47 datasets found
  1. a

    OCACS 2016 Housing Characteristics for ZIP Code Tabulation Areas

    • data-ocpw.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Jan 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OC Public Works (2020). OCACS 2016 Housing Characteristics for ZIP Code Tabulation Areas [Dataset]. https://data-ocpw.opendata.arcgis.com/datasets/ocacs-2016-housing-characteristics-for-zip-code-tabulation-areas
    Explore at:
    Dataset updated
    Jan 22, 2020
    Dataset authored and provided by
    OC Public Works
    Area covered
    Description

    US Census American Community Survey (ACS) 2016, 5-year estimates of the key housing characteristics of ZIP Code Tabulation Areas geographic level in Orange County, California. The data contains 406 fields for the variable groups H01: Housing occupancy (universe: total housing units, table X25, 3 fields); H02: Units in structure (universe: total housing units, table X25, 11 fields); H03: Population in occupied housing units by tenure by units in structure (universe: total population in occupied housing units, table X25, 13 fields); H04: Year structure built (universe: total housing units, table X25, 15 fields); H05: Rooms (universe: total housing units, table X25, 18 fields); H06: Bedrooms (universe: total housing units, table X25, 21 fields); H07: Housing tenure by race of householder (universe: occupied housing units, table X25, 51 fields); H08: Total population in occupied housing units by tenure (universe: total population in occupied housing units, table X25, 3 fields); H09: Vacancy status (universe: vacant housing units, table X25, 8 fields); H10: Occupied housing units by race of householder (universe: occupied housing units, table X25, 8 fields); H11: Year householder moved into unit (universe: occupied housing units, table X25, 18 fields); H12: Vehicles available (universe: occupied housing units, table X25, 18 fields); H13: Housing heating fuel (universe: occupied housing units, table X25, 10 fields); H14: Selected housing characteristics (universe: occupied housing units, table X25, 9 fields); H15: Occupants per room (universe: occupied housing units, table X25, 13 fields); H16: Housing value (universe: owner-occupied units, table X25, 32 fields); H17: Price asked for vacant for sale only, and sold not occupied housing units (universe: vacant for sale only, and sold not occupied housing units, table X25, 28 fields); H18: Mortgage status (universe: owner-occupied units, table X25, 10 fields); H19: Selected monthly owner costs, SMOC (universe: owner-occupied housing units with or without a mortgage, table X25, 45 fields); H20: Selected monthly owner costs as a percentage of household income, SMOCAPI (universe: owner-occupied housing units with or without a mortgage, table X25, 26 fields); H21: Contract rent distribution and rent asked distribution in dollars (universe: renter-occupied housing units paying cash rent and vacant, for rent, and rented not occupied housing units, table X25, 7 fields); H22: Gross rent (universe: occupied units paying rent, table X25, 28 fields), and; X23: Gross rent as percentage of household income (universe: occupied units paying rent, table X25, 11 fields). The US Census geodemographic data are based on the 2016 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project github page (https://github.com/ktalexan/OCACS-Geodemographics).

  2. d

    Census Data

    • catalog.data.gov
    • data.globalchange.gov
    • +2more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    U.S. Bureau of the Census
    Description

    The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

  3. Census of Population and Housing, 2010 [United States]: Summary File 2 With...

    • icpsr.umich.edu
    • search.datacite.org
    Updated Jul 18, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2013). Census of Population and Housing, 2010 [United States]: Summary File 2 With National Update [Dataset]. http://doi.org/10.3886/ICPSR34755.v1
    Explore at:
    Dataset updated
    Jul 18, 2013
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/34755/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/34755/terms

