Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes statements about manuscripts from the library of St. Catherine Monastery in Sinai and specifically about the existence of leaf markers on each manuscript. The dataset is provided in three formats: CSV, OWL and RDFS.Leaf markers are not individually identified. Only their existence and type is indicated. The dataset is used to demonstrate a method of describing numerous individuals and absence of types in Knowledge Bases. all-records.csv is the original data as collected at the Monastery.all-records-owlcro.owl holds the original data alongside fictional records of individual leaf markers for each book (these do not exist but they are necessary to demonstrate the applicable method)all-records-owlcrop.owl holds the original data onlyThe same logic is followed for the RDF files.Due to the size of this dataset it may be possible to perform reasoning in OWL with it. A small indicative dataset is also available in this repository.
Description: 10,000 People - Human Pose Recognition Data. This dataset includes indoor and outdoor scenes.This dataset covers males and females. Age distribution ranges from teenager to the elderly, the middle-aged and young people are the majorities. The data diversity includes different shooting heights, different ages, different light conditions, different collecting environment, clothes in different seasons, multiple human poses. For each subject, the labels of gender, race, age, collecting environment and clothes were annotated. The data can be used for human pose recognition and other tasks.
Data size: 10,000 people
Race distribution: Asian (Chinese)
This dataset contains FEMA applicant-level data for the Individuals and Households Program (IHP). All PII information has been removed. The location is represented by county, city, and zip code. This dataset contains Individual Assistance (IA) applications from DR1439 (declared in 2002) to those declared over 30 days ago. The full data set is refreshed on an annual basis and refreshed weekly to update disasters declared in the last 18 months. This dataset includes all major disasters and includes only valid registrants (applied in a declared county, within the registration period, having damage due to the incident and damage within the incident period). Information about individual data elements and descriptions are listed in the metadata information within the dataset.rnValid registrants may be eligible for IA assistance, which is intended to meet basic needs and supplement disaster recovery efforts. IA assistance is not intended to return disaster-damaged property to its pre-disaster condition. Disaster damage to secondary or vacation homes does not qualify for IHP assistance.rnData comes from FEMA's National Emergency Management Information System (NEMIS) with raw, unedited, self-reported content and subject to a small percentage of human error.rnAny financial information is derived from NEMIS and not FEMA's official financial systems. Due to differences in reporting periods, status of obligations and application of business rules, this financial information may differ slightly from official publication on public websites such as usaspending.gov. This dataset is not intended to be used for any official federal reporting. rnCitation: The Agency’s preferred citation for datasets (API usage or file downloads) can be found on the OpenFEMA Terms and Conditions page, Citing Data section: https://www.fema.gov/about/openfema/terms-conditions.rnDue to the size of this file, tools other than a spreadsheet may be required to analyze, visualize, and manipulate the data. MS Excel will not be able to process files this large without data loss. It is recommended that a database (e.g., MS Access, MySQL, PostgreSQL, etc.) be used to store and manipulate data. Other programming tools such as R, Apache Spark, and Python can also be used to analyze and visualize data. Further, basic Linux/Unix tools can be used to manipulate, search, and modify large files.rnIf you have media inquiries about this dataset, please email the FEMA News Desk at FEMA-News-Desk@fema.dhs.gov or call (202) 646-3272. For inquiries about FEMA's data and Open Government program, please email the OpenFEMA team at OpenFEMA@fema.dhs.gov.rnThis dataset is scheduled to be superceded by Valid Registrations Version 2 by early CY 2024.
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
Welcome to the Native American Facial Images from Past Dataset, meticulously curated to enhance face recognition models and support the development of advanced biometric identification systems, KYC models, and other facial recognition technologies.
This dataset comprises over 5,000+ images, divided into participant-wise sets with each set including:
The dataset includes contributions from a diverse network of individuals across Native American countries:
To ensure high utility and robustness, all images are captured under varying conditions:
Each image set is accompanied by detailed metadata for each participant, including:
This metadata is essential for training models that can accurately recognize and identify Native American faces across different demographics and conditions.
