30 datasets found
  1. d

    Data from: Thinking Like a Grassland: Challenges and Opportunities for...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +1more
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Thinking Like a Grassland: Challenges and Opportunities for Biodiversity Conservation in the Great Plains of North America [Dataset]. https://catalog.data.gov/dataset/data-from-thinking-like-a-grassland-challenges-and-opportunities-for-biodiversity-conserva-27be5
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Agricultural Research Service
    Area covered
    North America
    Description

    Conservation planning in the Great Plains often depends on understanding the degree of fragmentation of the various types of grasslands and savannas that historically occurred in this region. To define ecological subregions of the Great Plains, we used a revised version of Kuchler’s (1964) map of the potential natural vegetation of the United States. The map was digitized from the 1979 physiographic regions map produced by the Bureau of Land Management, which added 10 physiognomic types. All analyses are based on data sources specific to the United States; hence, we only analyze the portion of the Great Plains occurring in the United States.We sought to quantify the current amount of rangeland in the US Great Plains converted due to 1) woody plant encroachment; 2) urban, exurban, and other forms of development (e.g., energy infrastructure); and 3) cultivation of cropland. At the time of this analysis, the most contemporary measure of land cover across the United States was the 2011 NLCD (Homer et al. 2015). One limitation of the NLCD is that some grasslands with high rates of productivity, such as herbaceous wetlands or grasslands along riparian zones, are misclassified as cropland. A second limitation is the inability to capture cropland conversion occurring after 2011 (Lark et al. 2015). Beginning in 2009 (and retroactively for 2008), the US Department of Agriculture - NASS has annually produced a Cropland Data Layer (CDL) for the United States from satellite imagery, which maps individual crop types at a 30-m spatial resolution. We used the annual CDLs from 2011 to 2017 to map the distribution of cropland in the Great Plains. We merged this map with the 2011 NLCD to evaluate the degree of fragmentation of grasslands and savannas in the Great Plains as a result of conversion to urban land, cropland, or woodland. We produced two maps of fragmentation (best case and worst case scenarios) that quantify this fragmentation at a 30 x 30 m pixel resolution across the US Great Plains, and make them available for download here. Resources in this dataset: Resource title: Data Dictionary for Figure 2 derived land cover of the US portion of the North American Great Plains File name: Figure2_Key for landcover classes.csv Resource title: Figure 1. Potential natural vegetation of US portion of the North American Great Plains, adapted from Kuchler (1964). File name: Figure1_Kuchler_GPRangelands.zip Resource description: Extracted grassland, shrubland, savanna, and forest communities in the US Great Plains from the revised Kuchler natural vegetation map Resource title: Figure 2. Derived land cover of the US portion of the North American Great Plains. File name: Figure2_Key for landcover classes.zip Resource description: The fNLCD-CDL product estimates that 43.7% of the Great Plains still consists of grasslands and shrublands, with the remainder consisting of 40.6% cropland, 4.4% forests, 3.0% UGC, 3.0% developed open space, 2.9% improved pasture or hay fields, 1.2% developed land, 1.0% water, and 0.2% barren land, with important regional and subregional variation in the extent of rangeland loss to cropland, forests, and developed land. Resource title: Figure 3. Variation in the degree of fragmentation of Great Plains measured in terms of distance to cropland, forest, or developed lands. File name: Figure3_bestcase_disttofrag.zip Resource description: This map depicts a “best case” scenario in which 1) croplands are mapped based only on the US Department of AgricultureNational Agricultural Statistics Service Cropland Data Layers (2011e2017), 2) all grass-dominated cover types including hay fields and improved pasture are considered rangelands, and 3) developed open space (as defined by the National Land Cover Database) are assumed to not be a fragmenting land cover type. Resource title: Figure 4. Variation in the degree of fragmentation of Great Plains measured in terms of distances to cropland, forest, or developed lands. File name: Figure4_worstcase_disttofrag.zip Resource description: This map depicts a ‘worst case’ scenario in which 1) croplands are mapped based on the US Department of AgricultureNational Agricultural Statistics Service Cropland Data Layers (2011e2017) and the 2011 National Land Cover Database (NLCD), 2) hay fields and improved pasture are not included as rangelands, and 3) developed open space (as defined by NLCD) is included as a fragmenting land cover type.

  2. Protected Areas Database of the United States (PAD-US)

    • data.wu.ac.at
    • datadiscoverystudio.org
    • +1more
    Updated May 10, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2018). Protected Areas Database of the United States (PAD-US) [Dataset]. https://data.wu.ac.at/schema/data_gov/M2EzYzUwM2EtYzE0OS00MDRiLWFmMmYtNTA3ZDExY2RiMDlk
    Explore at:
    the file downloads in a .zip formatAvailable download formats
    Dataset updated
    May 10, 2018
    Dataset provided by
    United States Department of the Interiorhttp://www.doi.gov/
    Area covered
    4291c7e62e080410fa866207746ad004ad9efc02, United States
    Description

    The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .

  3. a

    2011 Protected Open Space Mapping Set

    • ct-deep-gis-open-data-website-ctdeep.hub.arcgis.com
    • data.ct.gov
    • +6more
    Updated Jan 15, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy & Environmental Protection (2019). 2011 Protected Open Space Mapping Set [Dataset]. https://ct-deep-gis-open-data-website-ctdeep.hub.arcgis.com/maps/80c5e61b6e86423d9089350785e709a3
    Explore at:
    Dataset updated
    Jan 15, 2019
    Dataset authored and provided by
    Department of Energy & Environmental Protection
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    See full Data Guide here. This layer includes polygon features that depict protected open space for towns of the Protected Open Space Mapping (POSM) project, which is administered by the Connecticut Department of Energy and Environmental Protection, Land Acquisition and Management. Only parcels that meet the criteria of protected open space as defined in the POSM project are in this layer. Protected open space is defined as: (1) Land or interest in land acquired for the permanent protection of natural features of the state's landscape or essential habitat for endangered or threatened species; or (2) Land or an interest in land acquired to permanently support and sustain non-facility-based outdoor recreation, forestry and fishery activities, or other wildlife or natural resource conservation or preservation activities. Includes protected open space data for the towns of Andover, Ansonia, Ashford, Avon, Beacon Falls, Canaan, Clinton, Berlin, Bethany, Bethel, Bethlehem, Bloomfield, Bridgewater, Bolton, Brookfield, Brooklyn, Canterbury, Canton, Chaplin, Cheshire, Colchester, Colebrook, Columbia, Cornwall, Coventry, Cromwell, Danbury, Derby, East Granby, East Haddam, East Hampton, East Hartford, East Windsor, Eastford, Ellington, Enfield, Essex, Farmington, Franklin, Glastonbury, Goshen, Granby, Griswold, Groton, Guilford, Haddam, Hampton, Hartford, Hebron, Kent, Killingworth, Lebanon, Ledyard, Lisbon, Litchfield, Madison, Manchester, Mansfield, Marlborough, Meriden, Middlebury, Middlefield, Middletown, Monroe, Montville, Morris, New Britain, New Canaan, New Fairfield, New Milford, New Hartford, Newington, Newtown, Norfolk, North, Norwich, Preston, Ridgefield, Shelton, Stonington, Oxford, Plainfield, Plainville, Pomfret, Portland, Prospect, Putnam, Redding, Rocky Hill, Roxbury, Salem, Salisbury, Scotland, Seymour, Sharon, Sherman, Simsbury, Somers, South Windsor, Southbury, Southington, Sprague, Sterling, Suffield, Thomaston, Thompson, Tolland, Torrington, Union, Vernon, Wallingford, Windham, Warren, Washington, Waterbury, Watertown, West Hartford, Westbrook, Weston, Wethersfield, Willington, Wilton, Windsor, Windsor Locks, Wolcott, Woodbridge, Woodbury, and Woodstock. Additional towns are added to this list as they are completed. The layer is based on information from various sources collected and compiled during the period from March 2005 through the present. These sources include but are not limited to municipal Assessor's records (the Assessor's database, hard copy maps and deeds) and existing digital parcel data. The layer represents conditions as of the date of research at each city or town hall. The Protected Open Space layer includes the parcel shape (geometry), a project-specific parcel ID based on the Town and Town Assessor's lot numbering system, and system-defined (automatically generated) fields. The Protected Open Space layer has an accompanying table containing more detailed information about each feature (parcel). This table is called Protected Open Space Dat, and can be joined to Protected Open Space in ArcMap using the parcel ID (PAR_ID) field. Detailed information in the Protected Open Space Data attribute table includes the Assessor's Map, Block and Lot numbers (the Assessor's parcel identification numbering system), the official name of the parcel (such as the park or forest name if it has one), address and owner information, the deed volume and page numbers, survey information, open space type, the unique parcel ID number (Par_ID), comments collected by researchers during city/town hall visits, and acreage. This layer does not include parcels that do not meet the definition of open space as defined above. Features are stored as polygons that represent the best available locational information, and are "best fit" to the land base available for each.

    The Connecticut Department of Environmental Protection's (CTDEP) Permanently Protected Open Space Phase Mapping Project Phase 1 (Protected Open Space Phase1) layer includes permanently protected open space parcels in towns in Phase 1 that meet the CTDEP's definition for this project, the Permanently Protected Open Space Mapping (CT POSM) Project. The CTDEP defines permanently protected open space as (1) Land or interest in land acquired for the permanent protection of natural features of the state's landscape or essential habitat for endangered or threatened species; or (2) Land or an interest in land acquired to permanently support and sustain non facility-based outdoor recreations, forestry and fishery activities, or other wildlife or natural resource conservation or preservation activities.

    Towns in Phase 1 of the CT POSM project are situated along the CT coast and portions of the Thames River and are the following: Branford, Bridgeport, Chester, Clinton, Darien, Deep River, East Haven, East Lyme, Essex, Fairfield, Greenwich, Groton, Guilford, Hamden, Ledyard, Lyme, Madison, Milford, Montville, New Haven, New London, North Branford, North Haven, Norwalk, Norwich, Old Lyme, Old Saybrook, Orange, Preston, Shelton, Stamford, Stonington, Stratford, Waterford, West Haven, Westbrook, Westport.