    Time period covered
    2010
    Area covered
    United States
    Description

    This data collection contains summary statistics on population and housing subjects derived from the responses to the 2010 Census questionnaire. Population items include sex, age, average household size, household type, and relationship to householder such as nonrelative or child. Housing items include tenure (whether a housing unit is owner-occupied or renter-occupied), age of householder, and household size for occupied housing units. Selected aggregates and medians also are provided. The summary statistics are presented in 71 tables, which are tabulated for multiple levels of observation (called "summary levels" in the Census Bureau's nomenclature), including, but not limited to, regions, divisions, states, metropolitan/micropolitan areas, counties, county subdivisions, places, ZIP Code Tabulation Areas (ZCTAs), school districts, census tracts, American Indian and Alaska Native areas, tribal subdivisions, and Hawaiian home lands. There are 10 population tables shown down to the county level and 47 population tables and 14 housing tables shown down to the census tract level. Every table cell is represented by a separate variable in the data. Each table is iterated for up to 330 population groups, which are called "characteristic iterations" in the Census Bureau's nomenclature: the total population, 74 race categories, 114 American Indian and Alaska Native categories, 47 Asian categories, 43 Native Hawaiian and Other Pacific Islander categories, and 51 Hispanic/not Hispanic groups. Moreover, the tables for some large summary areas (e.g., regions, divisions, and states) are iterated for portions of geographic areas ("geographic components" in the Census Bureau's nomenclature) such as metropolitan/micropolitan statistical areas and the principal cities of metropolitan statistical areas. The collection has a separate set of files for every state, the District of Columbia, Puerto Rico, and the National File. Each file set has 11 data files per characteristic iteration, a data file with geographic variables called the "geographic header file," and a documentation file called the "packing list" with information about the files in the file set. Altogether, the 53 file sets have 110,416 data files and 53 packing list files. Each file set is compressed in a separate ZIP archive (Datasets 1-56, 72, and 99). Another ZIP archive (Dataset 100) contains a Microsoft Access database shell and additional documentation files besides the codebook. The National File (Dataset 99) constitutes the National Update for Summary File 2. The National Update added summary levels for the United States as a whole, regions, divisions, and geographic areas that cross state lines such as Core Based Statistical Areas.

  4. Public Housing

    • data.bayareametro.gov
    Updated Dec 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Housing and Community Development (2021). Public Housing [Dataset]. https://data.bayareametro.gov/Structures/Public-Housing/3bj7-zyaq
    Explore at:
    xml, kmz, kml, application/geo+json, xlsx, csvAvailable download formats
    Dataset updated
    Dec 10, 2021
    Dataset provided by
    California Department of Housing & Community Developmenthttps://hcd.ca.gov/
    Authors
    California Department of Housing and Community Development
    Description

    The feature set indicates the locations, and tenant characteristics of public housing development buildings for the San Francisco Bay Region. This feature set, extracted by the Metropolitan Transportation Commission, is from the statewide public housing buildings feature layer provided by the California Department of Housing and Community Development (HCD). HCD itself extracted the California data from the United States Department of Housing and Urban Development (HUD) feature service depicting the location of individual buildings within public housing units throughout the United States.

    According to HUD's Public Housing Program, "Public Housing was established to provide decent and safe rental housing for eligible low-income families, the elderly, and persons with disabilities. Public housing comes in all sizes and types, from scattered single family houses to high-rise apartments for elderly families. There are approximately 1.2 million households living in public housing units, managed by some 3,300 housing agencies. HUD administers federal aid to local housing agencies that manage the housing for low-income residents at rents they can afford. HUD furnishes technical and professional assistance in planning, developing and managing these developments.

    HUD administers Federal aid to local Housing Agencies (HAs) that manage housing for low-income residents at rents they can afford. Likewise, HUD furnishes technical and professional assistance in planning, developing, and managing the buildings that comprise low-income housing developments. This feature set provides the location, and resident characteristics of public housing development buildings.

    Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes:

    ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) 
    ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) 
    ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) 
    ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) 
    ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) 
     ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) 
    ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) 
    Null - Could not be geocoded (does not appear on the map) 
    

    For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. In an effort to protect Personally Identifiable Information, the characteristics for each building are suppressed with a -4 value when the “Number_Reported” is equal to, or less than 10.

    HCD downloaded the HUD data in April 2021. They sourced the data from https://hub.arcgis.com/datasets/fedmaps::public-housing-buildings.

    To learn more about Public Housing visit: https://www.hud.gov/program_offices/public_indian_housing/programs/ph/.

