Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Person County, NC population pyramid, which represents the Person County population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Person County Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Person County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Person County. The dataset can be utilized to understand the population distribution of Person County by age. For example, using this dataset, we can identify the largest age group in Person County.
Key observations
The largest age group in Person County, NC was for the group of age 60 to 64 years years with a population of 3,232 (8.26%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Person County, NC was the 80 to 84 years years with a population of 793 (2.03%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Person County Population by Age. You can refer the same here
This transformed view of Employee Demographics - Public dataset counts the number of and percentage of city employees by race as self-reported by employee based on EEOC classification. This information is used by "City Employee vs. Community Demographics dataset" at https://citydata.mesaaz.gov/Economic-Development/Chart-Data-for-City-Employee-vs-Community-Demograp/bt2n-zimw
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Population: All Ages data was reported at 325,719.000 Person th in 2017. This records an increase from the previous number of 323,406.000 Person th for 2016. United States Population: All Ages data is updated yearly, averaging 176,356.000 Person th from Jun 1900 (Median) to 2017, with 118 observations. The data reached an all-time high of 325,719.000 Person th in 2017 and a record low of 76,094.000 Person th in 1900. United States Population: All Ages data remains active status in CEIC and is reported by US Census Bureau. The data is categorized under Global Database’s United States – Table US.G002: Population by Age. Series Remarks Population data for the years 1900 to 1949 exclude the population residing in Alaska and Hawaii. Population data for the years 1940 to 1979 cover the resident population plus Armed Forces overseas. Population data for all other years cover only the resident population.
Shows the demographic dataset of the people living with HIV.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Person County population by age. The dataset can be utilized to understand the age distribution and demographics of Person County.
The dataset constitues the following three datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS) (held at the UK Data Archive under GN 33246), all of its associated LFS boosts and the APS boost. Thus, the APS combines results from five different sources: the LFS (waves 1 and 5); the English Local Labour Force Survey (LLFS), the Welsh Labour Force Survey (WLFS), the Scottish Labour Force Survey (SLFS) and the Annual Population Survey Boost Sample (APS(B) - however, this ceased to exist at the end of December 2005, so APS data from January 2006 onwards will contain all the above data apart from APS(B)). Users should note that the LLFS, WLFS, SLFS and APS(B) are not held separately at the UK Data Archive. For further detailed information about methodology, users should consult the Labour Force Survey User Guide, selected volumes of which have been included with the APS documentation for reference purposes (see 'Documentation' table below).
The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples such as the WLFS and SLFS, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.
APS Well-Being data
Since April 2011, the APS has included questions about personal and subjective well-being. The responses to these questions have been made available as annual sub-sets to the APS Person level files. It is important to note that the size of the achieved sample of the well-being questions within the dataset is approximately 165,000 people. This reduction is due to the well-being questions being only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. As a result some caution should be used when using analysis of responses to well-being questions at detailed geography areas and also in relation to any other variables where respondent numbers are relatively small. It is recommended that for lower level geography analysis that the variable UACNTY09 is used.
As well as annual datasets, three-year pooled datasets are available. When combining multiple APS datasets together, it is important to account for the rotational design of the APS and ensure that no person appears more than once in the multiple year dataset. This is because the well-being datasets are not designed to be longitudinal e.g. they are not designed to track individuals over time/be used for longitudinal analysis. They are instead cross-sectional, and are designed to use a cross-section of the population to make inferences about the whole population. For this reason, the three-year dataset has been designed to include only a selection of the cases from the individual year APS datasets, chosen in such a way that no individuals are included more than once, and the cases included are approximately equally spread across the three years. Further information is available in the 'Documentation' section below.