    For the purposes of the project a number of categories or classifications of open space have also been created. These include: Land Trust, Land Trust with buidlings, Private, Private with buildings, Utility Company, Utility Company with buildings, Federal, State, Municipal, Municipal with buildings, Conservation easement, and non-DEP State land. The layer is based on information from various sources collected and compiled during the period from August 2002 trhough October 2003. These sources include municipal Assessor's records (the Assessor's database, hard copy maps and deeds) and existing digital parcel data. The layer represents conditions on the date of research at each city or town hall.

    The Protected Open Space Phase1 layer includes the parcel shape (geometry), a project-specific parcel ID based on the Town and Town's Assessor lot numbering system, and system-defined (automatically generated) fields. In addition, the Protected_Open_Space_Phase1 layer has an accompanying table containing more detailed information about each parcel's collection, standardization and storage. This table is called Protected Open Space Phase1 Data and can be joined to Protected Open Space Phase1 in ArcMap using the parcel ID (PAR_ID) field. Detailed information includes the Assessor's Map, Block and Lot numbers (the Assessor's parcel identification numbering system), the official name of the parcel (such as the park or forest name if it has one), address and owner information, the deed volume and page numbers, survey information, open space type, the project-specific parcel ID number (Par_ID), comments collected by researchers during city/town hall visits, acreage collected during site reconaissance and the data source. This layer does not include parcels that do not meet the definition of open space as defined above. Features are stored as polygon feature type that represent the best available locational information, i.e. "best fit" to the land base available for each.

    Phase 1 of the Protected Open Space Mapping (POSM) Project was accomplished by a contractor using only a querying process to identify open space. The contractor obtained assessor's data from the various towns and created programs to cull open space parcels strictly by query processes. We have found many errors and omissions in the data, but at this point in the project we cannot revisit all the coastal towns. Therefore, this data is being sent with a disclaimer for accuracy. You are welcome to use it but not to publish it. Please note that we do not include any water company parcels despite them being listed as part of our criteria because we must first obtain written clarification and clearance from the U.S. Department of Homeland Security.

    We have since changed our data collection method for Phase 2 of this project. DEP staff now visit each town hall and thoroughly research the land records. The project is expected to be complete by 2010.

  4. d

    30x30 Conserved Areas, Terrestrial (2023)

    • catalog.data.gov
    • data.cnra.ca.gov
    • +5more
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Natural Resources Agency (2024). 30x30 Conserved Areas, Terrestrial (2023) [Dataset]. https://catalog.data.gov/dataset/30x30-conserved-areas-terrestrial-2023-8fce4
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset provided by
    California Natural Resources Agency
    Description

    The Terrestrial 30x30 Conserved Areas map layer was developed by the CA Nature working group, providing a statewide perspective on areas managed for the protection or enhancement of biodiversity. Understanding the spatial distribution and extent of these durably protected and managed areas is a vital aspect of tracking and achieving the “30x30” goal of conserving 30% of California's lands and waters by 2030.Terrestrial and Freshwater Data• The California Protected Areas Database (CPAD), developed and managed by GreenInfo Network, is the most comprehensive collection of data on open space in California. CPAD data consists of Holdings, a single parcel or small group of parcels which comprise the spatial features of CPAD, generally corresponding to ownership boundaries. • The California Conservation Easement Database (CCED), managed by GreenInfo Network, aggregates data on lands with easements. Conservation Easements are legally recorded interests in land in which a landholder sells or relinquishes certain development rights to their land in perpetuity. Easements are often used to ensure that lands remain as open space, either as working farm or ranch lands, or areas for biodiversity protection. Easement restrictions typically remain with the land through changes in ownership. •The Protected Areas Database of the United States (PAD-US), hosted by the United States Geological Survey (USGS), is developed in coordination with multiple federal, state, and non-governmental organization (NGO) partners. PAD-US, through the Gap Analysis Project (GAP), uses a numerical coding system in which GAP codes 1 and 2 correspond to management strategies with explicit emphasis on protection and enhancement of biodiversity. PAD-US is not specifically aligned to parcel boundaries and as such, boundaries represented within it may not align with other data sources. • Numerous datasets representing designated boundaries for entities such as National Parks and Monuments, Wild and Scenic Rivers, Wilderness Areas, and others, were downloaded from publicly available sources, typically hosted by the managing agency.Methodology1.CPAD and CCED represent the most accurate location and ownership information for parcels in California which contribute to the preservation of open space and cultural and biological resources.2. Superunits are collections of parcels (Holdings) within CPAD which share a name, manager, and access policy. Most Superunits are also managed with a generally consistent strategy for biodiversity conservation. Examples of Superunits include Yosemite National Park, Giant Sequoia National Monument, and Anza-Borrego Desert State Park. 3. Some Superunits, such as those owned and managed by the Bureau of Land Management, U.S. Forest Service, or National Park Service , are intersected by one or more designations, each of which may have a distinct management emphasis with regards to biodiversity. Examples of such designations are Wilderness Areas, Wild and Scenic Rivers, or National Monuments.4. CPAD Superunits and CCED easements were intersected with all designation boundary files to create the operative spatial units for conservation analysis, henceforth 'Conservation Units,' which make up the Terrestrial 30x30 Conserved Areas map layer. Each easement was functionally considered to be a Superunit. 5. Each Conservation Unit was intersected with the PAD-US dataset in order to determine the management emphasis with respect to biodiversity, i.e., the GAP code. Because PAD-US is national in scope and not specifically parcel aligned with California assessors' surveys, a direct spatial extraction of GAP codes from PAD-US would leave tens of thousands of GAP code data slivers within the 30x30 Conserved Areas map. Consequently, a generalizing approach was adopted, such that any Conservation Unit with greater than 80% areal overlap with a single GAP code was uniformly assigned that code. Additionally, the total area of GAP codes 1 and 2 were summed for the remaining uncoded Conservation Units. If this sum was greater than 80% of the unit area, the Conservation Unit was coded as GAP 2. 6.Subsequent to this stage of analysis, certain Conservation Units remained uncoded, either due to the lack of a single GAP code (or combined GAP codes 1&2) overlapping 80% of the area, or because the area was not sufficiently represented in the PAD-US dataset. 7.These uncoded Conservation Units were then broken down into their constituent, finer resolution Holdings, which were then analyzed according to the above workflow. 8. Areas remaining uncoded following the two-step process of coding at the Superunit and then Holding levels were assigned a GAP code of 4. This is consistent with the definition of GAP Code 4: areas unknown to have a biodiversity management focus. 9. Greater than 90% of all areas in the Terrestrial 30x30 Conserved Areas map layer were GAP coded at the level of CPAD Superunits intersected by designation boundaries, the coarsest land units of analysis. By adopting these coarser analytical units, the Terrestrial 30X30 Conserved Areas map layer avoids hundreds of thousands of spatial slivers that result from intersecting designations with smaller, more numerous parcel records. In most cases, individual parcels reflect the management scenario and GAP status of the umbrella Superunit and other spatially coincident designations.10. PAD-US is a principal data source for understanding the spatial distribution of GAP coded lands, but it is national in scope, and may not always be the most current source of data with respect to California holdings. GreenInfo Network, which develops and maintains the CPAD and CCED datasets, has taken a lead role in establishing communication with land stewards across California in order to make GAP attribution of these lands as current and accurate as possible. The tabular attribution of these datasets is analyzed in addition to PAD-US in order to understand whether a holding may be considered conserved. Tracking Conserved Areas The total acreage of conserved areas will increase as California works towards its 30x30 goal. Some changes will be due to shifts in legal protection designations or management status of specific lands and waters. However, shifts may also result from new data representing improvements in our understanding of existing biodiversity conservation efforts. The California Nature Project is expected to generate a great deal of excitement regarding the state's trajectory towards achieving the 30x30 goal. We also expect it to spark discussion about how to shape that trajectory, and how to strategize and optimize outcomes. We encourage landowners, managers, and stakeholders to investigate how their lands are represented in the Terrestrial 30X30 Conserved Areas Map Layer. This can be accomplished by using the Conserved Areas Explorer web application, developed by the CA Nature working group. Users can zoom into the locations they understand best and share their expertise with us to improve the data representing the status of conservation efforts at these sites. The Conserved Areas Explorer presents a tremendous opportunity to strengthen our existing data infrastructure and the channels of communication between land stewards and data curators, encouraging the transfer of knowledge and improving the quality of data. CPAD, CCED, and PAD-US are built from the ground up. Data is derived from available parcel information and submissions from those who own and manage the land. So better data starts with you. Do boundary lines require updating? Is the GAP code inconsistent with a Holding’s conservation status? If land under your care can be better represented in the Terrestrial 30X30 Conserved Areas map layer, please use this link to initiate a review.The results of these reviews will inform updates to the California Protected Areas Database, California Conservation Easement Database, and PAD-US as appropriate for incorporation into future updates to CA Nature and tracking progress to 30x30.

