Facebook
TwitterWe compiled macroinvertebrate assemblage data collected from 1995 to 2014 from the St. Louis River Area of Concern (AOC) of western Lake Superior. Our objective was to define depth-adjusted cutoff values for benthos condition classes (poor, fair, reference) to provide tool useful for assessing progress toward achieving removal targets for the degraded benthos beneficial use impairment in the AOC. The relationship between depth and benthos metrics was wedge-shaped. We therefore used quantile regression to model the limiting effect of depth on selected benthos metrics, including taxa richness, percent non-oligochaete individuals, combined percent Ephemeroptera, Trichoptera, and Odonata individuals, and density of ephemerid mayfly nymphs (Hexagenia). We created a scaled trimetric index from the first three metrics. Metric values at or above the 90th percentile quantile regression model prediction were defined as reference condition for that depth. We set the cutoff between poor and fair condition as the 50th percentile model prediction. We examined sampler type, exposure, geographic zone of the AOC, and substrate type for confounding effects. Based on these analyses we combined data across sampler type and exposure classes and created separate models for each geographic zone. We used the resulting condition class cutoff values to assess the relative benthic condition for three habitat restoration project areas. The depth-limited pattern of ephemerid abundance we observed in the St. Louis River AOC also occurred elsewhere in the Great Lakes. We provide tabulated model predictions for application of our depth-adjusted condition class cutoff values to new sample data. This dataset is associated with the following publication: Angradi, T., W. Bartsch, A. Trebitz, V. Brady, and J. Launspach. A depth-adjusted ambient distribution approach for setting numeric removal targets for a Great Lakes Area of Concern beneficial use impairment: Degraded benthos. JOURNAL OF GREAT LAKES RESEARCH. International Association for Great Lakes Research, Ann Arbor, MI, USA, 43(1): 108-120, (2017).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This formatted dataset (AnalysisDatabaseGBD) originates from raw data files from the Institute of Health Metrics and Evaluation (IHME) Global Burden of Disease Study (GBD2017) affiliated with the University of Washington. We are volunteer collaborators with IHME and not employed by IHME or the University of Washington.
The population weighted GBD2017 data are on male and female cohorts ages 15-69 years including noncommunicable diseases (NCDs), body mass index (BMI), cardiovascular disease (CVD), and other health outcomes and associated dietary, metabolic, and other risk factors. The purpose of creating this population-weighted, formatted database is to explore the univariate and multiple regression correlations of health outcomes with risk factors. Our research hypothesis is that we can successfully model NCDs, BMI, CVD, and other health outcomes with their attributable risks.
These Global Burden of disease data relate to the preprint: The EAT-Lancet Commission Planetary Health Diet compared with Institute of Health Metrics and Evaluation Global Burden of Disease Ecological Data Analysis.
The data include the following:
1. Analysis database of population weighted GBD2017 data that includes over 40 health risk factors, noncommunicable disease deaths/100k/year of male and female cohorts ages 15-69 years from 195 countries (the primary outcome variable that includes over 100 types of noncommunicable diseases) and over 20 individual noncommunicable diseases (e.g., ischemic heart disease, colon cancer, etc).
2. A text file to import the analysis database into SAS
3. The SAS code to format the analysis database to be used for analytics
4. SAS code for deriving Tables 1, 2, 3 and Supplementary Tables 5 and 6
5. SAS code for deriving the multiple regression formula in Table 4.
6. SAS code for deriving the multiple regression formula in Table 5
7. SAS code for deriving the multiple regression formula in Supplementary Table 7
8. SAS code for deriving the multiple regression formula in Supplementary Table 8
9. The Excel files that accompanied the above SAS code to produce the tables
For questions, please email davidkcundiff@gmail.com. Thanks.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The table presents the percentage of problems where SAS-Pro performed better than, or at par with CE, SSM, and STSA. In addition, the table presents the average improvement in the RMSD, SI, SAS scores for these problems when SAS-Pro is used instead of other solvers.
Facebook
TwitterThis database is a collection of maps created from the 28 SAS-2 observation files. The original observation files can be accessed within BROWSE by changing to the SAS2RAW database. For each of the SAS-2 observation files, the analysis package FADMAP was run and the resulting maps, plus GIF images created from these maps, were collected into this database. Each map is a 60 x 60 pixel FITS format image with 1 degree pixels. The user may reconstruct any of these maps within the captive account by running FADMAP from the command line after extracting a file from within the SAS2RAW database. The parameters used for selecting data for these product map files are embedded keywords in the FITS maps themselves. These parameters are set in FADMAP, and for the maps in this database are set as 'wide open' as possible. That is, except for selecting on each of 3 energy ranges, all other FADMAP parameters were set using broad criteria. To find more information about how to run FADMAP on the raw event's file, the user can access help files within the SAS2RAW database or can use the 'fhelp' facility from the command line to gain information about FADMAP. This is a service provided by NASA HEASARC .