Secure Access APS Well-Being data
Secure Access datasets for the APS Well-Being include additional variables not included in either the standard End User Licence (EUL) versions (see under GN 33357) or the Special Licence (SL) access versions (see under GN 33376). Extra variables that typically can be found in the Secure Access version but not in the EUL or SL versions relate to:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset presents data on population and people available from the ABS Data by Region statistics. This release of Data by Region presents various data for 2011-2019 and Census of Population and Housing data for 2011 and 2016 and is based on the Statistical Area 4 (SA4) 2016 boundaries. The dataset includes information in the following specified areas of population and people: Estimated Resident Population, Working Age Population, Median Age, Births and Deaths, Population Density, Internal and Overseas Migration, Aboriginal and Torres Strait Islander people, Overseas Born Proportion, Religious Affiliation and Speaks language other than English. Data by Region contains a standard set of data for each region type, depending on the availability of statistics for particular geographies. Data are sourced from a wide variety of collections, both ABS and non-ABS. When analysing these statistics, care needs to be taken as time periods, definitions, methodologies, scope and coverage can differ across collections. Where available, data have been presented as a time series - to enable users to assess changes over time. However, when looked at on a period to period basis, some series may sometimes appear volatile. When analysing the data, users are encouraged to consider the longer term behaviour of the series, where this extra information is available. For more information please visit the Explanatory Notes.
The L2 Voter and Demographic Dataset includes demographic and voter history tables for all 50 states and the District of Columbia. The dataset is built from publicly available government records about voter registration and election participation. These records indicate whether a person voted in an election or not, but they do not record whom that person voted for. Voter registration and election participation data are augmented by demographic information from outside data sources.
To create this file, L2 processes registered voter data on an ongoing basis for all 50 states and the District of Columbia, with refreshes of the underlying state voter data typically at least every six months and refreshes of telephone numbers and National Change of Address processing approximately every 30 to 60 days. These data are standardized and enhanced with propriety commercial data and modeling codes and consist of approximately 185,000,000 records nationwide.
For each state, there are two available tables: demographic and voter history. The demographic and voter tables can be joined on the LALVOTERID
variable. One can also use the LALVOTERID
variable to link the L2 Voter and Demographic Dataset with the L2 Consumer Dataset.
In addition, the LALVOTERID
variable can be used to validate the state. For example, let's look at the LALVOTERID = LALCA3169443
. The characters in the fourth and fifth positions of this identifier are 'CA' (California). The second way to validate the state is by using the RESIDENCE_ADDRESSES_STATE
variable, which should have a value of 'CA' (California).
The date appended to each table name represents when the data was last updated. These dates will differ state by state because states update their voter files at different cadences.
The demographic files use 698 consistent variables. For more information about these variables, see 2025-01-10-VM2-File-Layout.xlsx.
The voter history files have different variables depending on the state. The ***2025-08-05-L2-Voter-Dictionaries.tar.gz file contains .csv data dictionaries for each state's demographic and voter files. While the demographic file data dictionaries should mirror the 2025-01-10-VM2-File-Layout.xlsx*** file, the voter file data dictionaries will be unique to each state.
***2025-04-24-National-File-Notes.pdf ***contains L2 Voter and Demographic Dataset ("National File") release notes from 2018 to 2025.
***2025-08-05-L2-Voter-Fill-Rate.tar.gz ***contains .tab files tracking the percent of non-null values for any given field.
Data access is required to view this section.
Data access is required to view this section.
https://www.arcgis.com/sharing/rest/content/items/89679671cfa64832ac2399a0ef52e414/datahttps://www.arcgis.com/sharing/rest/content/items/89679671cfa64832ac2399a0ef52e414/data
Lake County, Illinois Demographic Data. Explanation of field attributes:
Total Population – The entire population of Lake County.
White – Individuals who are of Caucasian race. This is a percent.African American – Individuals who are of African American race. This is a percent.Asian – Individuals who are of Asian race. This is a percent.
Hispanic – Individuals who are of Hispanic ethnicity. This is a percent.
Does not Speak English- Individuals who speak a language other than English in their household. This is a percent.
Under 5 years of age – Individuals who are under 5 years of age. This is a percent.
Under 18 years of age – Individuals who are under 18 years of age. This is a percent.