  5. i

    PAD-US Park Boundaries 2022

    • indianamap.org
    • hub.arcgis.com
    Updated Sep 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2023). PAD-US Park Boundaries 2022 [Dataset]. https://www.indianamap.org/datasets/INMap::pad-us-park-boundaries-2022/about
    Explore at:
    Dataset updated
    Sep 21, 2023
    Dataset authored and provided by
    IndianaMap
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastre Theme ( https://communities.geoplatform.gov/ngda-cadastre/ ). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all open space public and nonprofit lands and waters. Most are public lands owned in fee (the owner of the property has full and irrevocable ownership of the land); however, permanent and long-term easements, leases, agreements, Congressional (e.g. 'Wilderness Area'), Executive (e.g. 'National Monument'), and administrative designations (e.g. 'Area of Critical Environmental Concern') documented in agency management plans are also included. The PAD-US strives to be a complete inventory of U.S. public land and other protected areas, compiling “best available” data provided by managing agencies and organizations. The PAD-US geodatabase maps and describes areas using thirty-six attributes and five separate feature classes representing the U.S. protected areas network: Fee (ownership parcels), Designation, Easement, Marine, Proclamation and Other Planning Boundaries. An additional Combined feature class includes the full PAD-US inventory to support data management, queries, web mapping services, and analyses. The Feature Class (FeatClass) field in the Combined layer allows users to extract data types as needed. A Federal Data Reference file geodatabase lookup table (PADUS3_0Combined_Federal_Data_References) facilitates the extraction of authoritative federal data provided or recommended by managing agencies from the Combined PAD-US inventory. This PAD-US Version 3.0 dataset includes a variety of updates from the previous Version 2.1 dataset (USGS, 2020, https://doi.org/10.5066/P92QM3NT ), achieving goals to: 1) Annually update and improve spatial data representing the federal estate for PAD-US applications; 2) Update state and local lands data as state data-steward and PAD-US Team resources allow; and 3) Automate data translation efforts to increase PAD-US update efficiency. The following list summarizes the integration of "best available" spatial data to ensure public lands and other protected areas from all jurisdictions are represented in the PAD-US (other data were transferred from PAD-US 2.1). Federal updates - The USGS remains committed to updating federal fee owned lands data and major designation changes in annual PAD-US updates, where authoritative data provided directly by managing agencies are available or alternative data sources are recommended. The following is a list of updates or revisions associated with the federal estate: 1) Major update of the Federal estate (fee ownership parcels, easement interest, and management designations where available), including authoritative data from 8 agencies: Bureau of Land Management (BLM), U.S. Census Bureau (Census Bureau), Department of Defense (DOD), U.S. Fish and Wildlife Service (FWS), National Park Service (NPS), Natural Resources Conservation Service (NRCS), U.S. Forest Service (USFS), and National Oceanic and Atmospheric Administration (NOAA). The federal theme in PAD-US is developed in close collaboration with the Federal Geographic Data Committee (FGDC) Federal Lands Working Group (FLWG, https://communities.geoplatform.gov/ngda-govunits/federal-lands-workgroup/ ). 2) Improved the representation (boundaries and attributes) of the National Park Service, U.S. Forest Service, Bureau of Land Management, and U.S. Fish and Wildlife Service lands, in collaboration with agency data-stewards, in response to feedback from the PAD-US Team and stakeholders. 3) Added a Federal Data Reference file geodatabase lookup table (PADUS3_0Combined_Federal_Data_References) to the PAD-US 3.0 geodatabase to facilitate the extraction (by Data Provider, Dataset Name, and/or Aggregator Source) of authoritative data provided directly (or recommended) by federal managing agencies from the full PAD-US inventory. A summary of the number of records (Frequency) and calculated GIS Acres (vs Documented Acres) associated with features provided by each Aggregator Source is included; however, the number of records may vary from source data as the "State Name" standard is applied to national files. The Feature Class (FeatClass) field in the table and geodatabase describe the data type to highlight overlapping features in the full inventory (e.g. Designation features often overlap Fee features) and to assist users in building queries for applications as needed. 4) Scripted the translation of the Department of Defense, Census Bureau, and Natural Resource Conservation Service source data into the PAD-US format to increase update efficiency. 5) Revised conservation measures (GAP Status Code, IUCN Category) to more accurately represent protected and conserved areas. For example, Fish and Wildlife Service (FWS) Waterfowl Production Area Wetland Easements changed from GAP Status Code 2 to 4 as spatial data currently represents the complete parcel (about 10.54 million acres primarily in North Dakota and South Dakota). Only aliquot parts of these parcels are documented under wetland easement (1.64 million acres). These acreages are provided by the U.S. Fish and Wildlife Service and are referenced in the PAD-US geodatabase Easement feature class 'Comments' field. State updates - The USGS is committed to building capacity in the state data-steward network and the PAD-US Team to increase the frequency of state land updates, as resources allow. The USGS supported efforts to significantly increase state inventory completeness with the integration of local parks data in the PAD-US 2.1, and developed a state-to-PAD-US data translation script during PAD-US 3.0 development to pilot in future updates. Additional efforts are in progress to support the technical and organizational strategies needed to increase the frequency of state updates. The PAD-US 3.0 included major updates to the following three states: 1) California - added or updated state, regional, local, and nonprofit lands data from the California Protected Areas Database (CPAD), managed by GreenInfo Network, and integrated conservation and recreation measure changes following review coordinated by the data-steward with state managing agencies. Developed a data translation Python script (see Process Step 2 Source Data Documentation) in collaboration with the data-steward to increase the accuracy and efficiency of future PAD-US updates from CPAD. 2) Virginia - added or updated state, local, and nonprofit protected areas data (and removed legacy data) from the Virginia Conservation Lands Database, provided by the Virginia Department of Conservation and Recreation's Natural Heritage Program, and integrated conservation and recreation measure changes following review by the data-steward. 3) West Virginia - added or updated state, local, and nonprofit protected areas data provided by the West Virginia University, GIS Technical Center. For more information regarding the PAD-US dataset please visit, https://www.usgs.gov/gapanalysis/PAD-US/. For more information about data aggregation please review the PAD-US Data Manual available at https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-manual . A version history of PAD-US updates is summarized below (See https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-history for more information): 1) First posted - April 2009 (Version 1.0 - available from the PAD-US: Team pad-us@usgs.gov). 2) Revised - May 2010 (Version 1.1 - available from the PAD-US: Team pad-us@usgs.gov). 3) Revised - April 2011 (Version 1.2 - available from the PAD-US: Team pad-us@usgs.gov). 4) Revised - November 2012 (Version 1.3) https://doi.org/10.5066/F79Z92XD 5) Revised - May 2016 (Version 1.4) https://doi.org/10.5066/F7G73BSZ 6) Revised - September 2018 (Version 2.0) https://doi.org/10.5066/P955KPLE 7) Revised - September 2020 (Version 2.1) https://doi.org/10.5066/P92QM3NT 8) Revised - January 2022 (Version 3.0) https://doi.org/10.5066/P9Q9LQ4B Comparing protected area trends between PAD-US versions is not recommended without consultation with USGS as many changes reflect improvements to agency and organization GIS systems, or conservation and recreation measure classification, rather than actual changes in protected area acquisition on the ground.

  6. c

    30x30 Conserved Areas, Terrestrial (2024)

    • californianature.ca.gov
    • data.cnra.ca.gov
    • +3more
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Nature Organization (2024). 30x30 Conserved Areas, Terrestrial (2024) [Dataset]. https://www.californianature.ca.gov/datasets/30x30-conserved-areas-terrestrial-2024
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    CA Nature Organization
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The Terrestrial 30x30 Conserved Areas map layer was developed by the CA Nature working group, providing a statewide perspective on areas managed for the protection or enhancement of biodiversity. Understanding the spatial distribution and extent of these durably protected and managed areas is a vital aspect of tracking and achieving the “30x30” goal of conserving 30% of California's lands and waters by 2030.Terrestrial and Freshwater Data• The California Protected Areas Database (CPAD), developed and managed by GreenInfo Network, is the most comprehensive collection of data on open space in California. CPAD data consists of Holdings, a single parcel or small group of parcels, such that the spatial features of CPAD correspond to ownership boundaries. • The California Conservation Easement Database (CCED), managed by GreenInfo Network, aggregates data on lands with easements. Conservation Easements are legally recorded interests in land in which a landholder sells or relinquishes certain development rights to their land in perpetuity. Easements are often used to ensure that lands remain as open space, either as working farm or ranch lands, or areas for biodiversity protection. Easement restrictions typically remain with the land through changes in ownership. • The Protected Areas Database of the United States (PAD-US), hosted by the United States Geological Survey (USGS), is developed in coordination with multiple federal, state, and non-governmental organization (NGO) partners. PAD-US, through the Gap Analysis Project (GAP), uses a numerical coding system in which GAP codes 1 and 2 correspond to management strategies with explicit emphasis on protection and enhancement of biodiversity. PAD-US is not specifically aligned to parcel boundaries and as such, boundaries represented within it may not align with other data sources. • Numerous datasets representing designated boundaries for entities such as National Parks and Monuments, Wild and Scenic Rivers, Wilderness Areas, and others, were downloaded from publicly available sources, typically hosted by the managing agency.Methodology1. CPAD and CCED represent the most accurate location and ownership information for parcels in California which contribute to the preservation of open space and cultural and biological resources.2. Superunits are collections of parcels (Holdings) within CPAD which share a name, manager, and access policy. Most Superunits are also managed with a generally consistent strategy for biodiversity conservation. Examples of Superunits include Yosemite National Park, Giant Sequoia National Monument, and Anza-Borrego Desert State Park. 3. Some Superunits, such as those owned and managed by the Bureau of Land Management, U.S. Forest Service, or National Park Service , are intersected by one or more designations, each of which may have a distinct management emphasis with regards to biodiversity. Examples of such designations are Wilderness Areas, Wild and Scenic Rivers, or National Monuments.4. CPAD Superunits and CCED easements were intersected with all designation boundary files to create the operative spatial units for conservation analysis, henceforth 'Conservation Units,' which make up the Terrestrial 30x30 Conserved Areas map layer. Each easement was functionally considered to be a Superunit. 5. Each Conservation Unit was intersected with the PAD-US dataset in order to determine the management emphasis with respect to biodiversity, i.e., the GAP code. Because PAD-US is national in scope and not specifically parcel aligned with California assessors' surveys, a direct spatial extraction of GAP codes from PAD-US would leave tens of thousands of GAP code data slivers within the 30x30 Conserved Areas map. Consequently, a generalizing approach was adopted, such that any Conservation Unit with greater than 80% areal overlap with a single GAP code was uniformly assigned that code. Additionally, the total area of GAP codes 1 and 2 were summed for the remaining uncoded Conservation Units. If this sum was greater than 80% of the unit area, the Conservation Unit was coded as GAP 2. 6. Subsequent to this stage of analysis, certain Conservation Units remained uncoded, either due to the lack of a single GAP code (or combined GAP codes 1&2) overlapping 80% of the area, or because the area was not sufficiently represented in the PAD-US dataset. 7. These uncoded Conservation Units were then broken down into their constituent, finer resolution Holdings, which were then analyzed according to the above workflow. 8. Areas remaining uncoded following the two-step process of coding at the Superunit and then Holding levels were assigned a GAP code of 4. This is consistent with the definition of GAP Code 4: areas unknown to have a biodiversity management focus. 9. Greater than 90% of all areas in the Terrestrial 30x30 Conserved Areas map layer were GAP coded at the level of CPAD Superunits intersected by designation boundaries, the coarsest land units of analysis. By adopting these coarser analytical units, the Terrestrial 30X30 Conserved Areas map layer avoids hundreds of thousands of spatial slivers that result from intersecting designations with smaller, more numerous parcel records. In most cases, individual parcels reflect the management scenario and GAP status of the umbrella Superunit and other spatially coincident designations.Tracking Conserved AreasThe total acreage of conserved areas will increase as California works towards its 30x30 goal. Some changes will be due to shifts in legal protection designations or management status of specific lands and waters. However, shifts may also result from new data representing improvements in our understanding of existing biodiversity conservation efforts. The California Nature Project is expected to generate a great deal of excitement regarding the state's trajectory towards achieving the 30x30 goal. We also expect it to spark discussion about how to shape that trajectory, and how to strategize and optimize outcomes. We encourage landowners, managers, and stakeholders to investigate how their lands are represented in the Terrestrial 30X30 Conserved Areas Map Layer. This can be accomplished by using the Conserved Areas Explorer web application, developed by the CA Nature working group. Users can zoom into the locations they understand best and share their expertise with us to improve the data representing the status of conservation efforts at these sites. The Conserved Areas Explorer presents a tremendous opportunity to strengthen our existing data infrastructure and the channels of communication between land stewards and data curators, encouraging the transfer of knowledge and improving the quality of data. CPAD, CCED, and PAD-US are built from the ground up. Data is derived from available parcel information and submissions from those who own and manage the land. So better data starts with you. Do boundary lines require updating? Is the GAP code inconsistent with a Holding’s conservation status? If land under your care can be better represented in the Terrestrial 30X30 Conserved Areas map layer, please use this link to initiate a review. The results of these reviews will inform updates to the California Protected Areas Database, California Conservation Easement Database, and PAD-US as appropriate for incorporation into future updates to CA Nature and tracking progress to 30x30.