This facial image dataset is ideal for various applications in the field of computer vision, including but not limited to:
This dataset was created by Nasratullah Shafiq
Stylianos ParaschiakosStylianos Paraschiakos, Beekman M. (Marian), Knobbe A. (Arno), Cachucho R. (Ricardo), Slagboom P. (Eline) Wearable sensor-based data of physical activities and indirect calorimetry for 35 (14 female, 21 male) healthy older individuals (over 60 years old). The data has been collected from different body locations and devices: 3x GeneActives accelerometers (ankle, wrist, and chest), 1x Equivital (chest) and COSMED (mask and belt on chest). The 35 individuals followed a protocol of 16 activities of daily living for approximately an hour and a half in a semi-lab environment. These include different types or paces of indoor and outdoor activities with low (lying down, sitting), mid (standing, household activities) and high (walking and cycling) levels of intensity. Additionally, some activities can be specified at different granularities. The study took place at LUMC, between February and May 2015.
Our objective is to ensure that providers who bill Federal health care programs do not submit claims for services furnished, ordered or prescribed by an excluded individual or entity. The LEIE is updated monthly with all individuals and entities who have been excluded from participation in Federal health care programs. Providers who bill Medicare, Medicaid, or other Federal health care programs must ensure that they know what individuals or entities are excluded and not bill for their services (e.g., a pharmacy should not bill Medicaid for a drug prescribed by an excluded physician nor for drugs dispensed by an excluded pharmacist).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Commercial Point. The dataset can be utilized to gain insights into gender-based income distribution within the Commercial Point population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Commercial Point median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Yolo V3 Person is a dataset for object detection tasks - it contains S annotations for 4,544 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
https://digital.nhs.uk/binaries/content/assets/website-assets/services/dars/nhs_digital_approved_edition_2_dsa_demo.pdfhttps://digital.nhs.uk/binaries/content/assets/website-assets/services/dars/nhs_digital_approved_edition_2_dsa_demo.pdf
The Mental Health and Learning Disabilities Data Set version 1 (Record Level - sensitive data inclusion). The Mental Health Minimum Data Set was superseded by the Mental Health and Learning Disabilities Data Set, which in turn was superseded by the Mental Health Services Data Set. The Mental Health and Learning Disabilities Data Set collected data from the health records of individual children, young people and adults who were in contact with mental health services.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ICA276 - Individuals aged 16 years and over who bought or subscribed to apps or streaming services. Published by Central Statistics Office. Available under the license Creative Commons Attribution 4.0 (CC-BY-4.0).Individuals aged 16 years and over who bought or subscribed to apps or streaming services...
This study engaged 409 participants over a period spanning from July 10 to August 8, 2023, ensuring representation across various demographic factors: 221 females, 186 males, 2 non-binary, year of birth between 1951 and 2005, with varied annual incomes and from 15 Spanish regions. The MobileWell400+ dataset, openly accessible, encompasses a wide array of data collected via the participants' mobile phone, including demographic, emotional, social, behavioral, and well-being data. Methodologically, the project presents a promising avenue for uncovering new social, behavioral, and emotional indicators, supplementing existing literature. Notably, artificial intelligence is considered to be instrumental in analysing these data, discerning patterns, and forecasting trends, thereby advancing our comprehension of individual and population well-being. Ethical standards were upheld, with participants providing informed consent.
The following is a non-exhaustive list of collected data:
Data continuously collected through the participants' smartphone sensors: physical activity (resting, walking, driving, cycling, etc.), name of detected WiFi networks, connectivity type (WiFi, mobile, none), ambient light, ambient noise, and status of the device screen (on, off, locked, unlocked).
Data corresponding to an initial survey prompted via the smartphone, with information related to demographic data, effects and COVID vaccination, average hours of physical activity, and answers to a series of questions to measure mental health, many of them taken from internationally recognised psychological and well-being scales (PANAS, PHQ, GAD, BRS and AAQ), social isolation (TILS) and economic inequality perception.