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SAS PROC used to evaluate SSMT data
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
File List NBvsPoi_FINAL.sas -- SAS code SSEAK98_FINAL.txt -- Harbor seal data used by SAS code Description The NBvsPoi_FINAL SAS program uses a SAS macro to analyze the data in SSEAK98_FINAL.txt. The SAS program and macro are commented for further explanation.
Facebook
TwitterThe SAS2RAW database is a log of the 28 SAS-2 observation intervals and contains target names, sky coordinates start times and other information for all 13056 photons detected by SAS-2. The original data came from 2 sources. The photon information was obtained from the Event Encyclopedia, and the exposures were derived from the original "Orbit Attitude Live Time" (OALT) tapes stored at NASA/GSFC. These data sets were combined into FITS format images at HEASARC. The images were formed by making the center pixel of a 512 x 512 pixel image correspond to the RA and DEC given in the event file. Each photon's RA and DEC was converted to a relative pixel in the image. This was done by using Aitoff projections. All the raw data from the original SAS-2 binary data files are now stored in 28 FITS files. These images can be accessed and plotted using XIMAGE and other columns of the FITS file extensions can be plotted with the FTOOL FPLOT. This is a service provided by NASA HEASARC .
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The sample SAS and Stata code provided here is intended for use with certain datasets in the National Neighborhood Data Archive (NaNDA). NaNDA (https://www.openicpsr.org/openicpsr/nanda) contains some datasets that measure neighborhood context at the ZIP Code Tabulation Area (ZCTA) level. They are intended for use with survey or other individual-level data containing ZIP codes. Because ZIP codes do not exactly match ZIP code tabulation areas, a crosswalk is required to use ZIP-code-level geocoded datasets with ZCTA-level datasets from NaNDA. A ZIP-code-to-ZCTA crosswalk was previously available on the UDS Mapper website, which is no longer active. An archived copy of the ZIP-code-to-ZCTA crosswalk file has been included here. Sample SAS and Stata code are provided for merging the UDS mapper crosswalk with NaNDA datasets.
Facebook
TwitterThis package contains two files designed to help read individual level DHS data into Stata. The first file addresses the problem that versions of Stata before Version 7/SE will read in only up to 2047 variables and most of the individual files have more variables than that. The file will read in the .do, .dct and .dat file and output new .do and .dct files with only a subset of the variables specified by the user. The second file deals with earlier DHS surveys in which .do and .dct file do not exist and only .sps and .sas files are provided. The file will read in the .sas and .sps files and output a .dct and .do file. If necessary the first file can then be run again to select a subset of variables.
Facebook
TwitterThis database is a collection of maps created from the 28 SAS-2 observation files. The original observation files can be accessed within BROWSE by changing to the SAS2RAW database. For each of the SAS-2 observation files, the analysis package FADMAP was run and the resulting maps, plus GIF images created from these maps, were collected into this database. Each map is a 60 x 60 pixel FITS format image with 1 degree pixels. The user may reconstruct any of these maps within the captive account by running FADMAP from the command line after extracting a file from within the SAS2RAW database. The parameters used for selecting data for these product map files are embedded keywords in the FITS maps themselves. These parameters are set in FADMAP, and for the maps in this database are set as 'wide open' as possible. That is, except for selecting on each of 3 energy ranges, all other FADMAP parameters were set using broad criteria. To find more information about how to run FADMAP on the raw event's file, the user can access help files within the SAS2RAW database or can use the 'fhelp' facility from the command line to gain information about FADMAP. This is a service provided by NASA HEASARC .