  5. a

    Old Housing Stock GIS

    • hub.arcgis.com
    • data-sccphd.opendata.arcgis.com
    Updated Aug 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2022). Old Housing Stock GIS [Dataset]. https://hub.arcgis.com/maps/sccphd::old-housing-stock-gis
    Explore at:
    Dataset updated
    Aug 24, 2022
    Dataset authored and provided by
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Table contains count and percentage of housing units in the county that were built before 1980. Data are presented at county, city, zip code and census tract level. Data are presented for zip codes (ZCTAs) fully within the county. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table B25034; data accessed on July 20, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (Numeric): Geography IDNAME (String): Name of geographyHU_total (Numeric): Total housing unitsHU_before1980 (Numeric): Number of housing units built before 1980pct_before1980 (Numeric): Percent of housing units built before 1980

  6. Data from: Public Housing Authorities

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    • +1more
    Updated Apr 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2017). Public Housing Authorities [Dataset]. https://hudgis-hud.opendata.arcgis.com/items/3d6ef39026b94eb59ddb7ce28eb0b692
    Explore at:
    Dataset updated
    Apr 21, 2017
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    Public Housing was established to provide decent and safe rental housing for eligible low-income families, the elderly, and persons with disabilities. Public housing comes in all sizes and types, from scattered single family houses to high-rise apartments for elderly families. There are approximately 1.2 million households living in public housing units, managed by over 3,300 housing agencies (HAs). HUD administers Federal aid to local housing agencies (HAs) that manage the housing for low-income residents at rents they can afford. HUD furnishes technical and professional assistance in planning, developing and managing these developments. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. To learn more about Public Housing visit: https://www.hud.gov/program_offices/public_indian_housing/programs/ph/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Public Housing Authorities Date Updated: Q2 2025

  7. c

    Census of Population and Housing, 1980: Master Area Reference File V--Zip...

    • archive.ciser.cornell.edu
    Updated Mar 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2020). Census of Population and Housing, 1980: Master Area Reference File V--Zip Code Equivalency File [Dataset]. http://doi.org/10.6077/j5/7uzhy3
    Explore at:
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    Bureau of the Census
    Variables measured
    Individual, HousingUnit
    Description

    Master Area Reference Files (MARFs) link geographic areas with their respective numeric codes. This data collection is a five-digit ZIP-code equivalency file created for the 1980 Census of Population and Housing. The data contain geographic items from Summary Tape Files 1A and 3A, as well as total population and housing unit counts. This equivalency file was created to allow users to prepare additional data summaries relevant to ZIP-code areas. The file enables users to equate detailed record files having ZIP codes with census geographic units. This national file is hierarchically sequenced by geographic area. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08323.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

  8. c

    Census of Population and Housing, 1980: Summary Tape File 3B

    • archive.ciser.cornell.edu
    Updated Feb 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2020). Census of Population and Housing, 1980: Summary Tape File 3B [Dataset]. http://doi.org/10.6077/j5/gwagmn
    Explore at:
    Dataset updated
    Feb 15, 2020
    Dataset authored and provided by
    Bureau of the Census
    Variables measured
    Individual, HousingUnit
    Description

    This data collection is a component of Summary Tape File (STF) 3, which consists of four sets of data files containing detailed tabulations of the nation's population and housing characteristics produced from the 1980 Census. The STF 3 files contain sample data inflated to represent the total United States population. The files also contain 100-percent counts and unweighted sample counts of persons and housing units. All files in the STF 3 series are identical, containing 321 substantive data variables organized in the form of 150 "tables," as well as standard geographic identification variables. Population items tabulated for each person include demographic data and information on schooling, Spanish origin, language spoken at home and ability to speak English, labor force status in 1979, residency in 1975, number of children ever born, means of transportation to work, current occupation, industry, and 1979 details on occupation, hours worked, and income. Housing items include size and condition of the housing unit as well as information on value, age, water, sewage and heating, number of vehicles, and monthly owner costs (e.g., sum of payments for real estate taxes, property insurance, utilities, and regular mortgage payments). Selected aggregates and medians are also provided. Each dataset in STF 3 provides different geographic coverage. Summary Tape File 3B provides summaries for each 5-digit ZIP-code area within a state, and for 5-digit ZIP-code areas within states that were contained within Standard Metropolitan Statistical Areas (SMSAs), portions of SMSAs, or within counties, county portions, or county equivalents. All persons and housing units in the United States were sampled. Population and housing items include household relationship, sex, race, age, marital status, Hispanic origin, number of units at address, complete plumbing facilities, number of rooms, whether owned or rented, vacancy status, and value for noncondominiums. The Census Bureau's machine-readable data dictionary for STF 3 is also available through CENSUS OF POPULATION AND HOUSING, 1980 [UNITED STATES]: CENSUS SOFTWARE PACKAGE (CENSPAC) VERSION 3.2 WITH STF4 DATA DICTIONARIES (ICPSR 7789), the software package designed specifically by the Census Bureau for use with the 1980 Census data files. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR -- https://doi.org/10.3886/ICPSR08318.v1. We highly recommend using the ICPSR version as they made this dataset available in multiple data formats.