  7. National Insect and Disease Risk Map Viewer

    • agdatacommons.nal.usda.gov
    • anrgeodata.vermont.gov
    • +2more
    bin
    Updated Nov 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2024). National Insect and Disease Risk Map Viewer [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/National_Insect_and_Disease_Risk_Map_Viewer/25972357
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 23, 2024
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    FHAAST provides support for both tactical and strategic forest health risk assessments. In addition, this program coordinates, in collaboration with the USDA Forest Service Forest Health Monitoring program (FHM), the development of a National Insect and Disease Risk Map (NIDRM) and database.FHAAST has completed the 2013 - 2027 National Insect and Disease Risk Map (2012 NIDRM); a nationwide strategic assessment and database of the potential hazard for tree mortality due to major forest insects and diseases. The goal of NIDRM is to summarize landscape-level patterns of potential insect and disease activity, consistent with the philosophy that science-based, transparent methods should be used to allocate pest-management resources across geographic regions and individual pest distributions. In other words: prioritize investment for areas where both hazard is significant and effective treatment can be efficiently implemented.NIDRM data can be used to:Identify the potential impacts of pests and pathogens to forest ecosystems throughout the US for the 2013 - 2027 timeframe.Generate forest pest and pathogen risk maps at a scale useful for resource planning and management purposes in many of our National Forests, National Parks, and other local units.Develop an effective strategic planning tool that can inform assessments of natural ecosystems and ensure resources for forest pest prevention, suppression, and restoration reaches the highest priority areas.Detect areas where hazardous fuels treatments coincide with lands at risk for forest pest activity, much of which is density driven. Efficiencies will be gained by prioritizing coincident areas.For a quick overview of the 2013 - 2027 assessment and to learn more information on the differences between the 2006 and 2012 NIDRMs download the executive summary (2 MB PDF).Explore forests vulnerable to attack from major insects and diseases by viewing the Interactive Story Map of the National Insect and Disease Risk MapThis record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  8. s

    Fees, Protected Areas Database of the United States, 2005-2016

    • searchworks.stanford.edu
    zip
    Updated May 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Fees, Protected Areas Database of the United States, 2005-2016 [Dataset]. https://searchworks.stanford.edu/view/nf499rx3637
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 1, 2021
    Area covered
    United States
    Description

    The mission of the USGS Gap Analysis Program (GAP) is providing state, regional and national assessments of the conservation status of native vertebrate species and natural land cover types and facilitating the application of this information to land management activities. The PAD-US geodatabase is required to organize and assess the management status (i.e. apply GAP Status Codes) of elements of biodiversity protection. The goal of GAP is to 'keep common species common' by identifying species and plant communities not adequately represented in existing conservation lands. Common species are those not currently threatened with extinction. By identifying their habitats, gap analysis gives land managers and policy makers the information they need to make better-informed decisions when identifying priority areas for conservation. In cooperation with UNEP-World Conservation Monitoring Centre, GAP ensures PAD-US also supports global analyses to inform policy decisions by maintaining World Database for Protected Areas (WDPA) Site Codes and data for International Union for the Conservation of Nature (IUCN) categorized protected areas in the United States. GAP seeks to increase the efficiency and accuracy of PAD-US updates by leveraging resources in protected areas data aggregation and maintenance as described in "A Map of the Future", published following the PAD-US Design Project (July, 2009). While PAD-US was originally developed to support the GAP Mission stated above, the dataset is robust and has been expanded to support the conservation, recreation and public health communities as well. Additional applications become apparent over time.

  9. t

    Secured Areas by GAP Status and Type 2024

    • geospatial.tnc.org
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Nature Conservancy (2024). Secured Areas by GAP Status and Type 2024 [Dataset]. https://geospatial.tnc.org/datasets/secured-areas-by-gap-status-and-type-2024
    Explore at:
    Dataset updated
    Jul 23, 2024
    Dataset authored and provided by
    The Nature Conservancy
    Area covered
    Description

    Data Download: The Secured Areas 2024 dataset is also available as an ESRI polygon geodatabase dataset.The secured areas dataset shows public and private lands that are permanently secured against conversion to development, GAP 1-3, through fee ownership, easements, or permanent conservation restrictions. It also includes a set of more temporary easement and GAP 4 open space lands not permanently secured for nature conservation. TNC compiled these data from state, federal, and private sources and assigned a GAP Status and other standard attribute fields to the best of our ability. The Secured Areas dataset is a TNC product created primarily for estimating current extent and status of secured lands with a conservation focus, GAP 1-3. The non GAP 1-3 lands are less comprehensively mapped given the lack of their inclusion in some primary source datasets, but they are included as available in our source datasets. Any updates, corrections, or discrepancies with respect to official versions of source federal, state, or local protected areas databases should be viewed as provisional until such time as such changes have been reviewed and accepted by the official data stewards for those other protected areas databases.GAP STATUS GAP status is a classification developed by the US Fish and Wildlife Service, to reflect the intent of the landowner or easement holder. GAP 1 and 2 are commonly thought of as “protected” for nature", while GAP 3 are “multiple-use” lands. Other temporary conservation easement lands and/or protected open space without a conservation value or intent are assigned GAP 4. (Citation: Crist, P.J., B. Thompson, T. C. Edwards, C. G. Homer, S. D. Bassett. 1998. Mapping and Categorizing Land Stewardship. A Handbook for Conducting Gap Analysis.) In addition to GAP 1-3 lands, in our TNC secured areas product we classified six additional classes of open space lands (permanent agricultural easements, temporary conservation easements, temporary agricultural easements, urban parks, state board lands, other GAP 4 lands). The following definitions guided our assignment of lands into the following nine classes:TNC CLASS CODE (fields TNCCLASS, TNCCLASS_D)1 = GAP 1: Permanently Secured for Nature and Natural Processes. Managed for biodiversity with all natural processes, little to no human intervention. Primary intention of the owner or easement holder is for biodiversity, nature protection, natural diversity, and natural processes. Land and water managed through natural processes including disturbances with little or no human intervention.Examples: wilderness area, some national parks2 = GAP 2 = Permanently Secured for Nature with Management: Managed for biodiversity, with hands on management or interventions. Primary intention of the owner or easement holder is for biodiversity conservation, nature protection, and natural diversity. Land and water managed for natural biodiversity conservation, but may include some hands on manipulation or suppression of disturbance and natural processes. Examples: national wildlife refuges, areas of critical environmental concern, inventoried roadless areas, some natural areas and preserves3 = GAP 3: Permanently Secured for Multiple Uses, including nature: Primary intention of the owner or easement holder for multiple uses. Strong focus on recreational use, game species production, timber production, grazing and other uses in additional to these lands providing some biodiversity value. May include extractive uses of a broad, low-intensity type (e.g. some logging. grazing) or of a localized intense type (e.g. mining, military artillery testing area, public access beach area within large natural state park). Examples: recreation focused protected areas such as state parks, state recreation areas, wildlife management areas, gamelands, state and national forests, local conservation lands with primary focus on recreational use.38 = State Board Lands and State Trust Lands: Lands in western and some southern states that are owned by the state and prevented from being developed, but which are managed to produce long term sustained revenue for the state’s educational system. These lands were separated from other protected multiple use lands in GAP 3. Most of these lands are subject to timber extraction and management for profitable forest product production. Some also have agricultural use and revenue generated from grazing and/or agricultural production leasing. These lands are not specifically managed for biodiversity values, and some are occasionally sold in periodic auctions by the state for revenue generation. Note this type of land is most commonly assigned GAP 3 in the PAD-US GAP classification.39 = Permanent Agricultural Easements: Conservation land where the primary intent is the preservation of farmland. Land is in a permanent agricultural easement or an easement to maintain grass cover. The land will not be converted to a built or paved development. Example: vegetable farm with permanent easement to prevent development. Note this type of land would be assigned GAP 4 in the PAD-US GAP classification.4 = GAP 4: Areas with no known mandate for permanent biodiversity protection. Municipal lands and other protected open space (e.g. town commons, historic parks) where the intention in management and the use of the open space is not for permanent biodiversity values. It was beyond our capacity to comprehensively compile these GAP 4 lands, and as such, they are included only where source data made it feasible to easily incorporate them. 5 = Temporary Natural Easements: Note this type of land would be assigned GAP 4 in the PAD-US GAP classification.6 = Temporary Agricultural Easements: Note this type of land would be assigned GAP 4 in the PAD-US GAP classification.9 = Urban Parks: While unlikely to have biodiversity value, urban parks provide important places for recreation and open space for people. We went through and identified parks whose name is recreation based (i.e. Playground, Community garden, Golf, fields, baseball, soccer, Mini, school, elementary, Triangle, Pool, Aquatic, Sports, Pool, Athletic, Pocket, Splash, Skate, Dog, Cemetery, Boat). Note this type of land would be assigned GAP 4 in the PAD-US GAP classification.OWNERSHIP DEFINITIONSThe type of owner or interest holder for each polygon was assigned to a set of simple reporting categories as follows (see fields = Fee_Own_T and InterstH_T )TVA -Tennessee Valley Authority, BLM -Bureau of Land Management, , BOR- Bureau of Reclamation, FWS - U.S. Fish & Wildlife Service, UFS - Forest Service, DOD - Department of Defense, ACE - Army Corps of Engineers , DOE - Department of Energy, NPS - National Park Service, NRC - Natural Resources Conservation Service, FED – Federal Other, TRB - American Indian Lands, SPR - State Park and Recreation , SDC - State Department of Conservation, SLB - State Land Board , SFW - State Fish and Wildlife, SNR - State Department of Natural Resources, STL -State Department of Land, STA - Other or Unknown State Land, REG - Regional Agency Land, LOC – Local Government (City, County), NGO - Non-Governmental Organization, PVT- Private, JNT - Joint , OTH- Other , UNK - UnknownPROTECTION TYPE DEFINITIONS: (see field PRO_TYPE_D)DesignationEasementEasement and DesignationFeeFee and DesignationFee and EasementFee, Easement, and DesignationDATA SOURCES: The 2024 CONUS Secured Areas dataset was compiled by TNC from multiple sources. These include state, federal, and other non-profit and land trust data. The primarily datasets are listed below. 1. U.S. Geological Survey (USGS) Gap Analysis Project (GAP), 2022. Protected Areas Database of the United States (PAD-US) 3.0: U.S. Geological Survey data release, https://doi.org/10.5066/P9Q9LQ4B.) Downloaded 1/10/2024 Note this dataset was used as the primary source outside of the Northeast 13 states. For the Northeast states, please see more detailed source information below.2. National Conservation Easement Database (NCED) https://www.conservationeasement.us/ Downloaded 1/12/2024. Note this dataset was used outside the Northeast 13 states. For Northeast states, please see more detailed source information below. 3. Natural Resources Conservation Service (NRCS) Easements. 2024. Downloaded 1/12/2024 https://datagateway.nrcs.usda.gov/4. Conservation Science Partners, Inc. 2024. Wild and Scenic River corridor areas. Dataset compiled by Conservation Science Partners, Inc. for American Rivers as of 2/14/2024 (per. Communication Lise Comte , Conservation Science Partners, Inc. 2/14/2024)5. The Nature Conservancy. 2024. TNC Lands. Downloaded 3/1/2024.6. The Nature Conservancy Center for Resilient Conservation Science. 2021. Military Lands of the Southeast United States. Extracted from Secured areas spatial database (CONUS) 2021. https://tnc.maps.arcgis.com/home/item.html?id=e033e6bf6069459592903a04797b8b07.7. The Nature Conservancy Center for Resilient Conservation Science. 2022. Northeast States Secured Areas. https://tnc.maps.arcgis.com/home/item.html?id=fb80d71d5aa74a91a25e55b6f1810574