Data corresponding to daily surveys prompted via the smartphone, where variables related to mood (valence, activation, energy and emotional events) and social interaction (quantity and quality) are measured.
Data corresponding to weekly surveys prompted via the smartphone, where information on overall health, hours of physical activity per week, lonileness, and questions related to well-being are asked.
Data corresponding to an final survey prompted via the smartphone, consisting of similar questions to the ones asked in the initial survey, namely psychological and well-being items (PANAS, PHQ, GAD, BRS and AAQ), social isolation (TILS) and economic inequality perception questions.
For a more detailed description of the study please refer to MobileWell400+StudyDescription.pdf.
For a more detailed description of the collected data, variables and data files please refer to MobileWell400+FilesDescription.pdf.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SID23 - Highest Level of Education of individuals aged 25-59 years. Published by Central Statistics Office. Available under the license Creative Commons Attribution 4.0 (CC-BY-4.0).Highest Level of Education of individuals aged 25-59 years...
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population
http://data.worldbank.org/data-catalog/ed-stats
https://cloud.google.com/bigquery/public-data/world-bank-education
Citation: The World Bank: Education Statistics
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @till_indeman from Unplash.
Of total government spending, what percentage is spent on education?
This dataset includes the race of eligible individuals who selected and enrolled in a Covered California Qualified Health Plan (QHP) and identified their race as American Indian and/or Alaska Native, Asian Indian, Black or African American, Chinese, Filipino, Guamanian or Chamorro, Japanese, Korean, Mixed Race, Native Hawaiian, Other, Other Asian, Other Pacific Islander, Samoan, Vietnamese, or White, by reporting period. Covered California reported data is from the California Healthcare Eligibility, Enrollment and Retention System (CalHEERS) and includes those who selected and enrolled in a QHP, and paid their first premium. This dataset is part of public reporting requirements set forth by the California Welfare and Institutions Code 14102.5.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
CCTV Person is a dataset for object detection tasks - it contains People Detect annotations for 2,964 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Person Tracking is a dataset for object detection tasks - it contains Person annotations for 473 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Abita Springs. The dataset can be utilized to gain insights into gender-based income distribution within the Abita Springs population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Abita Springs median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Augusta. The dataset can be utilized to gain insights into gender-based income distribution within the Augusta population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Augusta median household income by race. You can refer the same here
This dataset includes the number of individuals transitioned from Covered California Qualified Health Plan (QHP) eligibility to Medi-Cal enrollment commencing with the 2016 Quarter 4 Report. The individuals in this dataset represent Covered California clients, regardless of QHP enrollment status, who are in a Carry Forward Status (CFS) after reporting a change making them potentially eligible for MAGI Medi-Cal during a reporting period. The total number of individuals transitioned from Covered California includes Medi-Cal eligible individuals who did not have Medi-Cal eligibility in the month prior to the reporting period. This is a new dataset as a result of implementing the Covered California QHP Carry Forward Status indicator in release 16.9 and is part of public reporting requirements set forth by the California Welfare and Institutions Code 14102.5.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes statements about manuscripts from the library of St. Catherine Monastery in Sinai and specifically about the existence of leaf markers on each manuscript. The dataset is provided in three formats: CSV, OWL and RDFS.Leaf markers are not individually identified. Only their existence and type is indicated. The dataset is used to demonstrate a method of describing numerous individuals and absence of types in Knowledge Bases. all-records.csv is the original data as collected at the Monastery.all-records-owlcro.owl holds the original data alongside fictional records of individual leaf markers for each book (these do not exist but they are necessary to demonstrate the applicable method)all-records-owlcrop.owl holds the original data onlyThe same logic is followed for the RDF files.Due to the size of this dataset it may be possible to perform reasoning in OWL with it. A small indicative dataset is also available in this repository.