Facebook
Twitteranalyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Semantic Artist Similarity dataset consists of two datasets of artists entities with their corresponding biography texts, and the list of top-10 most similar artists within the datasets used as ground truth. The dataset is composed by a corpus of 268 artists and a slightly larger one of 2,336 artists, both gathered from Last.fm in March 2015. The former is mapped to the MIREX Audio and Music Similarity evaluation dataset, so that its similarity judgments can be used as ground truth. For the latter corpus we use the similarity between artists as provided by the Last.fm API. For every artist there is a list with the top-10 most related artists. In the MIREX dataset there are 188 artists with at least 10 similar artists, the other 80 artists have less than 10 similar artists. In the Last.fm API dataset all artists have a list of 10 similar artists. There are 4 files in the dataset.mirex_gold_top10.txt and lastfmapi_gold_top10.txt have the top-10 lists of artists for every artist of both datasets. Artists are identified by MusicBrainz ID. The format of the file is one line per artist, with the artist mbid separated by a tab with the list of top-10 related artists identified by their mbid separated by spaces.artist_mbid \t artist_mbid_top10_list_separated_by_spaces mb2uri_mirex and mb2uri_lastfmapi.txt have the list of artists. In each line there are three fields separated by tabs. First field is the MusicBrainz ID, second field is the last.fm name of the artist, and third field is the DBpedia uri.artist_mbid \t lastfm_name \t dbpedia_uri There are also 2 folders in the dataset with the biography texts of each dataset. Each .txt file in the biography folders is named with the MusicBrainz ID of the biographied artist. Biographies were gathered from the Last.fm wiki page of every artist.Using this datasetWe would highly appreciate if scientific publications of works partly based on the Semantic Artist Similarity dataset quote the following publication:Oramas, S., Sordo M., Espinosa-Anke L., & Serra X. (In Press). A Semantic-based Approach for Artist Similarity. 16th International Society for Music Information Retrieval Conference.We are interested in knowing if you find our datasets useful! If you use our dataset please email us at mtg-info@upf.edu and tell us about your research. https://www.upf.edu/web/mtg/semantic-similarity
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These SAS files are sample code used for the Monte Carlo studies in a manuscript on statistical properties of four effect size measures for the mediated effect.Citation:Miočević, M., O’Rourke, H. P., MacKinnon, D. P., & Brown, H. C. (2016). The bias and efficiency of five effect size measures for mediation models. Under review at Behavior Research Methods.
Facebook
TwitterThe simulated synthetic aperture sonar (SAS) data presented here was generated using PoSSM [Johnson and Brown 2018]. The data is suitable for bistatic, coherent signal processing and will form acoustic seafloor imagery. Included in this data package is simulated sonar data in Generic Data Format (GDF) files, a description of the GDF file contents, example SAS imagery, and supporting information about the simulated scenes. In total, there are eleven 60 m x 90 m scenes, labeled scene00 through scene10, with scene00 provided with the scatterers in isolation, i.e. no seafloor texture. This is provided for beamformer testing purposes and should result in an image similar to the one labeled "PoSSM-scene00-scene00-starboard-0.tif" in the Related Data Sets tab. The ten other scenes have varying degrees of model variation as described in "Description_of_Simulated_SAS_Data_Package.pdf". A description of the data and the model is found in the associated document called "Description_of_Simulated_SAS_Data_Package.pdf" and a description of the format in which the raw binary data is stored is found in the related document "PSU_GDF_Format_20240612.pdf". The format description also includes MATLAB code that will effectively parse the data to aid in signal processing and image reconstruction. It is left to the researcher to develop a beamforming algorithm suitable for coherent signal and image processing. Each 60 m x 90 m scene is represented by 4 raw (not beamformed) GDF files, labeled sceneXX-STARBOARD-000000 through 000003. It is possible to beamform smaller scenes from any one of these 4 files, i.e. the four files are combined sequentially to form a 60 m x 90 m image. Also included are comma separated value spreadsheets describing the locations of scatterers and objects of interest within each scene. In addition to the binary GDF data, a beamformed GeoTIFF image and a single-look complex (SLC, science file) data of each scene is provided. The SLC data (science) is stored in the Hierarchical Data Format 5 (https://www.hdfgroup.org/), and appended with ".hdf5" to indicate the HDF5 format. The data are stored as 32-bit real and 32-bit complex values. A viewer is available that provides basic graphing, image display, and directory navigation functions (https://www.hdfgroup.org/downloads/hdfview/). The HDF file contains all the information necessary to reconstruct a synthetic aperture sonar image. All major and contemporary programming languages have library support for encoding/decoding the HDF5 format. Supporting documentation that outlines positions of the seafloor scatterers is included in "Scatterer_Locations_Scene00.csv", while the locations of the objects of interest for scene01-scene10 are included in "Object_Locations_All_Scenes.csv". Portable Network Graphic (PNG) images that plot the location of objects of all the objects of interest in each scene in Along-Track and Cross-Track notation are provided.