18-64 years of age – Individuals who are between 18 and 64 years of age. This is a percent.
65 years of age and older – Individuals who are 65 years old or older. This is a percent.
Male – Individuals who are male in gender. This is a percent.
Female – Individuals who are female in gender. This is a percent.
High School Degree – Individuals who have obtained a high school degree. This is a percent.
Associate Degree – Individuals who have obtained an associate degree. This is a percent.
Bachelor’s Degree or Higher – Individuals who have obtained a bachelor’s degree or higher. This is a percent.
Utilizes Food Stamps – Households receiving food stamps/ part of SNAP (Supplemental Nutrition Assistance Program). This is a percent.
Median Household Income - A median household income refers to the income level earned by a given household where half of the homes in the area earn more and half earn less. This is a dollar amount.
No High School – Individuals who have not obtained a high school degree. This is a percent.
Poverty – Poverty refers to families and people whose income in the past 12 months is below the poverty level. This is a percent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Urban Population data was reported at 267,278,643.000 Person in 2017. This records an increase from the previous number of 264,746,567.000 Person for 2016. United States US: Urban Population data is updated yearly, averaging 184,283,180.000 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 267,278,643.000 Person in 2017 and a record low of 126,462,473.000 Person in 1960. United States US: Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Urban population refers to people living in urban areas as defined by national statistical offices. It is calculated using World Bank population estimates and urban ratios from the United Nations World Urbanization Prospects. Aggregation of urban and rural population may not add up to total population because of different country coverages.; ; World Bank staff estimates based on the United Nations Population Division's World Urbanization Prospects: 2018 Revision.; Sum;
The Global Human Settlement Layer: Population and Built-Up Estimates, and Degree of Urbanization Settlement Model Grid data set provides gridded data on human population (GHS-POP), built-up area (GHS-BUILT), and degree of urbanization (GHS-SMOD) across four time periods: 1975, 1990, 2000, and 2014 (BUILT) or 2015 (POP, SMOD). GHS-BUILT describes the percent built-up area for each 30 arc-second grid cell (approximately 1 km at the equator) based on Landsat imagery from each of the four time periods. GHS-POP consists of census data from the 2010 round of global census from Gridded Population of the World, Version 4, Revision 10 (GPWv4.10) spatially-allocated within census Units based on the percent built-up areas from GHS-BUILT. GHS-SMOD uses GHS-BUILT and GHS-POP in order to develop a standardized classification of degree of urbanization grid. The original data from the Joint Research Centre of the European Commission (JRC-EC) has been combined into a single data package in GeoTIFF format and reprojected from Mollweide Equal Area into WGS84 at 9 arc-second and 30 arc-second horizontal resolutions in order to support integration with a variety of global raster data sets.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
By Rajanand Ilangovan [source]
This dataset provides a detailed view of prison inmates in India, including their age, caste, and educational background. It includes information on inmates from all states/union territories for the year 2019 such as the number of male and female inmates aged 16-18 years, 18-30 year old inmates and those above 50 years old. The data also covers total number of penalized prisoners sentenced to death sentence, life imprisonment or executed by the state authorities. Additionally, it provides information regarding the crimehead (type) committed by an inmate along with its grand total across different age groups. This dataset not only sheds light on India’s criminal justice system but also highlights prevelance of crimes in different states and union territories as well as providing insight into crime trends across Indian states over time
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides a comprehensive look at the demographics, crimes and sentences of Indian prison inmates in 2019. The data is broken down by state/union territory, year, crime head, age groups and gender.
This dataset can be used to understand the demographic composition of the prison population in India as well as the types of crimes committed. It can also be used to gain insight into any changes or trends related to sentencing patterns in India over time. Furthermore, this data can provide valuable insight into potential correlations between different demographic factors (such as gender and caste) and specific types of crimes or length of sentences handed out.