  9. d

    DOHMH COVID-19 Antibody-by-Modified ZIP Code Tabulation Area

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). DOHMH COVID-19 Antibody-by-Modified ZIP Code Tabulation Area [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-antibody-by-modified-zip-code-tabulation-area
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by modified ZIP Code Tabulation Area (ZCTA) of residence. Modified ZCTA reflects the first non-missing address within NYC for each person reported with an antibody test result. This unit of geography is similar to ZIP codes but combines census blocks with smaller populations to allow more stable estimates of population size for rate calculation. It can be challenging to map data that are reported by ZIP Code. A ZIP Code doesn’t refer to an area, but rather a collection of points that make up a mail delivery route. Furthermore, there are some buildings that have their own ZIP Code, and some non-residential areas with ZIP Codes. To deal with the challenges of ZIP Codes, the Health Department uses ZCTAs which solidify ZIP codes into units of area. Often, data reported by ZIP code are actually mapped by ZCTA. The ZCTA geography was developed by the U.S. Census Bureau. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-modzcta.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level. These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents. In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders) Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning. Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020. Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis wi

  10. Data from: Public Housing Developments

    • data.lojic.org
    • opendata.atlantaregional.com
    • +2more
    Updated Mar 2, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2016). Public Housing Developments [Dataset]. https://data.lojic.org/datasets/5c96143f79c940a0a8cedae99a1ac562
    Explore at:
    Dataset updated
    Mar 2, 2016
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    HUD furnishes technical and professional assistance in planning, developing and managing these developments. Public Housing Developments are depicted as a distinct address chosen to represent the general location of an entire Public Housing Development, which may be comprised of several buildings scattered across a community. The building with the largest number of units is selected to represent the location of the development. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. In an effort to protect Personally Identifiable Information (PII), the characteristics for each building are suppressed with a -4 value when the “Number_Reported” is equal to, or less than 10. To learn more about Public Housing visit: https://www.hud.gov/program_offices/public_indian_housing/programs/ph/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Public Housing Developments Date Updated: Q2 2025

  11. a

    OCACS 2015 Housing Characteristics for ZIP Code Tabulation Areas

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • data-ocpw.opendata.arcgis.com
    Updated Jan 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OC Public Works (2020). OCACS 2015 Housing Characteristics for ZIP Code Tabulation Areas [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/OCPW::ocacs-2015-housing-characteristics-for-zip-code-tabulation-areas
    Explore at:
    Dataset updated
    Jan 22, 2020
    Dataset authored and provided by
    OC Public Works
    Area covered
    Description

    US Census American Community Survey (ACS) 2015, 5-year estimates of the key housing characteristics of ZIP Code Tabulation Areas geographic level in Orange County, California. The data contains 406 fields for the variable groups H01: Housing occupancy (universe: total housing units, table X25, 3 fields); H02: Units in structure (universe: total housing units, table X25, 11 fields); H03: Population in occupied housing units by tenure by units in structure (universe: total population in occupied housing units, table X25, 13 fields); H04: Year structure built (universe: total housing units, table X25, 15 fields); H05: Rooms (universe: total housing units, table X25, 18 fields); H06: Bedrooms (universe: total housing units, table X25, 21 fields); H07: Housing tenure by race of householder (universe: occupied housing units, table X25, 51 fields); H08: Total population in occupied housing units by tenure (universe: total population in occupied housing units, table X25, 3 fields); H09: Vacancy status (universe: vacant housing units, table X25, 8 fields); H10: Occupied housing units by race of householder (universe: occupied housing units, table X25, 8 fields); H11: Year householder moved into unit (universe: occupied housing units, table X25, 18 fields); H12: Vehicles available (universe: occupied housing units, table X25, 18 fields); H13: Housing heating fuel (universe: occupied housing units, table X25, 10 fields); H14: Selected housing characteristics (universe: occupied housing units, table X25, 9 fields); H15: Occupants per room (universe: occupied housing units, table X25, 13 fields); H16: Housing value (universe: owner-occupied units, table X25, 32 fields); H17: Price asked for vacant for sale only, and sold not occupied housing units (universe: vacant for sale only, and sold not occupied housing units, table X25, 28 fields); H18: Mortgage status (universe: owner-occupied units, table X25, 10 fields); H19: Selected monthly owner costs, SMOC (universe: owner-occupied housing units with or without a mortgage, table X25, 45 fields); H20: Selected monthly owner costs as a percentage of household income, SMOCAPI (universe: owner-occupied housing units with or without a mortgage, table X25, 26 fields); H21: Contract rent distribution and rent asked distribution in dollars (universe: renter-occupied housing units paying cash rent and vacant, for rent, and rented not occupied housing units, table X25, 7 fields); H22: Gross rent (universe: occupied units paying rent, table X25, 28 fields), and; X23: Gross rent as percentage of household income (universe: occupied units paying rent, table X25, 11 fields). The US Census geodemographic data are based on the 2015 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project github page (https://github.com/ktalexan/OCACS-Geodemographics).

