS Well-Being will need to fulfil additional requirements, commencing with the completion of an extra application form to demonstrate to the data owners exactly why they need access to the extra, more detailed variables, in order to obtain permission to use that version. Secure Access data users must also complete face-to-face training and agree to the Secure Access User Agreement and Licence Compliance Policy (see 'Access' section below). Therefore, users are encouraged to download and inspect the EUL version of the data prior to ordering the Secure Access (or SL) version. Further details and links to all APS studies available from the UK Data Archive can be found via the APS Key Data series webpage.

    APS Well-Being Datasets: Information, July 2016
    From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Users should no longer use the bespoke well-being datasets (SNs 6994, 6999, 7091, 7092, 7364, 7365, 7565, 7566 and 7961, but should now use the variables included on the April-March APS person datasets instead. Further information on the transition can be found on the Personal well-being in the UK: 2015 to 2016

    Documentation and coding frames
    The APS is compiled from variables present in the LFS. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation (e.g. coding frames for education, industrial and geographic variables, which are held in LFS User Guide Vol.5, Classifications), users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.

    May 2018 Update
    Due to a change in the Travel-to-Work Area coding structure from 2001 to 2011, the variable TTWA9D has been relabelled in the pooled data file for 2012-2015.

  8. a

    ABS - Data by Region - Population & People (SA4) 2011-2019

    • data.aurin.org.au
    Updated Mar 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ABS - Data by Region - Population & People (SA4) 2011-2019 [Dataset]. https://data.aurin.org.au/dataset/au-govt-abs-abs-data-by-region-pop-and-people-asgs-sa4-2011-2019-sa4-2016
    Explore at:
    Dataset updated
    Mar 5, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset presents data on population and people available from the ABS Data by Region statistics. This release of Data by Region presents various data for 2011-2019 and Census of Population and Housing data for 2011 and 2016 and is based on the Statistical Area 4 (SA4) 2016 boundaries. The dataset includes information in the following specified areas of population and people: Estimated Resident Population, Working Age Population, Median Age, Births and Deaths, Population Density, Internal and Overseas Migration, Aboriginal and Torres Strait Islander people, Overseas Born Proportion, Religious Affiliation and Speaks language other than English. Data by Region contains a standard set of data for each region type, depending on the availability of statistics for particular geographies. Data are sourced from a wide variety of collections, both ABS and non-ABS. When analysing these statistics, care needs to be taken as time periods, definitions, methodologies, scope and coverage can differ across collections. Where available, data have been presented as a time series - to enable users to assess changes over time. However, when looked at on a period to period basis, some series may sometimes appear volatile. When analysing the data, users are encouraged to consider the longer term behaviour of the series, where this extra information is available. For more information please visit the Explanatory Notes.

  9. L2 Voter and Demographic Dataset

    • redivis.com
    • stanford.redivis.com
    application/jsonl +7
    Updated Aug 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford University Libraries (2025). L2 Voter and Demographic Dataset [Dataset]. http://doi.org/10.57761/jnrs-nf57
    Explore at:
    sas, arrow, csv, parquet, application/jsonl, spss, avro, stataAvailable download formats
    Dataset updated
    Aug 5, 2025
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford University Libraries
    Description

    Abstract

    The L2 Voter and Demographic Dataset includes demographic and voter history tables for all 50 states and the District of Columbia. The dataset is built from publicly available government records about voter registration and election participation. These records indicate whether a person voted in an election or not, but they do not record whom that person voted for. Voter registration and election participation data are augmented by demographic information from outside data sources.

    Methodology

    To create this file, L2 processes registered voter data on an ongoing basis for all 50 states and the District of Columbia, with refreshes of the underlying state voter data typically at least every six months and refreshes of telephone numbers and National Change of Address processing approximately every 30 to 60 days. These data are standardized and enhanced with propriety commercial data and modeling codes and consist of approximately 185,000,000 records nationwide.

    Usage

    For each state, there are two available tables: demographic and voter history. The demographic and voter tables can be joined on the LALVOTERIDvariable. One can also use the LALVOTERIDvariable to link the L2 Voter and Demographic Dataset with the L2 Consumer Dataset.