  10. Conserved Areas Explorer

    • catalog.data.gov
    • data.cnra.ca.gov
    • +5more
    Updated Aug 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Natural Resources Agency (2023). Conserved Areas Explorer [Dataset]. https://catalog.data.gov/dataset/conserved-areas-explorer-5e121
    Explore at:
    Dataset updated
    Aug 28, 2023
    Dataset provided by
    California Natural Resources Agencyhttps://resources.ca.gov/
    Description

    California Nature Conserved Areas Explorer The Conserved Areas Explorer is a web application enabling users to investigate a synthesis of the best available data representing lands and coastal waters of California that are durably protected and managed to support functional ecosystems, both intact and restored, and the species that rely on them. Understanding the spatial distribution and extent of these durably protected and managed areas is a vital aspect of tracking and achieving the “30x30” goal of conserving 30% of California's lands and waters by 2030.Terrestrial and Freshwater Data• The California Protected Areas Database (CPAD), developed and managed by GreenInfo Network, is the most comprehensive collection of data on open space in California. CPAD data consists of Holdings, a single parcel or group of parcels, such that the spatial features of CPAD correspond to ownership boundaries. • The California Conservation Easement Database (CCED), also managed by GreenInfo Network, aggregates data on lands with easements. Conservation Easements are legally recorded interests in land in which a landholder sells or relinquishes certain development rights to their land in perpetuity. Easements are often used to ensure that lands remain as open space, either as working farm or ranch lands, or areas for biodiversity protection. Easement restrictions typically remain with the land through changes in ownership. • The Protected Areas Database of the United States (PAD-US), hosted by the United States Geological Survey (USGS), is developed in coordination with multiple federal, state, and non-governmental organization (NGO) partners. PAD-US, through the Gap Analysis Project (GAP), uses a numerical coding system in which GAP codes 1 and 2 correspond to management strategies with explicit emphasis on protection and enhancement of biodiversity. PAD-US is not specifically aligned to parcel boundaries and as such, boundaries represented within it may not align with other data sources. • Numerous datasets representing designated boundaries for entities such as National Parks , and Monuments, Wild and Scenic Rivers, Wilderness Areas, and others, were downloaded from publicly available sources, typically hosted by the managing agency.Methodology1. CPAD and CCED represent the most accurate location and ownership information for parcels in California which contribute to the preservation of open space and cultural and biological resources.2. Superunits are collections of parcels (Holdings) within CPAD which share a name, manager, and access policy. Most Superunits are also managed with a generally consistent strategy for biodiversity conservation. Examples of Superunits include Yosemite National Park, Giant Sequoia National Monument, and Anza-Borrego Desert State Park. 3. Some Superunits, such as those owned and managed by the Bureau of Land Management, U.S. Forest Service, or National Park Service , are intersected by one or more designations, each of which may have a distinct management emphasis with regards to biodiversity. Examples of such designations are Wilderness Areas, Wild and Scenic Rivers, or National Monuments.4. CPAD Superunits were intersected with all designation boundary files to create the operative spatial units for conservation analysis, henceforth 'Conservation Units,' which make up the Conserved Areas Map Layer. Each easement was functionally considered to be a Superunit. 5. Each Conservation Unit was intersected with the PAD-US dataset in order to determine the management emphasis with respect to biodiversity, i.e., the GAP code. Because PAD-US is national in scope and not specifically parcel aligned with California assessors' surveys, a direct spatial extraction of GAP codes from PAD-US would leave tens of thousands of GAP code data slivers within the Conserved Areas Map. Consequently, a generalizing approach was adopted, such that any Conservation Unit with greater than 80% areal overlap with a single GAP code was uniformly assigned that code. Additionally, the total area of GAP codes 1 and 2 were summed for the remaining uncoded Conservation Units. If this sum was greater than 80% of the unit area, the Conservation Unit was coded as GAP 2. 6. Subsequent to this stage of analysis, certain Conservation Units remained uncoded, either due to the lack of a single GAP code (or combined GAP codes 1&2) overlapping 80% of the area, or because the area was not sufficiently represented in the PAD-US dataset. 7. These uncoded Conservation Units were then broken down into their constituent, finer resolution Holdings, which were then analyzed according to the above workflow. 8. Areas remaining uncoded following the two-step process of coding at the Superunit and Holding levels were assigned a GAP code of 4. This is consistent with the definition of GAP Code 4: areas unknown to have a biodiversity management focus. 9. Greater than 90% of all areas in the Conserved Areas Explorer were GAP coded at the level of Superunits intersected by designation boundaries, the coarsest unit of analysis. By adopting this coarser analytical unit, the Conserved Areas Explorer maintains a greater level of user responsiveness, avoiding the need to maintain and display hundreds of thousands of additional parcel records, which in most cases would only reflect the management scenario and GAP status of the umbrella Superunit and other spatially coincident designations.Marine Data • The Conserved Areas Explorer displays the network of 124 Marine Protected Areas (MPAs) along coastal waters and the shoreline of California. There are several categories of MPAs, some permitting varying levels of commercial and recreational fishing and waterfowl hunting, while roughly half of all MPAs do not permit any harvest. These data include all of California's marine protected areas (MPAs) as defined January 1, 2019. This dataset reflects the Department of Fish and Wildlife's best representation of marine protected areas based upon current California Code of Regulations, Title 14, Section 632: Natural Resources, Division 1: FGC- DFG. This dataset is not intended for navigational use or defining legal boundaries.Tracking Conserved AreasThe total acreage of conserved areas will increase as California works towards its 30x30 goal. Some changes will be due to shifts in legal protection designations or management status of specific lands and waters. However, shifts may also result from new data representing improvements in our understanding of existing biodiversity conservation efforts. The California Nature Conserved Areas Explorer is expected to generate a great deal of excitement regarding the state's trajectory towards achieving the 30x30 goal. We also expect it to spark discussion about how to shape that trajectory, and how to strategize and optimize outcomes. We encourage landowners, managers, and stakeholders to zoom into the locations they understand best and share their expertise with us to improve the data representing the status of conservation efforts at these sites. The Conserved Areas Explorer presents a tremendous opportunity to strengthen our existing data infrastructure and the channels of communication between land stewards and data curators, encouraging the transfer of knowledge and improving the quality of data. CPAD, CCED, and PAD-US are built from the ground up. These terrestrial data sources are derived from available parcel information and submissions from those who own and manage the land. So better data starts with you. Do boundary lines require updating? Is the GAP code inconsistent with a Holding’s conservation status? If land under your care can be better represented in the Conserved Areas Explorer, please use this link to initiate a review. The results of these reviews will inform updates to the California Protected Areas Database, California Conservation Easement Database, and PAD-US as appropriate for incorporation into future updates to CA Nature and tracking progress to 30x30.