  12. A

    Residential Existing Homes (One to Four Units) Energy Efficiency Meter...

    • data.amerigeoss.org
    • datasets.ai
    • +3more
    csv, json, rdf, xml
    Updated Jul 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Residential Existing Homes (One to Four Units) Energy Efficiency Meter Evaluated Project Data: 2007 – 2012 [Dataset]. https://data.amerigeoss.org/id/dataset/residential-existing-homes-one-to-four-units-energy-efficiency-meter-evaluated-projec-2007
    Explore at:
    csv, rdf, xml, jsonAvailable download formats
    Dataset updated
    Jul 27, 2019
    Dataset provided by
    United States[old]
    Description

    IMPORTANT! PLEASE READ DISCLAIMER BEFORE USING DATA. This dataset backcasts estimated modeled savings for a subset of 2007-2012 completed projects in the Home Performance with ENERGY STAR® Program against normalized savings calculated by an open source energy efficiency meter available at https://www.openee.io/. Open source code uses utility-grade metered consumption to weather-normalize the pre- and post-consumption data using standard methods with no discretionary independent variables. The open source energy efficiency meter allows private companies, utilities, and regulators to calculate energy savings from energy efficiency retrofits with increased confidence and replicability of results. This dataset is intended to lay a foundation for future innovation and deployment of the open source energy efficiency meter across the residential energy sector, and to help inform stakeholders interested in pay for performance programs, where providers are paid for realizing measurable weather-normalized results. To download the open source code, please visit the website at https://github.com/openeemeter/eemeter/releases

    D I S C L A I M E R: Normalized Savings using open source OEE meter. Several data elements, including, Evaluated Annual Elecric Savings (kWh), Evaluated Annual Gas Savings (MMBtu), Pre-retrofit Baseline Electric (kWh), Pre-retrofit Baseline Gas (MMBtu), Post-retrofit Usage Electric (kWh), and Post-retrofit Usage Gas (MMBtu) are direct outputs from the open source OEE meter.

    Home Performance with ENERGY STAR® Estimated Savings. Several data elements, including, Estimated Annual kWh Savings, Estimated Annual MMBtu Savings, and Estimated First Year Energy Savings represent contractor-reported savings derived from energy modeling software calculations and not actual realized energy savings. The accuracy of the Estimated Annual kWh Savings and Estimated Annual MMBtu Savings for projects has been evaluated by an independent third party. The results of the Home Performance with ENERGY STAR impact analysis indicate that, on average, actual savings amount to 35 percent of the Estimated Annual kWh Savings and 65 percent of the Estimated Annual MMBtu Savings. For more information, please refer to the Evaluation Report published on NYSERDA’s website at: http://www.nyserda.ny.gov/-/media/Files/Publications/PPSER/Program-Evaluation/2012ContractorReports/2012-HPwES-Impact-Report-with-Appendices.pdf.

