60 datasets found
  1. YouTube users worldwide 2020-2029

    • statista.com
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). YouTube users worldwide 2020-2029 [Dataset]. https://www.statista.com/forecasts/1144088/youtube-users-in-the-world
    Explore at:
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The global number of Youtube users in was forecast to continuously increase between 2024 and 2029 by in total 232.5 million users (+24.91 percent). After the ninth consecutive increasing year, the Youtube user base is estimated to reach 1.2 billion users and therefore a new peak in 2029. Notably, the number of Youtube users of was continuously increasing over the past years.User figures, shown here regarding the platform youtube, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Youtube users in countries like Africa and South America.

  2. Countries with the most YouTube users 2025

    • statista.com
    • ai-chatbox.pro
    Updated Feb 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the most YouTube users 2025 [Dataset]. https://www.statista.com/statistics/280685/number-of-monthly-unique-youtube-users/
    Explore at:
    Dataset updated
    Feb 17, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    YouTube, Worldwide
    Description

    As of February 2025, India was the country with the largest YouTube audience by far, with approximately 491 million users engaging with the popular social video platform. The United States followed, with around 253 million YouTube viewers. Brazil came in third, with 144 million users watching content on YouTube. The United Kingdom saw around 54.8 million internet users engaging with the platform in the examined period. What country has the highest percentage of YouTube users? In July 2024, the United Arab Emirates was the country with the highest YouTube penetration worldwide, as around 94 percent of the country's digital population engaged with the service. In 2024, YouTube counted around 100 million paid subscribers for its YouTube Music and YouTube Premium services. YouTube mobile markets In 2024, YouTube was among the most popular social media platforms worldwide. In terms of revenues, the YouTube app generated approximately 28 million U.S. dollars in revenues in the United States in January 2024, as well as 19 million U.S. dollars in Japan.

  3. YouTube: distribution of global audiences 2025, by age and gender

    • statista.com
    • ai-chatbox.pro
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). YouTube: distribution of global audiences 2025, by age and gender [Dataset]. https://www.statista.com/statistics/1287137/youtube-global-users-age-gender-distribution/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    Worldwide, YouTube
    Description

    As of February 2025, ** percent of the YouTube global audience was composed of male users aged between 25 and 34 years, as well as around *** percent of female users of the same age. Male users aged between 35 and 44 years on the platform accounted for **** percent of the total, while women of the same age using YouTube had an audience share of *** percent in the examined period. YouTube’s global popularity The number of monthly active users on YouTube reached almost *** billion in April 2024, making it the second most popular social network on the internet. The platform's popularity spans all over the world, with India and the United States having the largest YouTube audiences. As of April 2024, the audience of YouTube in India was around *** million, while the United States recorded a YouTube audience of around *** million users.

    YouTube’s digital revenues One of YouTube's leading monetization methods include advertising, with the company generating around **** billion U.S. dollars in the first quarter of 2024. Additionally, the platform generated over ** million dollars in the United States through in-app purchases, as well as over **** million U.S. dollars in revenues from mobile app users in Japan.

  4. Youtube users in the United States 2017-2025

    • statista.com
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Youtube users in the United States 2017-2025 [Dataset]. https://www.statista.com/forecasts/1147203/youtube-users-in-the-united-states
    Explore at:
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2017 - 2019
    Area covered
    United States
    Description

    In 2021, YouTube's user base in the United States amounts to approximately 203.80 million users. The number of YouTube users in the United States is projected to reach 219.28 million users by 2025. User figures have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  5. s

    Data from: Facebook Users

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Facebook Users [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Facebook is fast approaching 3 billion monthly active users. That’s about 36% of the world’s entire population that log in and use Facebook at least once a month.

  6. YouTube users in India 2020-2029

    • statista.com
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). YouTube users in India 2020-2029 [Dataset]. https://www.statista.com/forecasts/1146150/youtube-users-in-india
    Explore at:
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    The number of Youtube users in India was forecast to continuously increase between 2024 and 2029 by in total 222.2 million users (+34.88 percent). After the ninth consecutive increasing year, the Youtube user base is estimated to reach 859.26 million users and therefore a new peak in 2029. Notably, the number of Youtube users of was continuously increasing over the past years.User figures, shown here regarding the platform youtube, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Youtube users in countries like Sri Lanka and Nepal.