  11. s

    Fees and Easements, Hawaii, Protected Areas Database of the United States,...

    • searchworks.stanford.edu
    zip
    Updated Jul 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Fees and Easements, Hawaii, Protected Areas Database of the United States, 2005-2016 [Dataset]. https://searchworks.stanford.edu/view/dd866hm2457
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 25, 2019
    Area covered
    Hawaii, United States
    Description

    The mission of the USGS Gap Analysis Program (GAP) is providing state, regional and national assessments of the conservation status of native vertebrate species and natural land cover types and facilitating the application of this information to land management activities. The PAD-US geodatabase is required to organize and assess the management status (i.e. apply GAP Status Codes) of elements of biodiversity protection. The goal of GAP is to 'keep common species common' by identifying species and plant communities not adequately represented in existing conservation lands. Common species are those not currently threatened with extinction. By identifying their habitats, gap analysis gives land managers and policy makers the information they need to make better-informed decisions when identifying priority areas for conservation. In cooperation with UNEP-World Conservation Monitoring Centre, GAP ensures PAD-US also supports global analyses to inform policy decisions by maintaining World Database for Protected Areas (WDPA) Site Codes and data for International Union for the Conservation of Nature (IUCN) categorized protected areas in the United States. GAP seeks to increase the efficiency and accuracy of PAD-US updates by leveraging resources in protected areas data aggregation and maintenance as described in "A Map of the Future", published following the PAD-US Design Project (July, 2009). While PAD-US was originally developed to support the GAP Mission stated above, the dataset is robust and has been expanded to support the conservation, recreation and public health communities as well. Additional applications become apparent over time.

  12. USA Federal Lands

    • hub.arcgis.com
    Updated Feb 5, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). USA Federal Lands [Dataset]. https://hub.arcgis.com/maps/esri::usa-federal-lands
    Explore at:
    Dataset updated
    Feb 5, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    In the United States, the federal government manages approximately 28% of the land in the United States. Most federal lands are west of the Mississippi River, where almost half of the land by area is managed by the federal government. Federal lands include 193 million acres managed by the US Forest Service in 154 National Forests and 20 National Grasslands, Bureau of Land Management lands that cover 247 million acres in Alaska and the Western United States, 150 million acres managed for wildlife conservation by the US Fish and Wildlife Service, 84 million acres of National Parks and other lands managed by the National Park Service, and over 30 million acres managed by the Department of Defense. The Bureau of Reclamation manages a much smaller land base than the other agencies included in this layer but plays a critical role in managing the country's water resources. The agencies included in this layer are:Bureau of Land ManagementDepartment of DefenseNational Park ServiceUS Fish and Wildlife ServiceUS Forest ServiceDataset SummaryPhenomenon Mapped: United States federal lands managed by six federal agenciesGeographic Extent: 50 United States and the District of Columbia, Puerto Rico, US Virgin Islands, Guam, American Samoa, and Northern Mariana Islands. The layer also includes National Monuments and Wildlife Refuges in the Pacific Ocean, Atlantic Ocean, and the Caribbean Sea.Data Coordinate System: WGS 1984Visible Scale: The data is visible at all scales but draws best at scales greater than 1:2,000,000Source: BLM, DOD, USFS, USFWS, NPS, PADUS 3.0Publication Date: Various - Esri compiled and published this layer in May 2025. See individual agency views for data vintage.There are six layer views available that were created from this service. Each layer uses a filter to extract an individual agency from the service. For more information about the layer views or how to use them in your own project, follow these links:USA Bureau of Land Management LandsUSA Department of Defense LandsUSA National Park Service LandsUSA Fish and Wildlife Service LandsUSA Forest Service LandsWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "federal lands" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "federal lands" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shapefile or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  13. d

    30x30 Conserved Areas, Terrestrial (2022)

    • catalog.data.gov
    • data.ca.gov
    • +5more
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Natural Resources Agency (2024). 30x30 Conserved Areas, Terrestrial (2022) [Dataset]. https://catalog.data.gov/dataset/30x30-conserved-areas-terrestrial-2022-ac213
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset provided by
    California Natural Resources Agency
    Description

    The Terrestrial 30x30 Conserved Areas map layer was developed by the CA Nature working group, providing a statewide perspective on areas managed for the protection or enhancement of biodiversity. Understanding the spatial distribution and extent of these durably protected and managed areas is a vital aspect of tracking and achieving the “30x30” goal of conserving 30% of California's lands and waters by 2030.Terrestrial and Freshwater Data• The California Protected Areas Database (CPAD), developed and managed by GreenInfo Network, is the most comprehensive collection of data on open space in California. CPAD data consists of Holdings, a single parcel or small group of parcels, such that the spatial features of CPAD correspond to ownership boundaries. • The California Conservation Easement Database (CCED), managed by GreenInfo Network, aggregates data on lands with easements. Conservation Easements are legally recorded interests in land in which a landholder sells or relinquishes certain development rights to their land in perpetuity. Easements are often used to ensure that lands remain as open space, either as working farm or ranch lands, or areas for biodiversity protection. Easement restrictions typically remain with the land through changes in ownership. • The Protected Areas Database of the United States (PAD-US), hosted by the United States Geological Survey (USGS), is developed in coordination with multiple federal, state, and non-governmental organization (NGO) partners. PAD-US, through the Gap Analysis Project (GAP), uses a numerical coding system in which GAP codes 1 and 2 correspond to management strategies with explicit emphasis on protection and enhancement of biodiversity. PAD-US is not specifically aligned to parcel boundaries and as such, boundaries represented within it may not align with other data sources. • Numerous datasets representing designated boundaries for entities such as National Parks and Monuments, Wild and Scenic Rivers, Wilderness Areas, and others, were downloaded from publicly available sources, typically hosted by the managing agency.Methodology1. CPAD and CCED represent the most accurate location and ownership information for parcels in California which contribute to the preservation of open space and cultural and biological resources.2. Superunits are collections of parcels (Holdings) within CPAD which share a name, manager, and access policy. Most Superunits are also managed with a generally consistent strategy for biodiversity conservation. Examples of Superunits include Yosemite National Park, Giant Sequoia National Monument, and Anza-Borrego Desert State Park. 3. Some Superunits, such as those owned and managed by the Bureau of Land Management, U.S. Forest Service, or National Park Service , are intersected by one or more designations, each of which may have a distinct management emphasis with regards to biodiversity. Examples of such designations are Wilderness Areas, Wild and Scenic Rivers, or National Monuments.4. CPAD Superunits and CCED easements were intersected with all designation boundary files to create the operative spatial units for conservation analysis, henceforth 'Conservation Units,' which make up the Terrestrial 30x30 Conserved Areas map layer. Each easement was functionally considered to be a Superunit. 5. Each Conservation Unit was intersected with the PAD-US dataset in order to determine the management emphasis with respect to biodiversity, i.e., the GAP code. Because PAD-US is national in scope and not specifically parcel aligned with California assessors' surveys, a direct spatial extraction of GAP codes from PAD-US would leave tens of thousands of GAP code data slivers within the 30x30 Conserved Areas map. Consequently, a generalizing approach was adopted, such that any Conservation Unit with greater than 80% areal overlap with a single GAP code was uniformly assigned that code. Additionally, the total area of GAP codes 1 and 2 were summed for the remaining uncoded Conservation Units. If this sum was greater than 80% of the unit area, the Conservation Unit was coded as GAP 2. 6. Subsequent to this stage of analysis, certain Conservation Units remained uncoded, either due to the lack of a single GAP code (or combined GAP codes 1&2) overlapping 80% of the area, or because the area was not sufficiently represented in the PAD-US dataset. 7. These uncoded Conservation Units were then broken down into their constituent, finer resolution Holdings, which were then analyzed according to the above workflow. 8. Areas remaining uncoded following the two-step process of coding at the Superunit and then Holding levels were assigned a GAP code of 4. This is consistent with the definition of GAP Code 4: areas unknown to have a biodiversity management focus. 9. Greater than 90% of all areas in the Terrestrial 30x30 Conserved Areas map layer were GAP coded at the level of CPAD Superunits intersected by designation boundaries, the coarsest land units of analysis. By adopting these coarser analytical units, the Terrestrial 30X30 Conserved Areas map layer avoids hundreds of thousands of spatial slivers that result from intersecting designations with smaller, more numerous parcel records. In most cases, individual parcels reflect the management scenario and GAP status of the umbrella Superunit and other spatially coincident designations.Tracking Conserved AreasThe total acreage of conserved areas will increase as California works towards its 30x30 goal. Some changes will be due to shifts in legal protection designations or management status of specific lands and waters. However, shifts may also result from new data representing improvements in our understanding of existing biodiversity conservation efforts. The California Nature Project is expected to generate a great deal of excitement regarding the state's trajectory towards achieving the 30x30 goal. We also expect it to spark discussion about how to shape that trajectory, and how to strategize and optimize outcomes. We encourage landowners, managers, and stakeholders to investigate how their lands are represented in the Terrestrial 30X30 Conserved Areas Map Layer. This can be accomplished by using the Conserved Areas Explorer web application, developed by the CA Nature working group. Users can zoom into the locations they understand best and share their expertise with us to improve the data representing the status of conservation efforts at these sites. The Conserved Areas Explorer presents a tremendous opportunity to strengthen our existing data infrastructure and the channels of communication between land stewards and data curators, encouraging the transfer of knowledge and improving the quality of data. CPAD, CCED, and PAD-US are built from the ground up. Data is derived from available parcel information and submissions from those who own and manage the land. So better data starts with you. Do boundary lines require updating? Is the GAP code inconsistent with a Holding’s conservation status? If land under your care can be better represented in the Terrestrial 30X30 Conserved Areas map layer, please use this link to initiate a review. The results of these reviews will inform updates to the California Protected Areas Database, California Conservation Easement Database, and PAD-US as appropriate for incorporation into future updates to CA Nature and tracking progress to 30x30.