    In addition, the LALVOTERIDvariable can be used to validate the state. For example, let's look at the LALVOTERID = LALCA3169443. The characters in the fourth and fifth positions of this identifier are 'CA' (California). The second way to validate the state is by using the RESIDENCE_ADDRESSES_STATEvariable, which should have a value of 'CA' (California).

    The date appended to each table name represents when the data was last updated. These dates will differ state by state because states update their voter files at different cadences.

    The demographic files use 698 consistent variables. For more information about these variables, see 2025-01-10-VM2-File-Layout.xlsx.

    The voter history files have different variables depending on the state. The ***2025-08-05-L2-Voter-Dictionaries.tar.gz file contains .csv data dictionaries for each state's demographic and voter files. While the demographic file data dictionaries should mirror the 2025-01-10-VM2-File-Layout.xlsx*** file, the voter file data dictionaries will be unique to each state.

    ***2025-04-24-National-File-Notes.pdf ***contains L2 Voter and Demographic Dataset ("National File") release notes from 2018 to 2025.

    ***2025-08-05-L2-Voter-Fill-Rate.tar.gz ***contains .tab files tracking the percent of non-null values for any given field.

    Bulk Data Access

    Data access is required to view this section.

    DataMapping Tool

    Data access is required to view this section.

  10. a

    Demographics

    • data-lakecountyil.opendata.arcgis.com
    • datasets.ai
    • +3more
    Updated Dec 8, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2016). Demographics [Dataset]. https://data-lakecountyil.opendata.arcgis.com/datasets/demographics/about
    Explore at:
    Dataset updated
    Dec 8, 2016
    Dataset authored and provided by
    Lake County Illinois GIS
    License

    https://www.arcgis.com/sharing/rest/content/items/89679671cfa64832ac2399a0ef52e414/datahttps://www.arcgis.com/sharing/rest/content/items/89679671cfa64832ac2399a0ef52e414/data

    Area covered
    Description

    Lake County, Illinois Demographic Data. Explanation of field attributes:

    Total Population – The entire population of Lake County.

    White – Individuals who are of Caucasian race. This is a percent.African American – Individuals who are of African American race. This is a percent.Asian – Individuals who are of Asian race. This is a percent.

    Hispanic – Individuals who are of Hispanic ethnicity. This is a percent.

    Does not Speak English- Individuals who speak a language other than English in their household. This is a percent.

    Under 5 years of age – Individuals who are under 5 years of age. This is a percent.

    Under 18 years of age – Individuals who are under 18 years of age. This is a percent.

    18-64 years of age – Individuals who are between 18 and 64 years of age. This is a percent.

    65 years of age and older – Individuals who are 65 years old or older. This is a percent.

    Male – Individuals who are male in gender. This is a percent.

    Female – Individuals who are female in gender. This is a percent.

    High School Degree – Individuals who have obtained a high school degree. This is a percent.

    Associate Degree – Individuals who have obtained an associate degree. This is a percent.

    Bachelor’s Degree or Higher – Individuals who have obtained a bachelor’s degree or higher. This is a percent.

    Utilizes Food Stamps – Households receiving food stamps/ part of SNAP (Supplemental Nutrition Assistance Program). This is a percent.

    Median Household Income - A median household income refers to the income level earned by a given household where half of the homes in the area earn more and half earn less. This is a dollar amount.

    No High School – Individuals who have not obtained a high school degree. This is a percent.

    Poverty – Poverty refers to families and people whose income in the past 12 months is below the poverty level. This is a percent.