  7. g

    Data from: Longitudinal Analysis of Historical Demographic Data

    • search.gesis.org
    • openicpsr.org
    • +1more
    Updated May 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GESIS search (2021). Longitudinal Analysis of Historical Demographic Data [Dataset]. http://doi.org/10.3886/E34554V1
    Explore at:
    Dataset updated
    May 1, 2021
    Dataset provided by
    GESIS search
    ICPSR - Interuniversity Consortium for Political and Social Research
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de452467https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de452467

    Description

    Abstract (en): This study contains teaching materials developed over a period of years for a four-week workshop, Longitudinal Analysis of Historical Demographic Data (LAHDD), offered through the ICPSR Summer Program in 2006, 2007, 2009, 2011 and 2013, with one-day alumni workshops in 2010, 2012, and 2014. Instructors in the workshops are listed below. Funding was provided by The Eunice Kennedy Shriver National Institute of Child Health and Human Development, grants R25-HD040525 and R25-HD-049479, the ICPSR Summer Program and the ICPSR Director. The course was designed to teach students the theories, methods, and practices of historical demography and to give them first-hand experience working with historical data. This training is valuable not only to those interested in the analysis historical data. The techniques of historical demography rest on methodological insights that can be applied to many problems in population studies and other social sciences. While historical demography remains a flourishing research area with publications in key journals like Demography, Population Studies, and Population, practitioners were dispersed, and training was not available at any of the population research centers in the U.S. or elsewhere. One hundred and ten participants from around the globe took part in the workshops, and have gone on to establish courses of their own or teach in other workshops. We offer these materials here in the hopes that others will find them useful in developing courses on historical demography and/or longitudinal data analysis. The workshop was organized in three tracks: A brief tour of historical demography, event-history analysis, and data management for longitudinal data using Stata and Microsoft Access. The data management track includes 13 exercises designed for hands-on learning and reinforcement. Included in this project are the syllabii and reading lists for the three tracks, datasets used in the exercises, documents setting out each exercise, a file with the expected results, and for many of the exercises, an explanation. Video tutorials helpful with the Access exercises are accessible from ICPSR's YouTube channel https://www.youtube.com/playlist?list=PLqC9lrhW1Vvb9M1QpQH23z9UlPYxHbUMF. Users are encouraged to use these materials to develop their own courses and workshops in any of the topics covered. Please acknowledge NICHD R25-HD040525 and R25-HD-049479 whenever appropriate. Historical demography instructors: Myron P. Gutmann, University of Colorado Boulder Cameron Campbell, Hong Kong University of Science and Technology J. David Hacker, University of Minnesota Satomi Kurosu, Reitaku University Katherine A. Lynch, Carnegie Mellon University Event history instructors: Cameron Campbell, Hong Kong University of Science and Technology Glenn Deane, State University of New York at Albany Ken R. Smith, Huntsman Cancer Institute and University of Utah Database management instructors: George Alter, University of Michigan Susan Hautaniemi Leonard, University of Michigan Teaching Assistants: Mathew Creighton, University of Massachusetts Boston Emily Merchant, University of Michigan Luciana Quaranta, Lund University Kristine Witkowski, University of Michigan Project Manager: Susan Hautaniemi Leonard, University of Michigan Funding insitution(s): United States Department of Health and Human Services. National Institutes of Health. Eunice Kennedy Shriver National Institute of Child Health and Human Development (R25 HD040525).

  8. s

    Data from: Twitter Users

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Twitter Users [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The average Twitter user spends 5.1 hours per month on the platform.

  9. League of Legends LEC Spring Season 2024 Stats

    • kaggle.com
    Updated Sep 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    smvjkk (2024). League of Legends LEC Spring Season 2024 Stats [Dataset]. https://www.kaggle.com/datasets/smvjkk/league-of-legends-lec-spring-season-2024-stats
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 22, 2024
    Dataset provided by
    Kaggle
    Authors
    smvjkk
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    I have created this dataset for people interested in League of Legends who want to approach the game from a more analytical side.