  14. d

    Protected Areas Database of the United States (PAD-US)

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Protected Areas Database of the United States (PAD-US) [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States
    Description

    This is series-level metadata for the USGS Protected Areas Database of the United States (PAD-US) data released by the United States Geological Survey (USGS). PAD-US is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas. Starting with version 1.4 PAD-US was identified as an A-16 National Geospatial Data Asset in the Cadastre Theme ( https://ngda-cadastre-geoplatform.hub.arcgis.com/ ). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all open space public and nonprofit lands and waters. Most are public lands owned in fee (the owner of the property has full and irrevocable ownership of the land); however, permanent and long-term easements, leases, agreements, Congressional (e.g. 'Wilderness Area'), Executive (e.g. 'National Monument'), and administrative designations (e.g. 'Area of Critical Environmental Concern') documented in agency management plans are also included. The PAD-US strives to be a complete inventory of U.S. public land and other protected areas, compiling "best available" data provided by managing agencies and organizations. The PAD-US geodatabase maps and describes areas using thirty-six attributes and five separate feature classes representing the U.S. protected areas network: Fee (ownership parcels), Designation, Easement, Marine, Proclamation and Other Planning Boundaries. An additional Combined feature class includes the full PAD-US inventory to support data management, queries, web mapping services, and analyses. The Feature Class (FeatClass) field in the Combined layer allows users to extract data types as needed. A Federal Data Reference file geodatabase lookup table facilitates the extraction of authoritative federal data provided or recommended by managing agencies from the Combined PAD-US inventory. For more information regarding the PAD-US dataset please visit, https://www.usgs.gov/programs/gap-analysis-project/science/protected-areas/. For more information about data aggregation please review the PAD-US Data Manual available at https://www.usgs.gov/programs/gap-analysis-project/pad-us-data-manual . A version history of PAD-US updates is summarized below (See https://www.usgs.gov/programs/gap-analysis-project/pad-us-data-history for more information): - Current Version - January 2022 (Version 3.0) https://doi.org/10.5066/P9Q9LQ4B - Revised - September 2020 (Version 2.1) https://doi.org/10.5066/P92QM3NT - Revised - September 2018 (Version 2.0) https://doi.org/10.5066/P955KPLE - Revised - May 2016 (Version 1.4) https://doi.org/10.5066/F7G73BSZ - Revised - November 2012 (Version 1.3) https://doi.org/10.5066/F79Z92XD - Revised - April 2011 (Version 1.2 - available from the PAD-US: Team pad-us@usgs.gov) - Revised - May 2010 (Version 1.1 - available from the PAD-US: Team pad-us@usgs.gov) - First posted - April 2009 (Version 1.0 - available from the PAD-US: Team pad-us@usgs.gov) Comparing protected area trends between PAD-US versions is not recommended without consultation with USGS as many changes reflect improvements to agency and organization GIS systems, or conservation and recreation measure classification, rather than actual changes in protected area acquisition on the ground.

  15. C

    Redlining Maps from the Home Owners Loan Corporation, 1937

    • data.wprdc.org
    • gimi9.com
    geojson, html, jpeg +1
    Updated May 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Western Pennsylvania Regional Data Center (2023). Redlining Maps from the Home Owners Loan Corporation, 1937 [Dataset]. https://data.wprdc.org/dataset/redlining-maps-from-the-home-owners-loan-corporation
    Explore at:
    geojson(46444), geojson(39108), zip(12025), zip(12934532), zip(7807), jpeg(5141992), zip(38339897), zip(45384487), jpeg(6317290), zip(10561768), zip(75315), geojson(269553), jpeg(10667368), jpeg(13882165), zip(7509), zip(10818554), jpeg(46615911), zip(7566), geojson(54280), zip(31784339), html, geojson(60598), zip(24301995), zip(154680053), zip(17077497)Available download formats
    Dataset updated
    May 21, 2023
    Dataset provided by
    Western Pennsylvania Regional Data Center
    License

    http://www.opendefinition.org/licenses/cc-by-sahttp://www.opendefinition.org/licenses/cc-by-sa

    Description

    Most of the text in this description originally appeared on the Mapping Inequality Website. Robert K. Nelson, LaDale Winling, Richard Marciano, Nathan Connolly, et al., “Mapping Inequality,” American Panorama, ed. Robert K. Nelson and Edward L. Ayers,

    "HOLC staff members, using data and evaluations organized by local real estate professionals--lenders, developers, and real estate appraisers--in each city, assigned grades to residential neighborhoods that reflected their "mortgage security" that would then be visualized on color-coded maps. Neighborhoods receiving the highest grade of "A"--colored green on the maps--were deemed minimal risks for banks and other mortgage lenders when they were determining who should received loans and which areas in the city were safe investments. Those receiving the lowest grade of "D," colored red, were considered "hazardous."

    Conservative, responsible lenders, in HOLC judgment, would "refuse to make loans in these areas [or] only on a conservative basis." HOLC created area descriptions to help to organize the data they used to assign the grades. Among that information was the neighborhood's quality of housing, the recent history of sale and rent values, and, crucially, the racial and ethnic identity and class of residents that served as the basis of the neighborhood's grade. These maps and their accompanying documentation helped set the rules for nearly a century of real estate practice. "

    HOLC agents grading cities through this program largely "adopted a consistently white, elite standpoint or perspective. HOLC assumed and insisted that the residency of African Americans and immigrants, as well as working-class whites, compromised the values of homes and the security of mortgages. In this they followed the guidelines set forth by Frederick Babcock, the central figure in early twentieth-century real estate appraisal standards, in his Underwriting Manual: "The infiltration of inharmonious racial groups ... tend to lower the levels of land values and to lessen the desirability of residential areas."

    These grades were a tool for redlining: making it difficult or impossible for people in certain areas to access mortgage financing and thus become homeowners. Redlining directed both public and private capital to native-born white families and away from African American and immigrant families. As homeownership was arguably the most significant means of intergenerational wealth building in the United States in the twentieth century, these redlining practices from eight decades ago had long-term effects in creating wealth inequalities that we still see today. Mapping Inequality, we hope, will allow and encourage you to grapple with this history of government policies contributing to inequality."

    Data was copied from the Mapping Inequality Website for communities in Western Pennsylvania where data was available. These communities include Altoona, Erie, Johnstown, Pittsburgh, and New Castle. Data included original and georectified images, scans of the neighborhood descriptions, and digital map layers. Data here was downloaded on June 9, 2020.

  16. Measurement of Air Pollution from Satellites (MAPS) Space Radar Laboratory -...

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Mar 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Measurement of Air Pollution from Satellites (MAPS) Space Radar Laboratory - 1 (SRL1) Carbon Monoxide Second by Second data - Dataset - NASA Open Data Portal [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/measurement-of-air-pollution-from-satellites-maps-space-radar-laboratory-1-srl1-carbon-mon-04f12
    Explore at:
    Dataset updated
    Mar 20, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    MAPS Overview The MAPS experiment measures the global distribution of carbon monoxide (CO) mixing ratios in the free troposphere. Because of MAPS' previous flights on board the Space Shuttle, Earth system scientists now know that carbon monoxide concentrations in the troposphere are highly variable around the planet, and that widespread burning in the South American Amazon Basin and southern cerrados, the African savannahs, and the Australian grasslands and ranches are major sources of carbon monoxide in the southern hemisphere and tropical troposphere.The 1994 flights of the MAPS experiment provided CO measurements that show seasonal changes in CO emissions, sources, transports, and chemistry.InstrumentThe MAPS instrument is based on a technique called gas filter radiometry. Thermal energy from the Earth passes through the atmosphere and enters the viewport of the downlooking MAPS instrument. Carbon monoxide and nitrous oxide (N2O) in the atmosphere produce unique absorption lines in the transmitted energy. The energy which enters the MAPS instrument is split into three beams. One beam passes through a cell containing CO and falls onto a detector. This CO gas cell acts as a filter for the effects of CO present in the middle troposphere. A second beam falls directly onto a detector without passing through any gas filter. The difference in the voltage of the signals from these two detectors can be used to determine the amount of CO present in the atmosphere at an altitude of 7-8 km. During the dedicated Earth-Observing Space Shuttle mission in 1994, MAPS measured the distribution of carbon monoxide in the middle troposphere to evaluate CO sources and chemistry, and to evaluate the seasonal and interannual variation of this key atmospheric trace gas. Interpretation of these measurements will help us to better understand the atmosphere and the consequences that human activities initiate in global climate change. A third beam of the incident energy passes through a cell containing N2O and falls onto a detector. This N2O gas cell acts as a filter for the effects of N2O present in the atmosphere. The global distribution of N2O is well known, so the N2O signal can be used to detect the presence of clouds in the field of view and to correct the simultaneous CO measurement for systematic errors in the data.SRL-1 Mission GoalsThe MAPS SRL-1 mission took place during Northern Hemisphere Spring when global biomass burning does not typically occur. Some burning may occur for the purpose of clearing the damaged and felled trees in the forests of North America after the rather severe winter. The goals of the MAPS SRL-1 mission are to provide a validated, near-global atlas of the distribution of tropospheric Carbon Monoxide during the mission, and to assess the health status of the MAPS instrument as the mission progresses.SL1 Summary High concentrations of carbon monoxide over the Northern Hemisphere can be seen in measurements made by the Measurement of Air Pollution from Space (MAPS) instrument. These April 1994 measurements, made from the Space Shuttle Endeavour (STS-59), show large sources of air pollution in the lower atmosphere (2 to 10 miles above the surface) over the industrialized Northern Hemisphere.The data that are available from MAPS SRL1 include a 5 by 5 degree gridded box (MAPS_SRL1_5X5_HDF) and a second by second data product (MAPS_SRL1_COSEC_HDF). These data sets are available from the Langley DAAC.