Facebook
TwitterThis dataset was created by Alan Morales
Facebook
TwitterRecording Sas Files Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
Facebook
TwitterThe Delta Neighborhood Physical Activity Study was an observational study designed to assess characteristics of neighborhood built environments associated with physical activity. It was an ancillary study to the Delta Healthy Sprouts Project and therefore included towns and neighborhoods in which Delta Healthy Sprouts participants resided. The 12 towns were located in the Lower Mississippi Delta region of Mississippi. Data were collected via electronic surveys between August 2016 and September 2017 using the Rural Active Living Assessment (RALA) tools and the Community Park Audit Tool (CPAT). Scale scores for the RALA Programs and Policies Assessment and the Town-Wide Assessment were computed using the scoring algorithms provided for these tools via SAS software programming. The Street Segment Assessment and CPAT do not have associated scoring algorithms and therefore no scores are provided for them. Because the towns were not randomly selected and the sample size is small, the data may not be generalizable to all rural towns in the Lower Mississippi Delta region of Mississippi. Dataset one contains data collected with the RALA Programs and Policies Assessment (PPA) tool. Dataset two contains data collected with the RALA Town-Wide Assessment (TWA) tool. Dataset three contains data collected with the RALA Street Segment Assessment (SSA) tool. Dataset four contains data collected with the Community Park Audit Tool (CPAT). [Note : title changed 9/4/2020 to reflect study name] Resources in this dataset:Resource Title: Dataset One RALA PPA Data Dictionary. File Name: RALA PPA Data Dictionary.csvResource Description: Data dictionary for dataset one collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA Data Dictionary. File Name: RALA TWA Data Dictionary.csvResource Description: Data dictionary for dataset two collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA Data Dictionary. File Name: RALA SSA Data Dictionary.csvResource Description: Data dictionary for dataset three collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT Data Dictionary. File Name: CPAT Data Dictionary.csvResource Description: Data dictionary for dataset four collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset One RALA PPA. File Name: RALA PPA Data.csvResource Description: Data collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA. File Name: RALA TWA Data.csvResource Description: Data collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA. File Name: RALA SSA Data.csvResource Description: Data collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT. File Name: CPAT Data.csvResource Description: Data collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Data Dictionary. File Name: DataDictionary_RALA_PPA_SSA_TWA_CPAT.csvResource Description: This is a combined data dictionary from each of the 4 dataset files in this set.
Facebook
TwitterThe 1990 SAS Transport Files portion of the Archive of Census Related Products (ACRP) contains housing and population data from the U.S. Census Bureau's 1990 Summary tape File (STF3A) database. The data are available by state and county, county subdivision/mcd, blockgroup, and places, as well as Indian reservations, tribal districts and congressional districts. This portion of the ACRP is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This formatted dataset originates from raw data files from the Institute of Health Metrics and Evaluation Global Burden of Disease (GBD2017). It is population weighted worldwide data on male and female cohorts ages 15-69 years including body mass index (BMI) and cardiovascular disease (CVD) and associated dietary, metabolic and other risk factors. The purpose of creating this formatted database is to explore the univariate and multiple regression correlations of BMI and CVD and other health outcomes with risk factors. Our research hypothesis is that we can successfully apply artificial intelligence to model BMI and CVD risk factors and health outcomes. We derived a BMI multiple regression risk factor formula that satisfied all nine Bradford Hill causality criteria for epidemiology research. We found that animal products and added fats are negatively correlated with CVD early deaths worldwide but positively correlated with CVD early deaths in high quantities. We interpret this as showing that optimal cardiovascular outcomes come with moderate (not low and not high) intakes of animal foods and added fats.
For questions, please email davidkcundiff@gmail.com. Thanks.
Facebook
TwitterWe compiled macroinvertebrate assemblage data collected from 1995 to 2014 from the St. Louis River Area of Concern (AOC) of western Lake Superior. Our objective was to define depth-adjusted cutoff values for benthos condition classes (poor, fair, reference) to provide tool useful for assessing progress toward achieving removal targets for the degraded benthos beneficial use impairment in the AOC. The relationship between depth and benthos metrics was wedge-shaped. We therefore used quantile regression to model the limiting effect of depth on selected benthos metrics, including taxa richness, percent non-oligochaete individuals, combined percent Ephemeroptera, Trichoptera, and Odonata individuals, and density of ephemerid mayfly nymphs (Hexagenia). We created a scaled trimetric index from the first three metrics. Metric values at or above the 90th percentile quantile regression model prediction were defined as reference condition for that depth. We set the cutoff between poor and fair condition as the 50th percentile model prediction. We examined sampler type, exposure, geographic zone of the AOC, and substrate type for confounding effects. Based on these analyses we combined data across sampler type and exposure classes and created separate models for each geographic zone. We used the resulting condition class cutoff values to assess the relative benthic condition for three habitat restoration project areas. The depth-limited pattern of ephemerid abundance we observed in the St. Louis River AOC also occurred elsewhere in the Great Lakes. We provide tabulated model predictions for application of our depth-adjusted condition class cutoff values to new sample data. This dataset is associated with the following publication: Angradi, T., W. Bartsch, A. Trebitz, V. Brady, and J. Launspach. A depth-adjusted ambient distribution approach for setting numeric removal targets for a Great Lakes Area of Concern beneficial use impairment: Degraded benthos. JOURNAL OF GREAT LAKES RESEARCH. International Association for Great Lakes Research, Ann Arbor, MI, USA, 43(1): 108-120, (2017).