To use this dataset effectively there are a few important things to keep in mind: •State/UT - This column refers to individual states or union territories in India where prisons are located •Year – This column indicates which year(s) the data relates to •Both genders - Female columns refer only to female prisoners while male columns refers only to male prisoners •Age Groups – 16-18 years old = 21-30 years old = 31-50 years old = 50+ years old •Crime Head – A broad definition for each type of crime that inmates have been convicted for •No Capital Punishment – The total number sentenced with capital punishment No Life Imprisonment – The total number sentenced with life imprisonment No Executed– The total number executed from death sentence Grand Total–The overall totals for each category
By using this information it is possible to answer questions regarding topics such as sentencing trends, types of crimes committed by different age groups or genders and state-by-state variation amongst other potential queries
- Using the age and gender information to develop targeted outreach strategies for prisons in order to reduce recidivism rates.
- Creating an AI-based predictive model to predict crime trends by analyzing crime head data from a particular region/state and correlating it with population demographics, economic activity, etc.
- Analyzing the caste of inmates across different states in India in order to understand patterns of discrimination within the criminal justice system
If you use this dataset in your research, please credit the original authors. Data Source
License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original.
File: SLL_Crime_headwise_distribution_of_inmates_who_convicted.csv | Column name | Description | |:--------------------------|:---------------------------------------------------------------------------------------------------| | STATE/UT | Name of the state or union territory where the jail is located. (String) | | YEAR | Year when the inmate population data was collected. (Integer) ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data is from:
https://simplemaps.com/data/world-cities
We're proud to offer a simple, accurate and up-to-date database of the world's cities and towns. We've built it from the ground up using authoritative sources such as the NGIA, US Geological Survey, US Census Bureau, and NASA.
Our database is:
This dataset is a compilation and synthesis of secondary data in South Florida (Martin, Palm Beach, Broward, Miami-Dade, and Monroe Counties) corresponding to the following topics: Human population changes near coral reefs, Economic impact of coral reef fishing to jurisdiction, Economic impact of dive/snorkel tourism to jurisdiction, Community well-being, Physical infrastructure, and Governance. Data are collected from a variety of publicly available sources to supplement primary data collected through resident surveys. These secondary data are collected to address topics outside the scope of NCRMP resident surveys, and are collected on an annual basis throughout the US coral reef jurisdictions. The primary data that were collected as part of this study in Florida are available in NCEI Accession 0161541.
The Project on Human Development in Chicago Neighborhoods (PHDCN) was a large-scale, interdisciplinary study of how families, schools, and neighborhoods affect child and adolescent development. One component of the PHDCN was the Longitudinal Cohort Study, which was a series of coordinated longitudinal studies that followed over 6,000 randomly selected children, adolescents, and young adults, and their primary caregivers over time to examine the changing circumstances of their lives, as well as the personal characteristics, that might lead them toward or away from a variety of antisocial behaviors. Numerous measures were administered to respondents to gauge various aspects of human development, including individual differences, as well as family, peer, and school influences. The data files in this study contain basic demographic information including employment, income, race/ethnicity, welfare status, and material hardship.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020.�A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indonesia BPS Projection: Population: Mid-Year: Maluku: West-South East Maluku Regency data was reported at 112.429 Person th in 2018. This records an increase from the previous number of 111.825 Person th for 2017. Indonesia BPS Projection: Population: Mid-Year: Maluku: West-South East Maluku Regency data is updated yearly, averaging 110.425 Person th from Jun 2008 (Median) to 2018, with 11 observations. The data reached an all-time high of 156.246 Person th in 2008 and a record low of 88.903 Person th in 2009. Indonesia BPS Projection: Population: Mid-Year: Maluku: West-South East Maluku Regency data remains active status in CEIC and is reported by Central Bureau of Statistics. The data is categorized under Indonesia Premium Database’s Socio and Demographic – Table ID.GAB031: Population Projection: Mid-Year: Maluku: by Regency and Municipality: Central Bureau of Statistics.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel
There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.
Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.
Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.
After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.
The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">
My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.
Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.
We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Person County, NC population pyramid, which represents the Person County population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Person County Population by Age. You can refer the same here