  11. United States US: Urban Population

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States US: Urban Population [Dataset]. https://www.ceicdata.com/en/united-states/population-and-urbanization-statistics/us-urban-population
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Population
    Description

    United States US: Urban Population data was reported at 267,278,643.000 Person in 2017. This records an increase from the previous number of 264,746,567.000 Person for 2016. United States US: Urban Population data is updated yearly, averaging 184,283,180.000 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 267,278,643.000 Person in 2017 and a record low of 126,462,473.000 Person in 1960. United States US: Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Urban population refers to people living in urban areas as defined by national statistical offices. It is calculated using World Bank population estimates and urban ratios from the United Nations World Urbanization Prospects. Aggregation of urban and rural population may not add up to total population because of different country coverages.; ; World Bank staff estimates based on the United Nations Population Division's World Urbanization Prospects: 2018 Revision.; Sum;

  12. d

    Global Human Settlement Layer: Population and Built-Up Estimates, and Degree...

    • catalog.data.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +3more
    Updated Aug 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Global Human Settlement Layer: Population and Built-Up Estimates, and Degree of Urbanization Settlement Model Grid [Dataset]. https://catalog.data.gov/dataset/global-human-settlement-layer-population-and-built-up-estimates-and-degree-of-urbanization-35606
    Explore at:
    Dataset updated
    Aug 22, 2025
    Dataset provided by
    SEDAC
    Description

    The Global Human Settlement Layer: Population and Built-Up Estimates, and Degree of Urbanization Settlement Model Grid data set provides gridded data on human population (GHS-POP), built-up area (GHS-BUILT), and degree of urbanization (GHS-SMOD) across four time periods: 1975, 1990, 2000, and 2014 (BUILT) or 2015 (POP, SMOD). GHS-BUILT describes the percent built-up area for each 30 arc-second grid cell (approximately 1 km at the equator) based on Landsat imagery from each of the four time periods. GHS-POP consists of census data from the 2010 round of global census from Gridded Population of the World, Version 4, Revision 10 (GPWv4.10) spatially-allocated within census Units based on the percent built-up areas from GHS-BUILT. GHS-SMOD uses GHS-BUILT and GHS-POP in order to develop a standardized classification of degree of urbanization grid. The original data from the Joint Research Centre of the European Commission (JRC-EC) has been combined into a single data package in GeoTIFF format and reprojected from Mollweide Equal Area into WGS84 at 9 arc-second and 30 arc-second horizontal resolutions in order to support integration with a variety of global raster data sets.

  13. Prison Inmates in India

    • kaggle.com
    Updated Jan 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Prison Inmates in India [Dataset]. https://www.kaggle.com/datasets/thedevastator/prison-inmates-in-india-demographics-crimes-and
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 4, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Prison Inmates in India

    Demographics, Age, Education, Caste, Wages, Rehabilitation, Technical Info

    By Rajanand Ilangovan [source]

    About this dataset

    This dataset provides a detailed view of prison inmates in India, including their age, caste, and educational background. It includes information on inmates from all states/union territories for the year 2019 such as the number of male and female inmates aged 16-18 years, 18-30 year old inmates and those above 50 years old. The data also covers total number of penalized prisoners sentenced to death sentence, life imprisonment or executed by the state authorities. Additionally, it provides information regarding the crimehead (type) committed by an inmate along with its grand total across different age groups. This dataset not only sheds light on India’s criminal justice system but also highlights prevelance of crimes in different states and union territories as well as providing insight into crime trends across Indian states over time

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides a comprehensive look at the demographics, crimes and sentences of Indian prison inmates in 2019. The data is broken down by state/union territory, year, crime head, age groups and gender.

    This dataset can be used to understand the demographic composition of the prison population in India as well as the types of crimes committed. It can also be used to gain insight into any changes or trends related to sentencing patterns in India over time. Furthermore, this data can provide valuable insight into potential correlations between different demographic factors (such as gender and caste) and specific types of crimes or length of sentences handed out.