    Most of the data was acquired from Games of Legends (https://gol.gg/tournament/tournament-stats/LEC%20Spring%20Season%202024/) and also from official account of the League of Legends EMEA Championship (https://www.youtube.com/c/LEC)

    Dataset Contents:

    • Player: Name of the player.
    • Role: Role of the player (e.g., TOP, JUNGLE, MID, ADC, SUPPORT)
    • Team: Name of the player's team
    • Opponent Team: Name of the opposing team
    • Opponent Player: Name of the opposing player
    • Date: Date of the match
    • Week: Week of the tournament
    • Day: Specific day of the tournament
    • Patch: Version of the game patch during the match
    • Stage: Stage of the tournament
    • No Game: Game number in the series
    • all Games: Total number of games in the series
    • Format: Format of the match (e.g., Best of 1, Best of 3)
    • Game of day: Number of the game that day
    • Side: Side of the map the team started on (Blue/Red)
    • Time: Duration of the match

    Team Performance Metrics:

    • Kills Team: Total kills by the team
    • Turrets Team: Total turrets destroyed by the team
    • Dragon Team: Total dragons killed by the team
    • Baron Team: Total barons killed by the team

    Player Performance Metrics:

    • Level: Final level of the player
    • Kills: Number of kills by the player
    • Deaths: Number of deaths of the player
    • Assists: Number of assists by the player
    • KDA: Kill/Death/Assist ratio
    • CS: Creep Score (minions killed)
    • CS in Team's Jungle: Creep Score in the team's jungle
    • CS in Enemy Jungle: Creep Score in the enemy's jungle
    • CSM: Creep Score per Minute
    • Golds: Total gold earned
    • GPM: Gold Per Minute
    • GOLD%: Percentage of team's total gold earned by the player

    Vision and Warding:

    • Vision Score: Total vision score
    • Wards placed: Number of wards placed
    • Wards destroyed: Number of wards destroyed
    • Control Wards Purchased: Number of control wards purchased
    • Detector Wards Placed: Number of detector wards placed
    • VSPM: Vision Score Per Minute
    • WPM: Wards Placed per Minute
    • VWPM: Vision Wards Placed per Minute
    • WCPM: Wards Cleared per Minute
    • VS%: Vision Score percentage

    Damage Metrics:

    • Total damage to Champion: Total damage dealt to champions
    • Physical Damage: Total physical damage dealt
    • Magic Damage: Total magic damage dealt
    • True Damage: Total true damage dealt
    • DPM: Damage Per Minute
    • DMG%: Percentage of team’s total damage dealt by the player

    Combat Metrics:

    • K+A Per Minute: Kills and Assists per Minute
    • KP%: Kill Participation percentage
    • Solo kills: Number of solo kills
    • Double kills: Number of double kills
    • Triple kills: Number of triple kills
    • Quadra kills: Number of quadra kills
    • Penta kills: Number of pentakills

    Early Game Metrics:

    • GD@15: Gold Difference at 15 minutes
    • CSD@15: Creep Score Difference at 15 minutes
    • XPD@15: Experience Difference at 15 minutes
    • LVLD@15: Level Difference at 15 minutes

    Objective Control:

    • Objectives Stolen: Number of objectives stolen
    • Damage dealt to turrets: Total damage dealt to turrets
    • Damage dealt to buildings: Total damage dealt to buildings

    Healing and Mitigation:

    • Total heal: Total healing done
    • Total Heals On Teammates: Total healing done on teammates
    • Damage self mitigated: Total damage self-mitigated
    • Total Damage Shielded On Teammates: Total damage shielded on teammates

    Crowd Control Metrics:

    • Time ccing others: Time spent crowd controlling others
    • Total Time CC Dealt: Total crowd control time dealt

    Survival and Economy:

    • Total damage taken: Total damage taken
    • Total Time Spent Dead: Total time spent dead
    • Consumables purchased: Number of consumables purchased
    • Items Purchased: Number of items purchased
    • Shutdown bounty collected: Total shutdown bounty collected
    • Shutdown bounty lost: Total shutdown bounty lost
  10. a

    RTB Mapping application

    • hub.arcgis.com
    • data.amerigeoss.org
    • +1more
    Updated Aug 12, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2015). RTB Mapping application [Dataset]. https://hub.arcgis.com/datasets/81ea77e8b5274b879b9d71010d8743aa
    Explore at:
    Dataset updated
    Aug 12, 2015
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.