    This dataset includes the following data points for a subset of projects completed in 2007-2012: Contractor ID, Project County, Project City, Project ZIP, Climate Zone, Weather Station, Weather Station-Normalization, Project Completion Date, Customer Type, Size of Home, Volume of Home, Number of Units, Year Home Built, Total Project Cost, Contractor Incentive, Total Incentives, Amount Financed through Program, Estimated Annual kWh Savings, Estimated Annual MMBtu Savings, Estimated First Year Energy Savings, Evaluated Annual Electric Savings (kWh), Evaluated Annual Gas Savings (MMBtu), Pre-retrofit Baseline Electric (kWh), Pre-retrofit Baseline Gas (MMBtu), Post-retrofit Usage Electric (kWh), Post-retrofit Usage Gas (MMBtu), Central Hudson, Consolidated Edison, LIPA, National Grid, National Fuel Gas, New York State Electric and Gas, Orange and Rockland, Rochester Gas and Electric.

  13. First Street Community Risk Data V1.3

    • zenodo.org
    • data.niaid.nih.gov
    Updated Jun 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    First Street Foundation; First Street Foundation (2024). First Street Community Risk Data V1.3 [Dataset]. http://doi.org/10.5281/zenodo.5711172
    Explore at:
    Dataset updated
    Jun 17, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    First Street Foundation; First Street Foundation
    Description

    These datasets provide aggregated community risk scores for exposure to flooding using the First Street Foundation Flood Model (Version 1.3) at the county and zip code level. county_flood_score and zcta_flood_score provide the overall community risk score. county_flood_category_score and zcta_flood_category_score provide the risk score to specific categories of infrastructure. Each category; critical infrastructure, social infrastructure, residential properties, roads, and commercial properties, is a component of the overall community risk.

    If you are interested in acquiring First Street flood data, you can request to access the data here. More information on First Street's flood risk statistics can be found here and information on First Street's hazards can be found here.

    The following fields are in the overall risk datasets:

    Attribute

    Description

    county_id

    The county FIPS code

    count

    The count (#) of infrastructure facilities

    flood_score

    A score of 1, 2, 3, 4, or 5 is shown. Community risk rankings represent risk as Minimal, Minor (1), Moderate (2), Major (3), Severe (4) and Extreme (5). Minimal risk is a case where no facilities within a category have flood risk. County level risks are ranked based on how their total depths compare to counties across the country.

    The following fields are in the category risk datasets:

    Attribute

    Description

    FIPS

    County FIPS code

    ZIP_CODE

    ZIP code

    count

    The approximate length of roads (miles) within the geography of aggregation (i.e. ZIP Code, County)

    flood_score

    A score (Community Risk level) of 0, 1, 2, 3, 4, or 5 is shown. Community risk levels represent risk as Minimal (0), Minor (1), Moderate (2), Major (3), Severe (4) and Extreme (5). Minimal risk is a case where no facilities within a category have flood risk. ZIP Code and County level risks are assessed based on how their total depths compare to ZIP Codes and Counties across the country.

    risk_direction

    A score of 1, -1, or 0 is shown. These note if flood risk is expected to increase (1), decrease (-1), or remain constant (0) over the next 30 years.

    infrastructure_category_id

    1= critical infrastructure, 4 = social infrastructure , 6 = residential properties, 8 - roads, 9 = commercial properties

  14. Zillow Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). Zillow Datasets [Dataset]. https://brightdata.com/products/datasets/zillow
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 19, 2022
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Gain a complete view of the real estate market with our Zillow datasets. Track price trends, rental/sale status, and price per square foot with the Zillow Price History dataset and explore detailed listings with prices, locations, and features using the Zillow Properties Listing dataset. Over 134M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:

    Zpid
    City
    State
    Home Status
    Street Address
    Zipcode
    Home Type
    Living Area Value
    Bedrooms
    Bathrooms
    Price
    Property Type
    Date Sold
    Annual Homeowners Insurance
    Price Per Square Foot
    Rent Zestimate
    Tax Assessed Value
    Zestimate
    Home Values
    Lot Area
    Lot Area Unit
    Living Area
    Living Area Units
    Property Tax Rate
    Page View Count
    Favorite Count
    Time On Zillow
    Time Zone
    Abbreviated Address
    Brokerage Name
    And much more
    