    To use this dataset effectively there are a few important things to keep in mind: •State/UT - This column refers to individual states or union territories in India where prisons are located •Year – This column indicates which year(s) the data relates to •Both genders - Female columns refer only to female prisoners while male columns refers only to male prisoners •Age Groups – 16-18 years old = 21-30 years old = 31-50 years old = 50+ years old •Crime Head – A broad definition for each type of crime that inmates have been convicted for •No Capital Punishment – The total number sentenced with capital punishment No Life Imprisonment – The total number sentenced with life imprisonment No Executed– The total number executed from death sentence Grand Total–The overall totals for each category

    By using this information it is possible to answer questions regarding topics such as sentencing trends, types of crimes committed by different age groups or genders and state-by-state variation amongst other potential queries

    Research Ideas

    • Using the age and gender information to develop targeted outreach strategies for prisons in order to reduce recidivism rates.
    • Creating an AI-based predictive model to predict crime trends by analyzing crime head data from a particular region/state and correlating it with population demographics, economic activity, etc.
    • Analyzing the caste of inmates across different states in India in order to understand patterns of discrimination within the criminal justice system

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original.

    Columns

    File: SLL_Crime_headwise_distribution_of_inmates_who_convicted.csv | Column name | Description | |:--------------------------|:---------------------------------------------------------------------------------------------------| | STATE/UT | Name of the state or union territory where the jail is located. (String) | | YEAR | Year when the inmate population data was collected. (Integer) ...

  14. World cities database

    • kaggle.com
    Updated May 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juanma Hernández (2025). World cities database [Dataset]. http://doi.org/10.34740/kaggle/dsv/11944536
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 25, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Juanma Hernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data is from:

    https://simplemaps.com/data/world-cities

    We're proud to offer a simple, accurate and up-to-date database of the world's cities and towns. We've built it from the ground up using authoritative sources such as the NGIA, US Geological Survey, US Census Bureau, and NASA.

    Our database is:

    • Up-to-date: It was last refreshed on May 11, 2025.
    • Comprehensive: Over 4 million unique cities and towns from every country in the world (about 48 thousand in basic database).
    • Accurate: Cleaned and aggregated from official sources. Includes latitude and longitude coordinates.
    • Simple: A single CSV file, concise field names, only one entry per city.
  15. d

    National Coral Reef Monitoring Program: Socioeconomic Secondary Data (human...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact) (2025). National Coral Reef Monitoring Program: Socioeconomic Secondary Data (human population, economic impacts of fishing and tourism, community well being, physical infrastructure and governance) in South Florida from 1995 to 2018 (NCEI Accession 0191509) [Dataset]. https://catalog.data.gov/dataset/national-coral-reef-monitoring-program-socioeconomic-secondary-data-human-population-economic-i5
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    (Point of Contact)
    Description

    This dataset is a compilation and synthesis of secondary data in South Florida (Martin, Palm Beach, Broward, Miami-Dade, and Monroe Counties) corresponding to the following topics: Human population changes near coral reefs, Economic impact of coral reef fishing to jurisdiction, Economic impact of dive/snorkel tourism to jurisdiction, Community well-being, Physical infrastructure, and Governance. Data are collected from a variety of publicly available sources to supplement primary data collected through resident surveys. These secondary data are collected to address topics outside the scope of NCRMP resident surveys, and are collected on an annual basis throughout the US coral reef jurisdictions. The primary data that were collected as part of this study in Florida are available in NCEI Accession 0161541.

  16. d

    Data from: Project on Human Development in Chicago Neighborhoods (PHDCN):...

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Project on Human Development in Chicago Neighborhoods (PHDCN): Demographic File, Wave 3, 2000-2002 [Dataset]. https://catalog.data.gov/dataset/project-on-human-development-in-chicago-neighborhoods-phdcn-demographic-file-wave-3-2000-2-f3eee
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justice
    Area covered
    Chicago
    Description

    The Project on Human Development in Chicago Neighborhoods (PHDCN) was a large-scale, interdisciplinary study of how families, schools, and neighborhoods affect child and adolescent development. One component of the PHDCN was the Longitudinal Cohort Study, which was a series of coordinated longitudinal studies that followed over 6,000 randomly selected children, adolescents, and young adults, and their primary caregivers over time to examine the changing circumstances of their lives, as well as the personal characteristics, that might lead them toward or away from a variety of antisocial behaviors. Numerous measures were administered to respondents to gauge various aspects of human development, including individual differences, as well as family, peer, and school influences. The data files in this study contain basic demographic information including employment, income, race/ethnicity, welfare status, and material hardship.