  17. s

    Fees and Easements, New Hampshire, Protected Areas Database of the United...

    • searchworks.stanford.edu
    zip
    Updated Oct 31, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Fees and Easements, New Hampshire, Protected Areas Database of the United States, 2005-2016 [Dataset]. https://searchworks.stanford.edu/view/zv331nn6823
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 31, 2021
    Area covered
    United States
    Description

    The mission of the USGS Gap Analysis Program (GAP) is providing state, regional and national assessments of the conservation status of native vertebrate species and natural land cover types and facilitating the application of this information to land management activities. The PAD-US geodatabase is required to organize and assess the management status (i.e. apply GAP Status Codes) of elements of biodiversity protection. The goal of GAP is to 'keep common species common' by identifying species and plant communities not adequately represented in existing conservation lands. Common species are those not currently threatened with extinction. By identifying their habitats, gap analysis gives land managers and policy makers the information they need to make better-informed decisions when identifying priority areas for conservation. In cooperation with UNEP-World Conservation Monitoring Centre, GAP ensures PAD-US also supports global analyses to inform policy decisions by maintaining World Database for Protected Areas (WDPA) Site Codes and data for International Union for the Conservation of Nature (IUCN) categorized protected areas in the United States. GAP seeks to increase the efficiency and accuracy of PAD-US updates by leveraging resources in protected areas data aggregation and maintenance as described in "A Map of the Future", published following the PAD-US Design Project (July, 2009). While PAD-US was originally developed to support the GAP Mission stated above, the dataset is robust and has been expanded to support the conservation, recreation and public health communities as well. Additional applications become apparent over time.

  18. N

    Housing Database

    • data.cityofnewyork.us
    • catalog.data.gov
    application/rdfxml +5
    Updated Mar 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of City Planning (DCP) (2021). Housing Database [Dataset]. https://data.cityofnewyork.us/Housing-Development/Housing-Database/6umk-irkx
    Explore at:
    application/rssxml, application/rdfxml, tsv, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 19, 2021
    Dataset authored and provided by
    Department of City Planning (DCP)
    Description
    The NYC Department of City Planning’s (DCP) Housing Database contains all NYC Department of Buildings (DOB) approved housing construction and demolition jobs filed or completed in NYC since January 1, 2010. It includes the three primary construction job types that add or remove residential units: new buildings, major alterations, and demolitions, and can be used to determine the change in legal housing units across time and space. Records in the Housing Database Project-Level Files are geocoded to the greatest level of precision possible, subject to numerous quality assurance and control checks, recoded for usability, and joined to other housing data sources relevant to city planners and analysts.

    Data are updated semiannually, at the end of the second and fourth quarters of each year.

    Please see DCP’s annual Housing Production Snapshot summarizing findings from the 21Q4 data release here. Additional Housing and Economic analyses are also available.

    The NYC Department of City Planning’s (DCP) Housing Database Unit Change Summary Files provide the net change in Class A housing units since 2010, and the count of units pending completion for commonly used political and statistical boundaries (Census Block, Census Tract, City Council district, Community District, Community District Tabulation Area (CDTA), Neighborhood Tabulation Area (NTA). These tables are aggregated from the DCP Housing Database Project-Level Files, which is derived from Department of Buildings (DOB) approved housing construction and demolition jobs filed or completed in NYC since January 1, 2010. Net housing unit change is calculated as the sum of all three construction job types that add or remove residential units: new buildings, major alterations, and demolitions. These files can be used to determine the change in legal housing units across time and space.

  19. c

    Where are there people living in poverty?

    • hub.scag.ca.gov
    • hub.arcgis.com
    Updated Feb 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). Where are there people living in poverty? [Dataset]. https://hub.scag.ca.gov/maps/703ab1a8a38849eb9af15d1f012ab3c8
    Explore at:
    Dataset updated
    Feb 1, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    This map compares the number of people living above the poverty line to the number of people living below. Why do this?There are people living below the poverty line everywhere. Nearly every area of the country has a balance of people living above the poverty line and people living below it. There is not an "ideal" balance, so this map makes good use of the national ratio of 6 persons living above the poverty line for every 1 person living below it. Please consider that there is constant movement of people above and below the poverty threshold, as they gain better employment or lose a job; as they encounter a new family situation, natural disaster, health issue, major accident or other crisis. There are areas that suffer chronic poverty year after year. This map does not indicate how long people in the area have been below the poverty line. "The poverty rate is one of several socioeconomic indicators used by policy makers to evaluate economic conditions. It measures the percentage of people whose income fell below the poverty threshold. Federal and state governments use such estimates to allocate funds to local communities. Local communities use these estimates to identify the number of individuals or families eligible for various programs." Source: U.S. Census BureauIn the U.S. overall, there are 6 people living above the poverty line for every 1 household living below. Green areas on the map have a higher than normal number of people living above compared to below poverty. Orange areas on the map have a higher than normal number of people living below the poverty line compared to those above in that same area.The map shows the ratio for counties and census tracts, using these layers, created directly from the U.S. Census Bureau's American Community Survey (ACS)For comparison, an older layer using 2013 ACS data is also provided.The layers are updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. Current Vintage: 2014-2018ACS Table(s): B17020Data downloaded from: Census Bureau's API for American Community Survey National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.

  20. a

    PAD RG

    • geospatialcentroid-csurams.hub.arcgis.com
    Updated May 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colorado State University (2020). PAD RG [Dataset]. https://geospatialcentroid-csurams.hub.arcgis.com/datasets/pad-rg-1
    Explore at:
    Dataset updated
    May 22, 2020
    Dataset authored and provided by
    Colorado State University
    Area covered
    Description

    United States Protected Areas within the Rio Grande River Basin. The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Agricultural Research Service (2025). Data from: Thinking Like a Grassland: Challenges and Opportunities for Biodiversity Conservation in the Great Plains of North America [Dataset]. https://catalog.data.gov/dataset/data-from-thinking-like-a-grassland-challenges-and-opportunities-for-biodiversity-conserva-27be5

Data from: Thinking Like a Grassland: Challenges and Opportunities for Biodiversity Conservation in the Great Plains of North America

Explore at:
Dataset updated
Jun 5, 2025
Dataset provided by
Agricultural Research Service
Area covered
North America
Description

Conservation planning in the Great Plains often depends on understanding the degree of fragmentation of the various types of grasslands and savannas that historically occurred in this region. To define ecological subregions of the Great Plains, we used a revised version of Kuchler’s (1964) map of the potential natural vegetation of the United States. The map was digitized from the 1979 physiographic regions map produced by the Bureau of Land Management, which added 10 physiognomic types. All analyses are based on data sources specific to the United States; hence, we only analyze the portion of the Great Plains occurring in the United States.We sought to quantify the current amount of rangeland in the US Great Plains converted due to 1) woody plant encroachment; 2) urban, exurban, and other forms of development (e.g., energy infrastructure); and 3) cultivation of cropland. At the time of this analysis, the most contemporary measure of land cover across the United States was the 2011 NLCD (Homer et al. 2015). One limitation of the NLCD is that some grasslands with high rates of productivity, such as herbaceous wetlands or grasslands along riparian zones, are misclassified as cropland. A second limitation is the inability to capture cropland conversion occurring after 2011 (Lark et al. 2015). Beginning in 2009 (and retroactively for 2008), the US Department of Agriculture - NASS has annually produced a Cropland Data Layer (CDL) for the United States from satellite imagery, which maps individual crop types at a 30-m spatial resolution. We used the annual CDLs from 2011 to 2017 to map the distribution of cropland in the Great Plains. We merged this map with the 2011 NLCD to evaluate the degree of fragmentation of grasslands and savannas in the Great Plains as a result of conversion to urban land, cropland, or woodland. We produced two maps of fragmentation (best case and worst case scenarios) that quantify this fragmentation at a 30 x 30 m pixel resolution across the US Great Plains, and make them available for download here. Resources in this dataset: Resource title: Data Dictionary for Figure 2 derived land cover of the US portion of the North American Great Plains File name: Figure2_Key for landcover classes.csv Resource title: Figure 1. Potential natural vegetation of US portion of the North American Great Plains, adapted from Kuchler (1964). File name: Figure1_Kuchler_GPRangelands.zip Resource description: Extracted grassland, shrubland, savanna, and forest communities in the US Great Plains from the revised Kuchler natural vegetation map Resource title: Figure 2. Derived land cover of the US portion of the North American Great Plains. File name: Figure2_Key for landcover classes.zip Resource description: The fNLCD-CDL product estimates that 43.7% of the Great Plains still consists of grasslands and shrublands, with the remainder consisting of 40.6% cropland, 4.4% forests, 3.0% UGC, 3.0% developed open space, 2.9% improved pasture or hay fields, 1.2% developed land, 1.0% water, and 0.2% barren land, with important regional and subregional variation in the extent of rangeland loss to cropland, forests, and developed land. Resource title: Figure 3. Variation in the degree of fragmentation of Great Plains measured in terms of distance to cropland, forest, or developed lands. File name: Figure3_bestcase_disttofrag.zip Resource description: This map depicts a “best case” scenario in which 1) croplands are mapped based only on the US Department of AgricultureNational Agricultural Statistics Service Cropland Data Layers (2011e2017), 2) all grass-dominated cover types including hay fields and improved pasture are considered rangelands, and 3) developed open space (as defined by the National Land Cover Database) are assumed to not be a fragmenting land cover type. Resource title: Figure 4. Variation in the degree of fragmentation of Great Plains measured in terms of distances to cropland, forest, or developed lands. File name: Figure4_worstcase_disttofrag.zip Resource description: This map depicts a ‘worst case’ scenario in which 1) croplands are mapped based on the US Department of AgricultureNational Agricultural Statistics Service Cropland Data Layers (2011e2017) and the 2011 National Land Cover Database (NLCD), 2) hay fields and improved pasture are not included as rangelands, and 3) developed open space (as defined by NLCD) is included as a fragmenting land cover type.

Search
Clear search
Close search
Google apps
Main menu