  15. Public Housing Buildings

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    • +2more
    Updated Feb 24, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2016). Public Housing Buildings [Dataset]. https://hudgis-hud.opendata.arcgis.com/datasets/52a6a3a2ef1e4489837f97dcedaf8e27
    Explore at:
    Dataset updated
    Feb 24, 2016
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    HUD administers Federal aid to local Housing Agencies (HAs) that manage housing for low-income residents at rents they can afford. Likewise, HUD furnishes technical and professional assistance in planning, developing, and managing the buildings that comprise low-income housing developments. This dataset provides the location and resident characteristics of public housing development buildings. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. In an effort to protect Personally Identifiable Information (PII), the characteristics for each building are suppressed with a -4 value when the “Number_Reported” is equal to, or less than 10. To learn more about Public Housing visit: https://www.hud.gov/program_offices/public_indian_housing/programs/ph/ Development FAQs - IMS/PIC | HUD.gov / U.S. Department of Housing and Urban Development (HUD), for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Public Housing Buildings Date Updated: Q2 2025

  16. Vital Signs: Home Prices – Bay Area

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Aug 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2019). Vital Signs: Home Prices – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Home-Prices-Bay-Area/vnvp-ma92
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Aug 21, 2019
    Dataset authored and provided by
    Zillowhttp://zillow.com/
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Home Prices (EC7)

    FULL MEASURE NAME Home Prices

    LAST UPDATED August 2019

    DESCRIPTION Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE Zillow Median Sale Price (1997-2018) http://www.zillow.com/research/data/

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1997-2018; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Median housing price estimates for the region, counties, cities, and zip code come from analysis of individual home sales by Zillow. The median sale price is the price separating the higher half of the sales from the lower half. In other words, 50 percent of home sales are below or above the median value. Zillow defines all homes as single-family residential, condominium, and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that you own in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums where the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Home sales prices are not reliably available for Houston, because Texas is a non-disclosure state. For more information on non-disclosure states, see: http://www.zillow.com/blog/chronicles-of-data-collection-ii-non-disclosure-states-3783/

    Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  17. HUD Insured Multifamily Properties

    • hub.arcgis.com
    • anrgeodata.vermont.gov
    • +3more
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). HUD Insured Multifamily Properties [Dataset]. https://hub.arcgis.com/datasets/HUD::hud-insured-multifamily-properties/about
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    The FHA insured Multifamily Housing portfolio consists primarily of rental housing properties with five or more dwelling units such as apartments or town houses, but can also be nursing homes, hospitals, elderly housing, mobile home parks, retirement service centers, and occasionally vacant land. Please note that this dataset overlaps the Multifamily Properties Assisted layer. The Multifamily property locations represent the approximate location of the property. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. In an effort to protect Personally Identifiable Information (PII), the characteristics for each building are suppressed with a -4 value when the “Number_Reported” is equal to, or less than 10. To learn more about HUD Insured Multifamily Properties visit: https://www.hud.gov/program_offices/housing/mfh Data Dictionary: DD_HUD Insured Multifamilly Properties

  18. Multifamily Properties - Assisted

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Multifamily Properties - Assisted [Dataset]. https://hudgis-hud.opendata.arcgis.com/datasets/multifamily-properties-assisted
    Explore at:
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    HUD’s Multifamily Housing property portfolio consist primarily of rental housing properties with five or more dwelling units such as apartments or town houses, but can also include nursing homes, hospitals, elderly housing, mobile home parks, retirement service centers, and occasionally vacant land. HUD provides subsidies and grants to property owners and developers in an effort to promote the development and preservation of affordable rental units for low-income populations, and those with special needs such as the elderly, and disabled. The portfolio can be broken down into two basic categories: insured, and assisted. The three largest assistance programs for Multifamily Housing are Section 8 Project Based Assistance, Section 202 Supportive Housing for the Elderly, and Section 811 Supportive Housing for Persons with Disabilities. The Multifamily property locations represent the approximate location of the property. The locations of individual buildings associated with each property are not depicted here. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. In an effort to protect Personally Identifiable Information (PII), the characteristics for each building are suppressed with a -4 value when the “Number_Reported” is equal to, or less than 10. To learn more about Multifamily Housing visit: https://www.hud.gov/program_offices/housing/mfh, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_HUD Assisted Multifamily Properties Date of Coverage: 06/2025

  19. Vital Signs: Home Prices – by metro

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Sep 24, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2019). Vital Signs: Home Prices – by metro [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Home-Prices-by-metro/7ksc-i6kn
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Sep 24, 2019
    Dataset authored and provided by
    Zillowhttp://zillow.com/
    Description

    VITAL SIGNS INDICATOR Home Prices (EC7)