  11. Youtube users in the United Kingdom 2017-2025

    • statista.com
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Youtube users in the United Kingdom 2017-2025 [Dataset]. https://www.statista.com/forecasts/1145489/youtube-users-in-the-united-kingdom
    Explore at:
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2017 - 2019
    Area covered
    United Kingdom
    Description

    In 2021, YouTube's user base in the United Kingdom amounts to approximately 41.40 million users. The number of YouTube users in the United Kingdom is projected to reach 44.38 million users by 2025. User figures have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  12. a

    Rural Segment Screening

    • hub.arcgis.com
    • pa-geo-data-pennmap.hub.arcgis.com
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PennShare (2025). Rural Segment Screening [Dataset]. https://hub.arcgis.com/datasets/35ded73864234e94bd20c1ad8a56fbc5
    Explore at:
    Dataset updated
    Feb 13, 2025
    Dataset authored and provided by
    PennShare
    Area covered
    Description

    Network screening analysis data of rural road segments in Pennsylvania completed in 2024; includes roadways outside of urban area boundaries with a population of less than 5,000 people. Data can be filtered by county, planning partner and engineering district.Notes from the PennDOT HSNS Video https://www.youtube.com/watch?v=liXTnqxZjCgNetwork screening analysis can be used for safety analysis and decision making to decrease frequency and severity of crashes in Pennsylvania.Network screening is a method from the Highway Safety Manual (HSM) that compares expected crash frequencies and crash severities to historical crash data based on Part C of HSM. It helps evaluate facilities and identify and prioritize locations that are likely to respond to safety improvement investments. FHWA states that employing traditional networking screening with systemic safety analysis can be an agency’s first step toward a comprehensive safety management program. The network screening is the first step in the Roadway Safety Management Process (Part B of the HSM) and it considers crash history, roadway factors and traffic characteristics.Roadway Safety Management Process (Part B of the HSM) Steps Network Screening Diagnosis Select Countermeasures Economic Appraisal Prioritize Projects Safety effectiveness evaluationRoadway safety management process parallels the method by which PennDOT selects and evaluates projects for Federal Highway Safety Improvement Program.SPF: safety performance functionPositive/high excess cost locations are good candidates for safety improvements.Urban: sites within urban boundaries (Census) where population is more than 5,000 people.Rural: sites outside of urban boundaries (Census) where population is less than 5,000 people.Crashes within 250 feet of an intersection are assigned to the intersection for analysis.

  13. R

    Accident Detection Model Dataset

    • universe.roboflow.com
    zip
    Updated Apr 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Accident detection model (2024). Accident Detection Model Dataset [Dataset]. https://universe.roboflow.com/accident-detection-model/accident-detection-model/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 8, 2024
    Dataset authored and provided by
    Accident detection model
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Accident Bounding Boxes
    Description

    Accident-Detection-Model

    Accident Detection Model is made using YOLOv8, Google Collab, Python, Roboflow, Deep Learning, OpenCV, Machine Learning, Artificial Intelligence. It can detect an accident on any accident by live camera, image or video provided. This model is trained on a dataset of 3200+ images, These images were annotated on roboflow.

    Problem Statement

    • Road accidents are a major problem in India, with thousands of people losing their lives and many more suffering serious injuries every year.
    • According to the Ministry of Road Transport and Highways, India witnessed around 4.5 lakh road accidents in 2019, which resulted in the deaths of more than 1.5 lakh people.
    • The age range that is most severely hit by road accidents is 18 to 45 years old, which accounts for almost 67 percent of all accidental deaths.

    Accidents survey

    https://user-images.githubusercontent.com/78155393/233774342-287492bb-26c1-4acf-bc2c-9462e97a03ca.png" alt="Survey">

    Literature Survey

    • Sreyan Ghosh in Mar-2019, The goal is to develop a system using deep learning convolutional neural network that has been trained to identify video frames as accident or non-accident.
    • Deeksha Gour Sep-2019, uses computer vision technology, neural networks, deep learning, and various approaches and algorithms to detect objects.

    Research Gap

    • Lack of real-world data - We trained model for more then 3200 images.
    • Large interpretability time and space needed - Using google collab to reduce interpretability time and space required.
    • Outdated Versions of previous works - We aer using Latest version of Yolo v8.

    Proposed methodology

    • We are using Yolov8 to train our custom dataset which has been 3200+ images, collected from different platforms.
    • This model after training with 25 iterations and is ready to detect an accident with a significant probability.

