The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.
The U.S. Census defines Asian Americans as individuals having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent (U.S. Office of Management and Budget, 1997). As a broad racial category, Asian Americans are the fastest-growing minority group in the United States (U.S. Census Bureau, 2012). The growth rate of 42.9% in Asian Americans between 2000 and 2010 is phenomenal given that the corresponding figure for the U.S. total population is only 9.3% (see Figure 1). Currently, Asian Americans make up 5.6% of the total U.S. population and are projected to reach 10% by 2050. It is particularly notable that Asians have recently overtaken Hispanics as the largest group of new immigrants to the U.S. (Pew Research Center, 2015). The rapid growth rate and unique challenges as a new immigrant group call for a better understanding of the social and health needs of the Asian American population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Lockport population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Lockport across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Lockport was 20,436, a 0.61% decrease year-by-year from 2022. Previously, in 2022, Lockport population was 20,561, a decline of 0.82% compared to a population of 20,732 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Lockport decreased by 1,899. In this period, the peak population was 22,335 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lockport Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Challenges in the field of demographic projections include, among others, the volatility of the migration component - critical for the projection of small areas; the compatibility between projections of small and large areas; and the measurement and inclusion of uncertainty in future scenarios of population growth. This article presents a new probabilistic method to conduct interregional population forecasting dealing with these three challenges. The proposed method has the following advantages: 1) it only requires information about the last place of residence and the population distributions of the last two Censuses; 2) it generates confidence intervals for the projected populations; 3) it makes the role of migration flows in the growth dynamics explicit and; 4) it facilitates the elaboration of counterfactual scenarios and sensitivity analysis using matrices of interregional population growth and distribution. We describe the patterns and trends in migration flows in the state of São Paulo applying spatial visualization tools and identifying areas in which migration is responsible for considerable shares of the demographic dynamics. About 95% of the 572 municipal projected populations of São Paulo had good precision and were within expected confidence intervals. We used data from the 1980, 1991 and 2000 Brazilian Censuses.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this project graph is : ourworldindata
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Ff7760f5a993dbf3c849819da7f49b423%2FPopulation-cartogram_World.png?generation=1709236376179460&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fb4be558ca2d6f2722de1bd99375d3e4d%2FAnnual-World-Population-since-10-thousand-BCE-1-768x724.png?generation=1709236383963029&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fc015d522dc682d896c50e3f62ff290de%2F2019-Revision--World-Population-Growth-1700-2100-768x563.png?generation=1709236391743933&alt=media" alt="">
For the vast majority of human existence, our global population remained a mere fraction of what it is today. However, the last few centuries have borne witness to an extraordinary transformation in human demography. In the year 1800, the global population stood at a modest one billion individuals. Fast forward to the present day, and we find ourselves amidst a staggering figure of over 8 billion people inhabiting our planet.
Yet, despite this exponential growth trajectory, demographers now project a fascinating shift on the horizon: the expectation that global population growth will plateau by the close of this century.
Within the vast repository of Our World in Data, we delve deeply into the intricacies of population dynamics, offering a comprehensive array of data, charts, and analyses elucidating the nuanced changes in population growth. From the geographical distribution of populations to temporal shifts and future projections, our platform serves as a rich tapestry of insights into this paramount aspect of human civilization.
One of the most illuminating tools at our disposal is the population cartogram—a unique visualization method that transcends traditional geographical maps to provide a more accurate depiction of global population distribution. Unlike conventional maps, which delineate territories based solely on landmass, population cartograms offer a perspective where countries are resized according to their respective populations.
In our exploration of the population cartogram for the year 2018, we uncover a myriad of revelations. Small nations characterized by high population densities manifest as enlarged entities, accentuating their significance on the global stage. Bangladesh, Taiwan, and the Netherlands emerge prominently, their amplified proportions underscoring their demographic density. Conversely, vast territories with comparatively sparse populations undergo a visual reduction in size. Countries like Canada, Mongolia, Australia, and Russia, despite their expansive landmasses, shrink in relative stature, highlighting the intriguing interplay between territory and population.
This innovative approach to mapping not only challenges conventional perceptions but also provides invaluable insights into the complex mosaic of human settlement patterns and demographic trends. By transcending the limitations of traditional cartography, population cartograms offer a nuanced lens through which to perceive the evolving dynamics of our global community.
To delve deeper into the nuances of this population cartogram and its implications, we invite you to explore our comprehensive article dedicated to this fascinating subject. Within its pages, you will find a detailed analysis, accompanied by captivating visuals and insightful commentary, elucidating the significance of population cartograms in understanding our world.
At Our World in Data, we remain committed to unraveling the complexities of global population dynamics, offering a platform that fosters informed discourse and deepens our understanding of the forces shaping our collective future. Join us on this illuminating journey as we navigate the ever-changing landscape of human demography, charting a course towards a more enlightened tomorrow.
This dataset offers valuable insights into the demographic profile of a specific population, with data on factors such as age, income, and gender distribution, as well as number of homes and spending habits categorized into major expenditure categories such as food, transportation, and healthcare. The data is geocoded using geohash7 (152.9m x 152.4m), providing a more accurate representation of the population distribution. This information is a valuable resource for companies, researchers, and policymakers looking to gain a deeper understanding of the economic and social landscape of a community. Utilizing this data, they can make informed decisions related to resource allocation, planning, and policy development, and tailor initiatives to effectively address the challenges and opportunities facing the population. The dataset can be provided by country, state, municipality, colony, zone, polygon, etc.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
This dataset offers valuable insights into the demographic profile of a specific population, with data on factors such as age, income, and gender distribution. The data is geocoded using geohash7 (152.9m x 152.4m), providing a more accurate representation of the population distribution. This information is a valuable resource for companies, researchers, and policymakers looking to gain a deeper understanding of the economic and social landscape of a community. Utilizing this data, they can make informed decisions related to resource allocation, planning, and policy development, and tailor initiatives to effectively address the challenges and opportunities facing the population. The dataset can be provided by country, department, municipality, zone, polygon, etc.
A central challenge in applied ecology is understanding the effect of anthropogenic fatalities on wildlife populations and predicting which populations may be particularly vulnerable and in greatest need of management attention. We used 3 approaches to investigate potential effects of fatalities from collisions with wind turbines on 14 raptor species for both current (106 GW) and anticipated future (241 GW) levels of installed wind energy capacity in the United States. Our goals were to identify species at relatively high vs low risk of experiencing population declines from turbine collisions and to also compare results generated from these approaches. Two of the approaches used a calculated turbine-caused mortality rate to decrement population growth, where population trends were derived either from the North American Breeding Bird Survey or a matrix model parameterized from literature-derived demographic values. The third approach was potential biological removal, which estimates the number of fatalities that allow a population to reach and maintain its optimal sustainable population set by management objectives
This is a copy of the statewide Census Tract GIS Tiger file. It is used to determine if a census tract (CT) is DAC or not by adding ACS (American Community Survey) Median Household Income (MHI) data at the CT level. The IRWM web based DAC mapping tool uses this GIS layer. Every year this table gets updated after ACS publishes their updated MHI estimates. Created by joining ACS 2016-2020 5 year estimates to the 2020 Census Tracts feature class. The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.3, dated April 13, 2022. This data set was not produced by DWR. Data were originally developed and supplied by US Bureau of Census. DWR makes no warranties or guarantees - either expressed or implied - as to the completeness, accuracy, or correctness of the data. DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements, updates, or suggestions should be forwarded to the official GIS steward as available and appropriate at gis@water.ca.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
Background
The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.
Longitudinal data
The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary.
New reweighting policy
Following the new reweighting policy ONS has reviewed the latest population estimates made available during 2019 and have decided not to carry out a 2019 LFS and APS reweighting exercise. Therefore, the next reweighting exercise will take place in 2020. These will incorporate the 2019 Sub-National Population Projection data (published in May 2020) and 2019 Mid-Year Estimates (published in June 2020). It is expected that reweighted Labour Market aggregates and microdata will be published towards the end of 2020/early 2021.
LFS Documentation
The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.
Additional data derived from the QLFS
The Archive also holds further QLFS series: End User Licence (EUL) quarterly data; Secure Access datasets; household datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.
Variables DISEA and LNGLST
Dataset A08 (Labour market status of disabled people) which ONS suspended due to an apparent discontinuity between April to June 2017 and July to September 2017 is now available. As a result of this apparent discontinuity and the inconclusive investigations at this stage, comparisons should be made with caution between April to June 2017 and subsequent time periods. However users should note that the estimates are not seasonally adjusted, so some of the change between quarters could be due to seasonality. Further recommendations on historical comparisons of the estimates will be given in November 2018 when ONS are due to publish estimates for July to September 2018.
An article explaining the quality assurance investigations that have been conducted so far is available on the ONS Methodology webpage. For any queries about Dataset A08 please email Labour.Market@ons.gov.uk.
Occupation data for 2021 and 2022 data files
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.
2022 Weighting
The population totals used for the latest LFS estimates use projected growth rates from Real Time Information (RTI) data for UK, EU and non-EU populations based on 2021 patterns. The total population used for the LFS therefore does not take into account any changes in migration, birth rates, death rates, and so on since June 2021, and hence levels estimates may be under- or over-estimating the true values and should be used with caution. Estimates of rates will, however, be robust.
Latest edition information
For the second edition (February 2025), the data file was resupplied with the 2024 weighting variable included (LGWT24).
International Data & Economic Analysis (IDEA) is USAID's comprehensive source of economic and social data and analysis. IDEA brings together over 12,000 data series from over 125 sources into one location for easy access by USAID and its partners through the USAID public website. The data are broken down by countries, years and the following sectors: Economy, Country Ratings and Rankings, Trade, Development Assistance, Education, Health, Population, and Natural Resources. IDEA regularly updates the database as new data become available. Examples of IDEA sources include the Demographic and Health Surveys, STATcompiler; UN Food and Agriculture Organization, Food Price Index; IMF, Direction of Trade Statistics; Millennium Challenge Corporation; and World Bank, World Development Indicators. The database can be queried by navigating to the site displayed in the Home Page field below.
Rapid environmental change presents a significant challenge to the persistence of natural populations. Rapid adaptation that increases population growth, enabling populations that declined following severe environmental change to grow and avoid extinction, is called evolutionary rescue. Numerous studies have shown that evolutionary rescue can indeed prevent extinction. Here, we extend those results by considering the demographic history of populations. To evaluate how demographic history influences evolutionary rescue, we created 80 populations of red flour beetle, Tribolium castaneum, with three classes of demographic history: diverse populations that did not experience a bottleneck, and populations that experienced either an intermediate or a strong bottleneck. We subjected these populations to a new and challenging environment for six discrete generations and tracked extinction and population size. Populations that did not experi...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Machine learning methodologies are increasingly popular in health care research. This shift to integrated data science approaches necessitates professional development of the existing health care data analyst workforce. To enhance a smooth transition, educational resources need to be developed. Barriers to accessing real healthcare datasets, vital for health care data analyses methodologies training purposes, include financial, ethical and patient confidentiality concerns. Synthetic datasets mimicking real-world complexities offer a simpler solution.
We present a synthetic dataset which mirrors routinely collected primary care data on heart attack and stroke among the adult population. The data incorporates much of the practical challenges encountered in routinely collected primary care systems such as missing data, informative censoring, interactions, variable irrelevance, and noise and can be used for training in methods which handle these difficulties. The intent is for the user to build models of heart/stroke risk using survival-based methodologies.
By sharing this synthetic dataset openly, our goal is to contribute a transformative asset for professional training in health and social care data analysis. The dataset covers demographics, lifestyle variables, comorbidities, systolic blood pressure, hypertension treatment, family history of cardiovascular diseases, respiratory functioning, and experience of heart-attack and/or stroke. This initiative aims to bridge the gap in sophisticated healthcare datasets for training, fostering professional development of the health and social care research workforce.