    FULL MEASURE NAME Home Prices

    LAST UPDATED August 2019

    DESCRIPTION Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE Zillow Median Sale Price (1997-2018) http://www.zillow.com/research/data/

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1997-2018; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Median housing price estimates for the region, counties, cities, and zip code come from analysis of individual home sales by Zillow. The median sale price is the price separating the higher half of the sales from the lower half. In other words, 50 percent of home sales are below or above the median value. Zillow defines all homes as single-family residential, condominium, and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that you own in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums where the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Home sales prices are not reliably available for Houston, because Texas is a non-disclosure state. For more information on non-disclosure states, see: http://www.zillow.com/blog/chronicles-of-data-collection-ii-non-disclosure-states-3783/

    Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  20. T

    Vital Signs: Home Prices by Metro Area (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Dec 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Home Prices by Metro Area (2022) [Dataset]. https://data.bayareametro.gov/Economy/Vital-Signs-Home-Prices-by-Metro-Area-2022-/rgc5-3kcq
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Dec 2, 2022
    Description

    VITAL SIGNS INDICATOR
    Home Prices (EC7)

    FULL MEASURE NAME
    Home Prices

    LAST UPDATED
    December 2022

    DESCRIPTION
    Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE
    Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
    2000-2021

    California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
    2000-2021

    US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
    2000-2021

    Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
    2000-2021

    US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
    2020 Census Blocks

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
OC Public Works (2020). OCACS 2016 Housing Characteristics for ZIP Code Tabulation Areas [Dataset]. https://data-ocpw.opendata.arcgis.com/datasets/ocacs-2016-housing-characteristics-for-zip-code-tabulation-areas

OCACS 2016 Housing Characteristics for ZIP Code Tabulation Areas

Explore at:
Dataset updated
Jan 22, 2020
Dataset authored and provided by
OC Public Works
Area covered
Description

US Census American Community Survey (ACS) 2016, 5-year estimates of the key housing characteristics of ZIP Code Tabulation Areas geographic level in Orange County, California. The data contains 406 fields for the variable groups H01: Housing occupancy (universe: total housing units, table X25, 3 fields); H02: Units in structure (universe: total housing units, table X25, 11 fields); H03: Population in occupied housing units by tenure by units in structure (universe: total population in occupied housing units, table X25, 13 fields); H04: Year structure built (universe: total housing units, table X25, 15 fields); H05: Rooms (universe: total housing units, table X25, 18 fields); H06: Bedrooms (universe: total housing units, table X25, 21 fields); H07: Housing tenure by race of householder (universe: occupied housing units, table X25, 51 fields); H08: Total population in occupied housing units by tenure (universe: total population in occupied housing units, table X25, 3 fields); H09: Vacancy status (universe: vacant housing units, table X25, 8 fields); H10: Occupied housing units by race of householder (universe: occupied housing units, table X25, 8 fields); H11: Year householder moved into unit (universe: occupied housing units, table X25, 18 fields); H12: Vehicles available (universe: occupied housing units, table X25, 18 fields); H13: Housing heating fuel (universe: occupied housing units, table X25, 10 fields); H14: Selected housing characteristics (universe: occupied housing units, table X25, 9 fields); H15: Occupants per room (universe: occupied housing units, table X25, 13 fields); H16: Housing value (universe: owner-occupied units, table X25, 32 fields); H17: Price asked for vacant for sale only, and sold not occupied housing units (universe: vacant for sale only, and sold not occupied housing units, table X25, 28 fields); H18: Mortgage status (universe: owner-occupied units, table X25, 10 fields); H19: Selected monthly owner costs, SMOC (universe: owner-occupied housing units with or without a mortgage, table X25, 45 fields); H20: Selected monthly owner costs as a percentage of household income, SMOCAPI (universe: owner-occupied housing units with or without a mortgage, table X25, 26 fields); H21: Contract rent distribution and rent asked distribution in dollars (universe: renter-occupied housing units paying cash rent and vacant, for rent, and rented not occupied housing units, table X25, 7 fields); H22: Gross rent (universe: occupied units paying rent, table X25, 28 fields), and; X23: Gross rent as percentage of household income (universe: occupied units paying rent, table X25, 11 fields). The US Census geodemographic data are based on the 2016 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project github page (https://github.com/ktalexan/OCACS-Geodemographics).

Search
Clear search
Close search
Google apps
Main menu