  17. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  18. n

    Gridded Population of the World, Version 4 (GPWv4): Population Density,...

    • earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    • +2more
    Updated Dec 31, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (2018). Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 [Dataset]. http://doi.org/10.7927/H49C6VHW
    Explore at:
    Dataset updated
    Dec 31, 2018
    Dataset authored and provided by
    ESDIS
    Area covered
    World
    Description

    The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020.�A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions.

  19. I

    Indonesia BPS Projection: Population: Mid-Year: Maluku: West-South East...

    • ceicdata.com
    Updated Jan 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). Indonesia BPS Projection: Population: Mid-Year: Maluku: West-South East Maluku Regency [Dataset]. https://www.ceicdata.com/en/indonesia/population-projection-midyear-maluku-by-regency-and-municipality-central-bureau-of-statistics/bps-projection-population-midyear-maluku-westsouth-east-maluku-regency
    Explore at:
    Dataset updated
    Jan 14, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 1, 2008 - Jun 1, 2018
    Area covered
    Indonesia
    Variables measured
    Population
    Description

    Indonesia BPS Projection: Population: Mid-Year: Maluku: West-South East Maluku Regency data was reported at 112.429 Person th in 2018. This records an increase from the previous number of 111.825 Person th for 2017. Indonesia BPS Projection: Population: Mid-Year: Maluku: West-South East Maluku Regency data is updated yearly, averaging 110.425 Person th from Jun 2008 (Median) to 2018, with 11 observations. The data reached an all-time high of 156.246 Person th in 2008 and a record low of 88.903 Person th in 2009. Indonesia BPS Projection: Population: Mid-Year: Maluku: West-South East Maluku Regency data remains active status in CEIC and is reported by Central Bureau of Statistics. The data is categorized under Indonesia Premium Database’s Socio and Demographic – Table ID.GAB031: Population Projection: Mid-Year: Maluku: by Regency and Municipality: Central Bureau of Statistics.

  20. Covid-19 Highest City Population Density

    • kaggle.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lookfwd (2020). Covid-19 Highest City Population Density [Dataset]. https://www.kaggle.com/lookfwd/covid19highestcitypopulationdensity/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 25, 2020
    Dataset provided by
    Kaggle
    Authors
    lookfwd
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel

    Content

    There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.

    Acknowledgements

    Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.

    Inspiration

    Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.

    After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.

    The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">

    My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.

    Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.

    We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2023). Person County, NC Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis [Dataset]. https://www.neilsberg.com/research/datasets/632aebb9-3d85-11ee-9abe-0aa64bf2eeb2/

Person County, NC Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis

Explore at:
json, csvAvailable download formats
Dataset updated
Sep 16, 2023
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Person County, North Carolina
Variables measured
Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
Measurement technique
The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset tabulates the data for the Person County, NC population pyramid, which represents the Person County population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

Key observations

  • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Person County, NC, is 26.9.
  • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Person County, NC, is 31.4.
  • Total dependency ratio for Person County, NC is 58.3.
  • Potential support ratio, which is the number of youth (working age population) per elderly, for Person County, NC is 3.2.
Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

Age groups:

  • Under 5 years
  • 5 to 9 years
  • 10 to 14 years
  • 15 to 19 years
  • 20 to 24 years
  • 25 to 29 years
  • 30 to 34 years
  • 35 to 39 years
  • 40 to 44 years
  • 45 to 49 years
  • 50 to 54 years
  • 55 to 59 years
  • 60 to 64 years
  • 65 to 69 years
  • 70 to 74 years
  • 75 to 79 years
  • 80 to 84 years
  • 85 years and over

Variables / Data Columns

  • Age Group: This column displays the age group for the Person County population analysis. Total expected values are 18 and are define above in the age groups section.
  • Population (Male): The male population in the Person County for the selected age group is shown in the following column.
  • Population (Female): The female population in the Person County for the selected age group is shown in the following column.
  • Total Population: The total population of the Person County for the selected age group is shown in the following column.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for Person County Population by Age. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu