100+ datasets found
  1. NIST Statistical Reference Datasets - SRD 140

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Jul 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2022). NIST Statistical Reference Datasets - SRD 140 [Dataset]. https://catalog.data.gov/dataset/nist-statistical-reference-datasets-srd-140-df30c
    Explore at:
    Dataset updated
    Jul 29, 2022
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    The purpose of this project is to improve the accuracy of statistical software by providing reference datasets with certified computational results that enable the objective evaluation of statistical software. Currently datasets and certified values are provided for assessing the accuracy of software for univariate statistics, linear regression, nonlinear regression, and analysis of variance. The collection includes both generated and 'real-world' data of varying levels of difficulty. Generated datasets are designed to challenge specific computations. These include the classic Wampler datasets for testing linear regression algorithms and the Simon & Lesage datasets for testing analysis of variance algorithms. Real-world data include challenging datasets such as the Longley data for linear regression, and more benign datasets such as the Daniel & Wood data for nonlinear regression. Certified values are 'best-available' solutions. The certification procedure is described in the web pages for each statistical method. Datasets are ordered by level of difficulty (lower, average, and higher). Strictly speaking the level of difficulty of a dataset depends on the algorithm. These levels are merely provided as rough guidance for the user. Producing correct results on all datasets of higher difficulty does not imply that your software will pass all datasets of average or even lower difficulty. Similarly, producing correct results for all datasets in this collection does not imply that your software will do the same for your particular dataset. It will, however, provide some degree of assurance, in the sense that your package provides correct results for datasets known to yield incorrect results for some software. The Statistical Reference Datasets is also supported by the Standard Reference Data Program.

  2. f

    Collection of example datasets used for the book - R Programming -...

    • figshare.com
    txt
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    figshare
    Authors
    Kingsley Okoye; Samira Hosseini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

  3. f

    UC_vs_US Statistic Analysis.xlsx

    • figshare.com
    xlsx
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    Utrecht University
    Authors
    F. (Fabiano) Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

    Tagging scheme:
    Aligned (AL) - A concept is represented as a class in both models, either
    

    with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

    All the calculations and information provided in the following sheets
    

    originate from that raw data.

    Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
    

    including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

    Sheet 3 (Size-Ratio):
    

    The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

    Sheet 4 (Overall):
    

    Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

    For sheet 4 as well as for the following four sheets, diverging stacked bar
    

    charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

    Sheet 5 (By-Notation):
    

    Model correctness and model completeness is compared by notation - UC, US.

    Sheet 6 (By-Case):
    

    Model correctness and model completeness is compared by case - SIM, HOS, IFA.

    Sheet 7 (By-Process):
    

    Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

    Sheet 8 (By-Grade):
    

    Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

  4. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  5. Simulation Data Set

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Simulation Data Set [Dataset]. https://catalog.data.gov/dataset/simulation-data-set
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: File format: R workspace file; “Simulated_Dataset.RData”. Metadata (including data dictionary) • y: Vector of binary responses (1: adverse outcome, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate) Code Abstract We provide R statistical software code (“CWVS_LMC.txt”) to fit the linear model of coregionalization (LMC) version of the Critical Window Variable Selection (CWVS) method developed in the manuscript. We also provide R code (“Results_Summary.txt”) to summarize/plot the estimated critical windows and posterior marginal inclusion probabilities. Description “CWVS_LMC.txt”: This code is delivered to the user in the form of a .txt file that contains R statistical software code. Once the “Simulated_Dataset.RData” workspace has been loaded into R, the text in the file can be used to identify/estimate critical windows of susceptibility and posterior marginal inclusion probabilities. “Results_Summary.txt”: This code is also delivered to the user in the form of a .txt file that contains R statistical software code. Once the “CWVS_LMC.txt” code is applied to the simulated dataset and the program has completed, this code can be used to summarize and plot the identified/estimated critical windows and posterior marginal inclusion probabilities (similar to the plots shown in the manuscript). Optional Information (complete as necessary) Required R packages: • For running “CWVS_LMC.txt”: • msm: Sampling from the truncated normal distribution • mnormt: Sampling from the multivariate normal distribution • BayesLogit: Sampling from the Polya-Gamma distribution • For running “Results_Summary.txt”: • plotrix: Plotting the posterior means and credible intervals Instructions for Use Reproducibility (Mandatory) What can be reproduced: The data and code can be used to identify/estimate critical windows from one of the actual simulated datasets generated under setting E4 from the presented simulation study. How to use the information: • Load the “Simulated_Dataset.RData” workspace • Run the code contained in “CWVS_LMC.txt” • Once the “CWVS_LMC.txt” code is complete, run “Results_Summary.txt”. Format: Below is the replication procedure for the attached data set for the portion of the analyses using a simulated data set: Data The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publically available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics, and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).

  6. h

    NATCOOP dataset

    • heidata.uni-heidelberg.de
    csv, docx, pdf, tsv +1
    Updated Jan 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Diekert; Florian Diekert; Robbert-Jan Schaap; Robbert-Jan Schaap; Tillmann Eymess; Tillmann Eymess (2022). NATCOOP dataset [Dataset]. http://doi.org/10.11588/DATA/GV8NBL
    Explore at:
    docx(90179), pdf(432619), csv(3441765), docx(499022), tsv(86553), pdf(473493), pdf(856157), pdf(467245), docx(101203), pdf(351653), pdf(576588), pdf(200225), pdf(124038), type/x-r-syntax(14339), pdf(345323), pdf(69467), docx(43108), pdf(268168), docx(493800), docx(25110), docx(43036), pdf(270379), pdf(77960), pdf(464499), pdf(392748), docx(42158), pdf(374488), docx(498354), pdf(282466), pdf(482954), pdf(302513), pdf(513748), pdf(126342), docx(33772), tsv(2313475), pdf(441389), pdf(92836), pdf(392718)Available download formats
    Dataset updated
    Jan 27, 2022
    Dataset provided by
    heiDATA
    Authors
    Florian Diekert; Florian Diekert; Robbert-Jan Schaap; Robbert-Jan Schaap; Tillmann Eymess; Tillmann Eymess
    License

    https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/GV8NBLhttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/GV8NBL

    Time period covered
    Jan 1, 2017 - Jan 1, 2021
    Dataset funded by
    European Commission
    Description

    The NATCOOP project set out to study how nature shapes the preferences and incentives of economic agents and how this in turn affects common-pool resource management. Imagine a group of fishermen targeting a species that requires a lot of teamwork to harvest. Do these fishers become more social over time compared to fishers that work in a more solitary manner? If so, does this have implications for how the fishery should be managed? To study this, the NATCOOP team travelled to Chile and Tanzania and collected data using surveys and economic experiments. These two very different countries have a large population of small-scale fishermen, and both host several distinct types of fisheries. Over the course of five field trips, the project team surveyed more than 2500 fishermen with each field trip contributing to the main research question by measuring fishermen’s preferences for cooperation and risk. Additionally, each fieldtrip aimed to answer another smaller research question that was either focused on risk taking or cooperation behavior in the fisheries. The data from both surveys and experiments are now publicly available and can be freely studied by other researchers, resource managers, or interested citizens. Overall, the NATCOOP dataset contains participants’ responses to a plethora of survey questions and their actions during incentivized economic experiments. It is available in both the .dta and .csv format, and its use is recommended with statistical software such as R or Stata. For those unaccustomed with statistical analysis, we included a video tutorial on how to use the data set in the open-source program R.

  7. s

    Data from: Data files used to study change dynamics in software systems

    • figshare.swinburne.edu.au
    pdf
    Updated Jul 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajesh Vasa (2024). Data files used to study change dynamics in software systems [Dataset]. http://doi.org/10.25916/sut.26288227.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Swinburne
    Authors
    Rajesh Vasa
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    It is a widely accepted fact that evolving software systems change and grow. However, it is less well-understood how change is distributed over time, specifically in object oriented software systems. The patterns and techniques used to measure growth permit developers to identify specific releases where significant change took place as well as to inform them of the longer term trend in the distribution profile. This knowledge assists developers in recording systemic and substantial changes to a release, as well as to provide useful information as input into a potential release retrospective. However, these analysis methods can only be applied after a mature release of the code has been developed. But in order to manage the evolution of complex software systems effectively, it is important to identify change-prone classes as early as possible. Specifically, developers need to know where they can expect change, the likelihood of a change, and the magnitude of these modifications in order to take proactive steps and mitigate any potential risks arising from these changes. Previous research into change-prone classes has identified some common aspects, with different studies suggesting that complex and large classes tend to undergo more changes and classes that changed recently are likely to undergo modifications in the near future. Though the guidance provided is helpful, developers need more specific guidance in order for it to be applicable in practice. Furthermore, the information needs to be available at a level that can help in developing tools that highlight and monitor evolution prone parts of a system as well as support effort estimation activities. The specific research questions that we address in this chapter are: (1) What is the likelihood that a class will change from a given version to the next? (a) Does this probability change over time? (b) Is this likelihood project specific, or general? (2) How is modification frequency distributed for classes that change? (3) What is the distribution of the magnitude of change? Are most modifications minor adjustments, or substantive modifications? (4) Does structural complexity make a class susceptible to change? (5) Does popularity make a class more change-prone? We make recommendations that can help developers to proactively monitor and manage change. These are derived from a statistical analysis of change in approximately 55000 unique classes across all projects under investigation. The analysis methods that we applied took into consideration the highly skewed nature of the metric data distributions. The raw metric data (4 .txt files and 4 .log files in a .zip file measuring ~2MB in total) is provided as a comma separated values (CSV) file, and the first line of the CSV file contains the header. A detailed output of the statistical analysis undertaken is provided as log files generated directly from Stata (statistical analysis software).

  8. D

    Background data for: Latent-variable modeling of ordinal outcomes in...

    • dataverse.no
    • dataone.org
    pdf, text/tsv, txt
    Updated Feb 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manfred Krug; Manfred Krug; Fabian Vetter; Fabian Vetter; Lukas Sönning; Lukas Sönning (2024). Background data for: Latent-variable modeling of ordinal outcomes in language data analysis [Dataset]. http://doi.org/10.18710/WI9TEH
    Explore at:
    text/tsv(4475), text/tsv(1079156), txt(8660), pdf(160867), pdf(287207)Available download formats
    Dataset updated
    Feb 29, 2024
    Dataset provided by
    DataverseNO
    Authors
    Manfred Krug; Manfred Krug; Fabian Vetter; Fabian Vetter; Lukas Sönning; Lukas Sönning
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2008 - Dec 31, 2018
    Area covered
    Malta
    Dataset funded by
    Spanish Ministry of Education and Science with European Regional Development Fund
    Bavarian Ministry for Science, Research and the Arts
    German Humboldt Foundation
    Description

    This dataset contains tabular files with information about the usage preferences of speakers of Maltese English with regard to 63 pairs of lexical expressions. These pairs (e.g. truck-lorry or realization-realisation) are known to differ in usage between BrE and AmE (cf. Algeo 2006). The data were elicited with a questionnaire that asks informants to indicate whether they always use one of the two variants, prefer one over the other, have no preference, or do not use either expression (see Krug and Sell 2013 for methodological details). Usage preferences were therefore measured on a symmetric 5-point ordinal scale. Data were collected between 2008 to 2018, as part of a larger research project on lexical and grammatical variation in settings where English is spoken as a native, second, or foreign language. The current dataset, which we use for our methodological study on ordinal data modeling strategies, consists of a subset of 500 speakers that is roughly balanced on year of birth. Abstract: Related publication In empirical work, ordinal variables are typically analyzed using means based on numeric scores assigned to categories. While this strategy has met with justified criticism in the methodological literature, it also generates simple and informative data summaries, a standard often not met by statistically more adequate procedures. Motivated by a survey of how ordered variables are dealt with in language research, we draw attention to an un(der)used latent-variable approach to ordinal data modeling, which constitutes an alternative perspective on the most widely used form of ordered regression, the cumulative model. Since the latent-variable approach does not feature in any of the studies in our survey, we believe it is worthwhile to promote its benefits. To this end, we draw on questionnaire-based preference ratings by speakers of Maltese English, who indicated on a 5-point scale which of two synonymous expressions (e.g. package-parcel) they (tend to) use. We demonstrate that a latent-variable formulation of the cumulative model affords nuanced and interpretable data summaries that can be visualized effectively, while at the same time avoiding limitations inherent in mean response models (e.g. distortions induced by floor and ceiling effects). The online supplementary materials include a tutorial for its implementation in R.

  9. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  10. d

    COVID Impact Survey - Public Data

    • data.world
    csv, zip
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2024). COVID Impact Survey - Public Data [Dataset]. https://data.world/associatedpress/covid-impact-survey-public-data
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Oct 16, 2024
    Authors
    The Associated Press
    Description

    Overview

    The Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.

    Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).

    The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.

    The survey is focused on three core areas of research:

    • Physical Health: Symptoms related to COVID-19, relevant existing conditions and health insurance coverage.
    • Economic and Financial Health: Employment, food security, and government cash assistance.
    • Social and Mental Health: Communication with friends and family, anxiety and volunteerism. (Questions based on those used on the U.S. Census Bureau’s Current Population Survey.) ## Using this Data - IMPORTANT This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!

    Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.

    Queries

    If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".

    Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.

    Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.

    The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."

    Margin of Error

    The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:

    • At least twice the margin of error, you can report there is a clear difference.
    • At least as large as the margin of error, you can report there is a slight or apparent difference.
    • Less than or equal to the margin of error, you can report that the respondents are divided or there is no difference. ## A Note on Timing Survey results will generally be posted under embargo on Tuesday evenings. The data is available for release at 1 p.m. ET Thursdays.

    About the Data

    The survey data will be provided under embargo in both comma-delimited and statistical formats.

    Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)

    Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.

    Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.

    Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.

    Attribution

    Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.

    AP Data Distributions

    ​To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  11. f

    Data and tools for studying isograms

    • figshare.com
    Updated Jul 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Breit (2017). Data and tools for studying isograms [Dataset]. http://doi.org/10.6084/m9.figshare.5245810.v1
    Explore at:
    application/x-sqlite3Available download formats
    Dataset updated
    Jul 31, 2017
    Dataset provided by
    figshare
    Authors
    Florian Breit
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A collection of datasets and python scripts for extraction and analysis of isograms (and some palindromes and tautonyms) from corpus-based word-lists, specifically Google Ngram and the British National Corpus (BNC).Below follows a brief description, first, of the included datasets and, second, of the included scripts.1. DatasetsThe data from English Google Ngrams and the BNC is available in two formats: as a plain text CSV file and as a SQLite3 database.1.1 CSV formatThe CSV files for each dataset actually come in two parts: one labelled ".csv" and one ".totals". The ".csv" contains the actual extracted data, and the ".totals" file contains some basic summary statistics about the ".csv" dataset with the same name.The CSV files contain one row per data point, with the colums separated by a single tab stop. There are no labels at the top of the files. Each line has the following columns, in this order (the labels below are what I use in the database, which has an identical structure, see section below):

    Label Data type Description

    isogramy int The order of isogramy, e.g. "2" is a second order isogram

    length int The length of the word in letters

    word text The actual word/isogram in ASCII

    source_pos text The Part of Speech tag from the original corpus

    count int Token count (total number of occurences)

    vol_count int Volume count (number of different sources which contain the word)

    count_per_million int Token count per million words

    vol_count_as_percent int Volume count as percentage of the total number of volumes

    is_palindrome bool Whether the word is a palindrome (1) or not (0)

    is_tautonym bool Whether the word is a tautonym (1) or not (0)

    The ".totals" files have a slightly different format, with one row per data point, where the first column is the label and the second column is the associated value. The ".totals" files contain the following data:

    Label

    Data type

    Description

    !total_1grams

    int

    The total number of words in the corpus

    !total_volumes

    int

    The total number of volumes (individual sources) in the corpus

    !total_isograms

    int

    The total number of isograms found in the corpus (before compacting)

    !total_palindromes

    int

    How many of the isograms found are palindromes

    !total_tautonyms

    int

    How many of the isograms found are tautonyms

    The CSV files are mainly useful for further automated data processing. For working with the data set directly (e.g. to do statistics or cross-check entries), I would recommend using the database format described below.1.2 SQLite database formatOn the other hand, the SQLite database combines the data from all four of the plain text files, and adds various useful combinations of the two datasets, namely:• Compacted versions of each dataset, where identical headwords are combined into a single entry.• A combined compacted dataset, combining and compacting the data from both Ngrams and the BNC.• An intersected dataset, which contains only those words which are found in both the Ngrams and the BNC dataset.The intersected dataset is by far the least noisy, but is missing some real isograms, too.The columns/layout of each of the tables in the database is identical to that described for the CSV/.totals files above.To get an idea of the various ways the database can be queried for various bits of data see the R script described below, which computes statistics based on the SQLite database.2. ScriptsThere are three scripts: one for tiding Ngram and BNC word lists and extracting isograms, one to create a neat SQLite database from the output, and one to compute some basic statistics from the data. The first script can be run using Python 3, the second script can be run using SQLite 3 from the command line, and the third script can be run in R/RStudio (R version 3).2.1 Source dataThe scripts were written to work with word lists from Google Ngram and the BNC, which can be obtained from http://storage.googleapis.com/books/ngrams/books/datasetsv2.html and [https://www.kilgarriff.co.uk/bnc-readme.html], (download all.al.gz).For Ngram the script expects the path to the directory containing the various files, for BNC the direct path to the *.gz file.2.2 Data preparationBefore processing proper, the word lists need to be tidied to exclude superfluous material and some of the most obvious noise. This will also bring them into a uniform format.Tidying and reformatting can be done by running one of the following commands:python isograms.py --ngrams --indir=INDIR --outfile=OUTFILEpython isograms.py --bnc --indir=INFILE --outfile=OUTFILEReplace INDIR/INFILE with the input directory or filename and OUTFILE with the filename for the tidied and reformatted output.2.3 Isogram ExtractionAfter preparing the data as above, isograms can be extracted from by running the following command on the reformatted and tidied files:python isograms.py --batch --infile=INFILE --outfile=OUTFILEHere INFILE should refer the the output from the previosu data cleaning process. Please note that the script will actually write two output files, one named OUTFILE with a word list of all the isograms and their associated frequency data, and one named "OUTFILE.totals" with very basic summary statistics.2.4 Creating a SQLite3 databaseThe output data from the above step can be easily collated into a SQLite3 database which allows for easy querying of the data directly for specific properties. The database can be created by following these steps:1. Make sure the files with the Ngrams and BNC data are named “ngrams-isograms.csv” and “bnc-isograms.csv” respectively. (The script assumes you have both of them, if you only want to load one, just create an empty file for the other one).2. Copy the “create-database.sql” script into the same directory as the two data files.3. On the command line, go to the directory where the files and the SQL script are. 4. Type: sqlite3 isograms.db 5. This will create a database called “isograms.db”.See the section 1 for a basic descript of the output data and how to work with the database.2.5 Statistical processingThe repository includes an R script (R version 3) named “statistics.r” that computes a number of statistics about the distribution of isograms by length, frequency, contextual diversity, etc. This can be used as a starting point for running your own stats. It uses RSQLite to access the SQLite database version of the data described above.

  12. Data Scientists vs Size of Datasets

    • kaggle.com
    Updated Oct 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laurae (2016). Data Scientists vs Size of Datasets [Dataset]. https://www.kaggle.com/datasets/laurae2/data-scientists-vs-size-of-datasets/suggestions?status=pending
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 18, 2016
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Laurae
    Description

    This research study was conducted to analyze the (potential) relationship between hardware and data set sizes. 100 data scientists from France between Jan-2016 and Aug-2016 were interviewed in order to have exploitable data. Therefore, this sample might not be representative of the true population.

    What can you do with the data?

    • Look up whether Kagglers has "stronger" hardware than non-Kagglers
    • Whether there is a correlation between a preferred data set size and hardware
    • Is proficiency a predictor of specific preferences?
    • Are data scientists more Intel or AMD?
    • How spread is GPU computing, and is there any relationship with Kaggling?
    • Are you able to predict the amount of euros a data scientist might invest, provided their current workstation details?

    I did not find any past research on a similar scale. You are free to play with this data set. For re-usage of this data set out of Kaggle, please contact the author directly on Kaggle (use "Contact User"). Please mention:

    • Your intended usage (research? business use? blogging?...)
    • Your first/last name

    Arbitrarily, we chose characteristics to describe Data Scientists and data set sizes.

    Data set size:

    • Small: under 1 million values
    • Medium: between 1 million and 1 billion values
    • Large: over 1 billion values

    For the data, it uses the following fields (DS = Data Scientist, W = Workstation):

    • DS_1 = Are you working with "large" data sets at work? (large = over 1 billion values) => Yes or No
    • DS_2 = Do you enjoy working with large data sets? => Yes or No
    • DS_3 = Would you rather have small, medium, or large data sets for work? => Small, Medium, or Large
    • DS_4 = Do you have any presence at Kaggle or any other Data Science platforms? => Yes or No
    • DS_5 = Do you view yourself proficient at working in Data Science? => Yes, A bit, or No
    • W_1 = What is your CPU brand? => Intel or AMD
    • W_2 = Do you have access to a remote server to perform large workloads? => Yes or No
    • W_3 = How much Euros would you invest in Data Science brand new hardware? => numeric output, rounded by 100s
    • W_4 = How many cores do you have to work with data sets? => numeric output
    • W_5 = How much RAM (in GB) do you have to work with data sets? => numeric output
    • W_6 = Do you do GPU computing? => Yes or No
    • W_7 = What programming languages do you use for Data Science? => R or Python (any other answer accepted)
    • W_8 = What programming languages do you use for pure statistical analysis? => R or Python (any other answer accepted)
    • W_9 = What programming languages do you use for training models? => R or Python (any other answer accepted)

    You should expect potential noise in the data set. It might not be "free" of internal contradictions, as with all researches.

  13. Ad hoc statistical analysis: 2020/21 Quarter 4

    • gov.uk
    • s3.amazonaws.com
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Digital, Culture, Media & Sport (2024). Ad hoc statistical analysis: 2020/21 Quarter 4 [Dataset]. https://www.gov.uk/government/statistical-data-sets/ad-hoc-statistical-analysis-202021-quarter-4
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Digital, Culture, Media & Sport
    Description

    This page lists ad-hoc statistics released during the period January - March 2021. These are additional analyses not included in any of the Department for Digital, Culture, Media and Sport’s standard publications.

    If you would like any further information please contact evidence@dcms.gov.uk.

    January 2021 - Employment in DCMS sectors by socio-economic background: July 2020 to September 2020

    This analysis provides estimates of employment in DCMS sectors based on socio-economic background, using the Labour Force Survey (LFS) for July 2020 to September 2020. The LFS asks respondents the job of main earner at age 14, and then matches this to a socio-economic group.

    Revision note:

    25 September 2024: Employment in DCMS sectors by socio-economic background: July to September 2020 data has been revised and re-published here: DCMS Economic Estimates: Employment, April 2023 to March 2024

    February 2021 - GVA by industries in DCMS clusters, 2019

    This analysis provides the Gross Value Added (GVA) in 2019 for DCMS clusters and for Civil Society. The figures show that in 2019, the DCMS Clusters contributed £291.9 bn to the UK economy, accounting for 14.8% of UK GVA (expressed in current prices). The largest cluster was Digital, which added £116.3 bn in GVA in 2019, and the smallest was Gambling (£8.3 bn).

    https://assets.publishing.service.gov.uk/media/602d27ebd3bf7f722294d195/DCMS_Clusters_GVA_Tables.xlsx">GVA by industries in DCMS clusters, 2019

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">111 KB</span></p>
    

    March 2021 - Provisional monthly Gross Value Added for DCMS sectors in 2019 and 2020

    This analysis provides provisional estimates of Gross Value Added (adjusted for inflation) for DCMS sectors (excluding Civil Society) for every month in 2019 and 2020. These timely estimates should only be used to illustrate general trends, rather than be taken as definitive figures. These figures will not be as accurate as our annual National Statistics release of gross value added for DCMS sectors (which will be published in Winter 2021).

    We estimate that the gross value added of DCMS sectors (excluding Civil Society) shrank by 18% in real terms for March to December 2020 (a loss of £41 billion), compared to the same period in 2019. By sector this varied from -5% (Telecoms) to -37% (Tourism). In comparison, the UK economy as a whole shrank by 11%.

  14. student data analysis

    • kaggle.com
    Updated Nov 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    maira javeed (2023). student data analysis [Dataset]. https://www.kaggle.com/datasets/mairajaveed/student-data-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 17, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    maira javeed
    Description

    In this project, we aim to analyze and gain insights into the performance of students based on various factors that influence their academic achievements. We have collected data related to students' demographic information, family background, and their exam scores in different subjects.

    **********Key Objectives:*********

    1. Performance Evaluation: Evaluate and understand the academic performance of students by analyzing their scores in various subjects.

    2. Identifying Underlying Factors: Investigate factors that might contribute to variations in student performance, such as parental education, family size, and student attendance.

    3. Visualizing Insights: Create data visualizations to present the findings effectively and intuitively.

    Dataset Details:

    • The dataset used in this analysis contains information about students, including their age, gender, parental education, lunch type, and test scores in subjects like mathematics, reading, and writing.

    Analysis Highlights:

    • We will perform a comprehensive analysis of the dataset, including data cleaning, exploration, and visualization to gain insights into various aspects of student performance.

    • By employing statistical methods and machine learning techniques, we will determine the significant factors that affect student performance.

    Why This Matters:

    Understanding the factors that influence student performance is crucial for educators, policymakers, and parents. This analysis can help in making informed decisions to improve educational outcomes and provide support where it is most needed.

    Acknowledgments:

    We would like to express our gratitude to [mention any data sources or collaborators] for making this dataset available.

    Please Note:

    This project is meant for educational and analytical purposes. The dataset used is fictitious and does not represent any specific educational institution or individuals.

  15. f

    Data_Sheet_1_Federated statistical analysis: non-parametric testing and...

    • frontiersin.figshare.com
    pdf
    Updated Nov 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ori Becher; Mira Marcus-Kalish; David M. Steinberg (2023). Data_Sheet_1_Federated statistical analysis: non-parametric testing and quantile estimation.pdf [Dataset]. http://doi.org/10.3389/fams.2023.1267034.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Nov 13, 2023
    Dataset provided by
    Frontiers
    Authors
    Ori Becher; Mira Marcus-Kalish; David M. Steinberg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The age of big data has fueled expectations for accelerating learning. The availability of large data sets enables researchers to achieve more powerful statistical analyses and enhances the reliability of conclusions, which can be based on a broad collection of subjects. Often such data sets can be assembled only with access to diverse sources; for example, medical research that combines data from multiple centers in a federated analysis. However these hopes must be balanced against data privacy concerns, which hinder sharing raw data among centers. Consequently, federated analyses typically resort to sharing data summaries from each center. The limitation to summaries carries the risk that it will impair the efficiency of statistical analysis procedures. In this work, we take a close look at the effects of federated analysis on two very basic problems, non-parametric comparison of two groups and quantile estimation to describe the corresponding distributions. We also propose a specific privacy-preserving data release policy for federated analysis with the K-anonymity criterion, which has been adopted by the Medical Informatics Platform of the European Human Brain Project. Our results show that, for our tasks, there is only a modest loss of statistical efficiency.

  16. f

    Project for Statistics on Living Standards and Development 1993 - South...

    • microdata.fao.org
    • catalog.ihsn.org
    • +2more
    Updated Oct 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Southern Africa Labour and Development Research Unit (2020). Project for Statistics on Living Standards and Development 1993 - South Africa [Dataset]. https://microdata.fao.org/index.php/catalog/1527
    Explore at:
    Dataset updated
    Oct 20, 2020
    Dataset authored and provided by
    Southern Africa Labour and Development Research Unit
    Time period covered
    1993
    Area covered
    South Africa
    Description

    Abstract

    The Project for Statistics on Living standards and Development was a countrywide World Bank Living Standards Measurement Survey. It covered approximately 9000 households, drawn from a representative sample of South African households. The fieldwork was undertaken during the nine months leading up to the country's first democratic elections at the end of April 1994. The purpose of the survey was to collect statistical information about the conditions under which South Africans live in order to provide policymakers with the data necessary for planning strategies. This data would aid the implementation of goals such as those outlined in the Government of National Unity's Reconstruction and Development Programme.

    Geographic coverage

    National

    Analysis unit

    Households

    Universe

    All Household members. Individuals in hospitals, old age homes, hotels and hostels of educational institutions were not included in the sample. Migrant labour hostels were included. In addition to those that turned up in the selected ESDs, a sample of three hostels was chosen from a national list provided by the Human Sciences Research Council and within each of these hostels a representative sample was drawn on a similar basis as described above for the households in ESDs.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    (a) SAMPLING DESIGN

    Sample size is 9,000 households. The sample design adopted for the study was a two-stage self-weighting design in which the first stage units were Census Enumerator Subdistricts (ESDs, or their equivalent) and the second stage were households. The advantage of using such a design is that it provides a representative sample that need not be based on accurate census population distribution in the case of South Africa, the sample will automatically include many poor people, without the need to go beyond this and oversample the poor. Proportionate sampling as in such a self-weighting sample design offers the simplest possible data files for further analysis, as weights do not have to be added. However, in the end this advantage could not be retained, and weights had to be added.

    (b) SAMPLE FRAME

    The sampling frame was drawn up on the basis of small, clearly demarcated area units, each with a population estimate. The nature of the self-weighting procedure adopted ensured that this population estimate was not important for determining the final sample, however. For most of the country, census ESDs were used. Where some ESDs comprised relatively large populations as for instance in some black townships such as Soweto, aerial photographs were used to divide the areas into blocks of approximately equal population size. In other instances, particularly in some of the former homelands, the area units were not ESDs but villages or village groups. In the sample design chosen, the area stage units (generally ESDs) were selected with probability proportional to size, based on the census population. Systematic sampling was used throughout that is, sampling at fixed interval in a list of ESDs, starting at a randomly selected starting point. Given that sampling was self-weighting, the impact of stratification was expected to be modest. The main objective was to ensure that the racial and geographic breakdown approximated the national population distribution. This was done by listing the area stage units (ESDs) by statistical region and then within the statistical region by urban or rural. Within these sub-statistical regions, the ESDs were then listed in order of percentage African. The sampling interval for the selection of the ESDs was obtained by dividing the 1991 census population of 38,120,853 by the 300 clusters to be selected. This yielded 105,800. Starting at a randomly selected point, every 105,800th person down the cluster list was selected. This ensured both geographic and racial diversity (ESDs were ordered by statistical sub-region and proportion of the population African). In three or four instances, the ESD chosen was judged inaccessible and replaced with a similar one. In the second sampling stage the unit of analysis was the household. In each selected ESD a listing or enumeration of households was carried out by means of a field operation. From the households listed in an ESD a sample of households was selected by systematic sampling. Even though the ultimate enumeration unit was the household, in most cases "stands" were used as enumeration units. However, when a stand was chosen as the enumeration unit all households on that stand had to be interviewed.

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    All the questionnaires were checked when received. Where information was incomplete or appeared contradictory, the questionnaire was sent back to the relevant survey organization. As soon as the data was available, it was captured using local development platform ADE. This was completed in February 1994. Following this, a series of exploratory programs were written to highlight inconsistencies and outlier. For example, all person level files were linked together to ensure that the same person code reported in different sections of the questionnaire corresponded to the same person. The error reports from these programs were compared to the questionnaires and the necessary alterations made. This was a lengthy process, as several files were checked more than once, and completed at the beginning of August 1994. In some cases, questionnaires would contain missing values, or comments that the respondent did not know, or refused to answer a question.

    These responses are coded in the data files with the following values: VALUE MEANING -1 : The data was not available on the questionnaire or form -2 : The field is not applicable -3 : Respondent refused to answer -4 : Respondent did not know answer to question

    Data appraisal

    The data collected in clusters 217 and 218 should be viewed as highly unreliable and therefore removed from the data set. The data currently available on the web site has been revised to remove the data from these clusters. Researchers who have downloaded the data in the past should revise their data sets. For information on the data in those clusters, contact SALDRU http://www.saldru.uct.ac.za/.

  17. w

    Immigration system statistics data tables

    • gov.uk
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2025). Immigration system statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/immigration-system-statistics-data-tables
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    GOV.UK
    Authors
    Home Office
    Description

    List of the data tables as part of the Immigration System Statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.

    If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.

    Accessible file formats

    The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
    If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
    Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Immigration system statistics, year ending March 2025
    Immigration system statistics quarterly release
    Immigration system statistics user guide
    Publishing detailed data tables in migration statistics
    Policy and legislative changes affecting migration to the UK: timeline
    Immigration statistics data archives

    Passenger arrivals

    https://assets.publishing.service.gov.uk/media/68258d71aa3556876875ec80/passenger-arrivals-summary-mar-2025-tables.xlsx">Passenger arrivals summary tables, year ending March 2025 (MS Excel Spreadsheet, 66.5 KB)

    ‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.

    Electronic travel authorisation

    https://assets.publishing.service.gov.uk/media/681e406753add7d476d8187f/electronic-travel-authorisation-datasets-mar-2025.xlsx">Electronic travel authorisation detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 56.7 KB)
    ETA_D01: Applications for electronic travel authorisations, by nationality ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality

    Entry clearance visas granted outside the UK

    https://assets.publishing.service.gov.uk/media/68247953b296b83ad5262ed7/visas-summary-mar-2025-tables.xlsx">Entry clearance visas summary tables, year ending March 2025 (MS Excel Spreadsheet, 113 KB)

    https://assets.publishing.service.gov.uk/media/682c4241010c5c28d1c7e820/entry-clearance-visa-outcomes-datasets-mar-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 29.1 MB)
    Vis_D01: Entry clearance visa applications, by nationality and visa type
    Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome

    Additional dat

  18. Statistics Software Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Statistics Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-statistics-software-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Sep 22, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Statistics Software Market Outlook



    The global statistics software market size is projected to grow from USD 10.5 billion in 2023 to USD 18.7 billion by 2032, exhibiting a CAGR of 6.5% over the forecast period. The growth of this market is driven by the increasing adoption of data-driven decision-making processes across various industries, the rising need for statistical modeling and analysis tools, and the growing emphasis on advanced analytics to gain competitive advantages. Additionally, the expanding use of artificial intelligence (AI) and machine learning (ML) technologies to enhance the capabilities of statistics software is contributing significantly to market growth.



    One of the primary growth factors of the statistics software market is the increasing reliance on data analytics and business intelligence tools across different sectors. Organizations are leveraging statistical software to analyze large volumes of data generated through various digital channels, enabling them to make informed decisions and identify new business opportunities. This trend is particularly evident in the healthcare, finance, and retail sectors, where data-driven insights are crucial for improving operational efficiency, customer satisfaction, and overall performance.



    Another key driver for the market is the proliferation of big data and the need for advanced data management solutions. With the exponential growth of data generated by various sources such as social media, IoT devices, and enterprise systems, there is a heightened demand for robust statistical software that can handle complex data sets and perform sophisticated analyses. This has led to increased investments in the development of innovative statistics software solutions that offer enhanced features and capabilities, such as real-time data processing, predictive analytics, and automated reporting.



    The integration of AI and ML technologies into statistics software is also significantly boosting market growth. These technologies enable more accurate and efficient data analysis, allowing organizations to uncover hidden patterns and trends that were previously impossible to detect. AI-powered statistical tools can automate repetitive tasks, reduce human error, and provide deeper insights into data, thereby enhancing the overall decision-making process. As a result, there is a growing adoption of AI-driven statistics software across various industries, further propelling market expansion.



    Regionally, North America is expected to maintain its dominance in the statistics software market, owing to the presence of numerous leading software providers, high adoption of advanced analytics solutions, and substantial investments in research and development. However, the Asia Pacific region is anticipated to witness the highest growth rate over the forecast period, driven by the rapid digital transformation of businesses, increasing awareness of data analytics benefits, and supportive government initiatives promoting technological advancements.



    Component Analysis



    The statistics software market is segmented by component into software and services. The software segment includes various types of statistical analysis tools, ranging from basic data visualization software to advanced predictive analytics platforms. This segment holds the largest market share due to the widespread adoption of software solutions that enable organizations to analyze and interpret data efficiently. The continuous development of innovative features, such as real-time analytics, data mining, and machine learning capabilities, is further driving the demand for statistics software.



    In contrast, the services segment encompasses consulting, implementation, training, and support services provided by software vendors and third-party providers. These services are crucial for organizations to effectively utilize statistical software and maximize its benefits. The growing complexity of data and the need for specialized expertise in data analysis are driving the demand for professional services in the statistics software market. Moreover, as more businesses adopt advanced analytics solutions, the need for ongoing support and training services is expected to increase, contributing to the growth of the services segment.



    The integration of cloud computing with statistics software is also influencing the component-wise growth of this market. Cloud-based solutions offer several advantages, such as scalability, flexibility, and cost-effectiveness, making them an attractive option for organizations of all sizes. As a result, there is a

  19. H

    Data from: Data augmentation for disruption prediction via robust surrogate...

    • dataverse.harvard.edu
    • osti.gov
    Updated Aug 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katharina Rath, David Rügamer, Bernd Bischl, Udo von Toussaint, Cristina Rea, Andrew Maris, Robert Granetz, Christopher G. Albert (2024). Data augmentation for disruption prediction via robust surrogate models [Dataset]. http://doi.org/10.7910/DVN/FMJCAD
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 31, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Katharina Rath, David Rügamer, Bernd Bischl, Udo von Toussaint, Cristina Rea, Andrew Maris, Robert Granetz, Christopher G. Albert
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The goal of this work is to generate large statistically representative datasets to train machine learning models for disruption prediction provided by data from few existing discharges. Such a comprehensive training database is important to achieve satisfying and reliable prediction results in artificial neural network classifiers. Here, we aim for a robust augmentation of the training database for multivariate time series data using Student-t process regression. We apply Student-t process regression in a state space formulation via Bayesian filtering to tackle challenges imposed by outliers and noise in the training data set and to reduce the computational complexity. Thus, the method can also be used if the time resolution is high. We use an uncorrelated model for each dimension and impose correlations afterwards via coloring transformations. We demonstrate the efficacy of our approach on plasma diagnostics data of three different disruption classes from the DIII-D tokamak. To evaluate if the distribution of the generated data is similar to the training data, we additionally perform statistical analyses using methods from time series analysis, descriptive statistics, and classic machine learning clustering algorithms.

  20. National Energy Efficiency Data-Framework (NEED) table creator

    • gov.uk
    Updated Jun 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Energy Security and Net Zero (2018). National Energy Efficiency Data-Framework (NEED) table creator [Dataset]. https://www.gov.uk/government/statistical-data-sets/need-table-creator
    Explore at:
    Dataset updated
    Jun 28, 2018
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Energy Security and Net Zero
    Description

    This tool provides users with the ability to create bespoke cross tabs and charts on consumption by property attributes and characteristics, based on the data available from NEED. 2 variables can be selected to be considered at once (such as property age and property type), with mean, median or number of observations shown in the table. There is also a choice of fuel (electricity or gas). Data for each year from 2005 to 2016 are available.

    Figures provided in the latest version of the tool (June 2018) are based on data used in the June 2018 National Energy Efficiency Data-Framework (NEED) publication. More information on the development of the framework, headline results and data quality are available in the publication. There are also additional detailed tables including distributions of consumption and estimates at local authority level. All relevant outputs can be found on the National Energy Efficiency Data-Framework (NEED) report: summary of analysis 2018 page. The data used to create these tables are available as a comma separated value (csv) file also available on this page.

    If you have any queries or comments on these outputs please contact: energyefficiency.stats@beis.gov.uk.

    https://assets.publishing.service.gov.uk/media/5b337ad740f0b67f6af3a0d6/NEED_table_creator_June_2018_final.xlsm">NEED table creator June 2018

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">4.28 MB</span></p>
    
    
    
    
     <p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
     <details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
    

    Request an accessible format.

      If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:alt.formats@beis.gov.uk" target="_blank" class="govuk-link">alt.formats@beis.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
    

    <h2 c

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Institute of Standards and Technology (2022). NIST Statistical Reference Datasets - SRD 140 [Dataset]. https://catalog.data.gov/dataset/nist-statistical-reference-datasets-srd-140-df30c
Organization logo

NIST Statistical Reference Datasets - SRD 140

Explore at:
Dataset updated
Jul 29, 2022
Dataset provided by
National Institute of Standards and Technologyhttp://www.nist.gov/
Description

The purpose of this project is to improve the accuracy of statistical software by providing reference datasets with certified computational results that enable the objective evaluation of statistical software. Currently datasets and certified values are provided for assessing the accuracy of software for univariate statistics, linear regression, nonlinear regression, and analysis of variance. The collection includes both generated and 'real-world' data of varying levels of difficulty. Generated datasets are designed to challenge specific computations. These include the classic Wampler datasets for testing linear regression algorithms and the Simon & Lesage datasets for testing analysis of variance algorithms. Real-world data include challenging datasets such as the Longley data for linear regression, and more benign datasets such as the Daniel & Wood data for nonlinear regression. Certified values are 'best-available' solutions. The certification procedure is described in the web pages for each statistical method. Datasets are ordered by level of difficulty (lower, average, and higher). Strictly speaking the level of difficulty of a dataset depends on the algorithm. These levels are merely provided as rough guidance for the user. Producing correct results on all datasets of higher difficulty does not imply that your software will pass all datasets of average or even lower difficulty. Similarly, producing correct results for all datasets in this collection does not imply that your software will do the same for your particular dataset. It will, however, provide some degree of assurance, in the sense that your package provides correct results for datasets known to yield incorrect results for some software. The Statistical Reference Datasets is also supported by the Standard Reference Data Program.

Search
Clear search
Close search
Google apps
Main menu