This study is funded by the National Institute for Health and Care Research ARC Wessex and the National Centre for Research Methods. The views expressed in this summary are those of the author(s) and not necessarily those of the National Institute for Health and Care Research or the Department of Health and Social Care.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Face verification aims to distinguish between genuine and imposter pairs of faces, which include the same or different identities, respectively. The performance reported in recent years gives the impression that the task is practically solved. Here, we revisit the problem and argue that existing evaluation datasets were built using two oversimplifying design choices. First, the usual identity selection to form imposter pairs is not challenging enough because, in practice, verification is needed to detect challenging imposters. Second, the underlying demographics of existing datasets are often insufficient to account for the wide diversity of facial characteristics of people from across the world. To mitigate these limitations, we introduce the FaVCI2D dataset. Imposter pairs are challenging because they include visually similar faces selected from a large pool of demographically diversified identities. The dataset also includes metadata related to gender, country and age to facilitate fine-grained analysis of results. FaVCI2D is generated from freely distributable resources. Experiments with state-of-the-art deep models that provide nearly 100% performance on existing datasets show a significant performance drop for FaVCI2D, confirming our starting hypothesis. Equally important, we analyze legal and ethical challenges which appeared in recent years and hindered the development of face analysis research. We introduce a series of design choices which address these challenges and make the dataset constitution and usage more sustainable and fairer. FaVCI2D is available at https://github.com/AIMultimediaLab/FaVCI2D-Face-Verification-with-Challenging-Imposters-and-Diversified-Demographics
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
India is the most populous country in the world with one-sixth of the world's population. According to official estimates in 2022, India's population stood at over 1.42 billion.
This dataset contains the population distribution by state, gender, sex & region.
The file is in .csv format thus it is accessible everywhere.
Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
License information was derived automatically
This dataset was created to support the 2016 DIA (Related publication only available in Spanish). The accelerated aging process that countries in Latin America and the Caribbean are undergoing imposes unprecedented pressures on the long-term care sector. In this context, the growing demand for care from the elderly population occurs alongside a reduction in the availability of informal care. Governments in the region must prepare to address these pressures by supporting the provision of care services to alleviate social exclusion in old age. The Inter-American Development Bank has created an Observatory on Aging and Care — the focus of this policy brief — aimed at providing decision-makers with information to design policies based on available empirical evidence. In this initial phase, the Observatory seeks to document the demographic situation of countries in the region, the health of their elderly population, their limitations and dependency status, as well as their main socioeconomic characteristics. The goal is to estimate the care needs countries in the region will face. This brief summarizes the key findings from an initial analysis of the data. The results highlight the scale of the problem. The figures speak for themselves: in the region, 11% of the population aged 60 and older is dependent. Both the magnitude and intensity of dependency increase with age. Women are the most affected across all age groups. This policy brief is part of a series of studies on dependency care, including works by Caruso, Galiani, and Ibarrarán (2017); Medellín et al. (2018); López-Ortega (2018); and Aranco and Sorio (2018).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data set contains the information necessary to reproduce our article "Depenbusch L, Klasen S. The effect of bigger human bodies on the future global calorie requirements. PLoS ONE. 2019. Forthcoming" Abstract: Existing studies show how population growth and rising incomes will cause a massive increase in the future global demand for food. We add to the literature by estimating the potential effect of increases in human weight, caused by rising BMI and height, on future calorie requirements. Instead of using a market based approach, the estimations are solely based on human energy requirements for maintenance of weight. We develop four different scenarios to show the effect of increases in human height and BMI. In a world where the weight per age-sex group would stay stable, we project calorie requirements to increases by 61.05 percent between 2010 and 2100. Increases in BMI and height could add another 18.73 percentage points to this. This additional increase amounts to more than the combined calorie requirements of India and Nigeria in 2010. These increases would particularly affect Sub-Saharan African countries, which will already face massively rising calorie requirements due to the high population growth. The stark regional differences call for policies that increase food access in currently economically weak regions. Such policies should shift consumption away from energy dense foods that promote overweight and obesity, to avoid the direct burden associated with these conditions and reduce the increases in required calories. Supplying insufficient calories would not solve the problem but cause malnutrition in populations with weak access to food. As malnutrition is not reducing but promoting rises in BMI levels, this might even aggravate the situation. An earlier version appeared as GlobalFood Discussion Papers, No. 109. The data is stored as Stata Version 13 .dta file, and in Excel .xlsx format. In the Excel file the first row contains variable names, the second row contains variable labels. Age specifications in the label of the type "<=x" describe that the variable aggregates from the next smaller age group over all ages up to age "x".
The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.