    Model Set-up

    Preparing Custom dataset

    • We have collected 1200+ images from different sources like YouTube, Google images, Kaggle.com etc.
    • Then we annotated all of them individually on a tool called roboflow.
    • During Annotation we marked the images with no accident as NULL and we drew a box on the site of accident on the images having an accident
    • Then we divided the data set into train, val, test in the ratio of 8:1:1
    • At the final step we downloaded the dataset in yolov8 format.
      #### Using Google Collab
    • We are using google colaboratory to code this model because google collab uses gpu which is faster than local environments.
    • You can use Jupyter notebooks, which let you blend code, text, and visualisations in a single document, to write and run Python code using Google Colab.
    • Users can run individual code cells in Jupyter Notebooks and quickly view the results, which is helpful for experimenting and debugging. Additionally, they enable the development of visualisations that make use of well-known frameworks like Matplotlib, Seaborn, and Plotly.
    • In Google collab, First of all we Changed runtime from TPU to GPU.
    • We cross checked it by running command ‘!nvidia-smi’
      #### Coding
    • First of all, We installed Yolov8 by the command ‘!pip install ultralytics==8.0.20’
    • Further we checked about Yolov8 by the command ‘from ultralytics import YOLO from IPython.display import display, Image’
    • Then we connected and mounted our google drive account by the code ‘from google.colab import drive drive.mount('/content/drive')’
    • Then we ran our main command to run the training process ‘%cd /content/drive/MyDrive/Accident Detection model !yolo task=detect mode=train model=yolov8s.pt data= data.yaml epochs=1 imgsz=640 plots=True’
    • After the training we ran command to test and validate our model ‘!yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=data.yaml’ ‘!yolo task=detect mode=predict model=runs/detect/train/weights/best.pt conf=0.25 source=data/test/images’
    • Further to get result from any video or image we ran this command ‘!yolo task=detect mode=predict model=runs/detect/train/weights/best.pt source="/content/drive/MyDrive/Accident-Detection-model/data/testing1.jpg/mp4"’
    • The results are stored in the runs/detect/predict folder.
      Hence our model is trained, validated and tested to be able to detect accidents on any video or image.

    Challenges I ran into

    I majorly ran into 3 problems while making this model

    • I got difficulty while saving the results in a folder, as yolov8 is latest version so it is still underdevelopment. so i then read some blogs, referred to stackoverflow then i got to know that we need to writ an extra command in new v8 that ''save=true'' This made me save my results in a folder.
    • I was facing problem on cvat website because i was not sure what
  14. Z

    Data from: Simulated Arterial Pulse Waves Database (preliminary version)

    • data.niaid.nih.gov
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vennin, Samuel (2020). Simulated Arterial Pulse Waves Database (preliminary version) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3296510
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Vennin, Samuel
    Chowienczyk, Phil
    Mariscal Harana, Jorge
    Alastruey, Jordi
    Peter H Charlton
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This provides a brief overview of the database. Further details are provided at: https://peterhcharlton.github.io/pwdb/ppwdb.html

    Background: The shape of the arterial pulse wave (PW) is a rich source of information on cardiovascular (CV) health, since it is influenced by both the heart and the vasculature. Consequently, many algorithms have been proposed to estimate clinical parameters from PWs. However, it is difficult and costly to acquire comprehensive datasets with which to assess their performance. We are aiming to address this difficulty by creating a database of simulated PWs under a range of CV conditions, representative of a healthy population. The database provided here is an initial version which has already been used to gain some novel insights into haemodynamics.

    Methods: Baseline PWs were simulated using 1D computational modelling. CV model parameters were varied across normal healthy ranges to simulate a sample of subjects for each age decade from 25 to 75 years. The model was extended to simulate photoplethysmographic (PPG) PWs at common measurement sites, in addition to the pressure (ABP), flow rate (Q), flow velocity (U) and diameter (D) PWs produced by the model.

    Validation: The database was verified by comparing simulated PWs with in vivo PWs. Good agreement was observed, with age-related changes in blood pressure and wave morphology well reproduced.

    Conclusion: This database is a valuable resource for development and pre-clinical assessment of PW analysis algorithms. It is particularly useful because it contains several types of PWs at multiple measurement sites, and the exact CV conditions which generated each PW are known.

    Future work: However, there are two limitations: (i) the database does not exhibit the wide variation in cardiovascular properties observed across a population sample; and (ii) the methods used to model changes with age have been improved since creating this initial version. Therefore, we are currently creating a more comprehensive database which addresses these limitations.

    Accompanying Presentation: This database was originally presented at the BioMedEng18 Conference. The presentation describing the methods for creating the database, and providing an introduction to the database, is available at: https://www.youtube.com/watch?v=X8aPZFs8c08 . The accompanying abstract is available here.

    Accompanying Manual: Further information on how to use the PWDB datasets, including this preliminary dataset, are provided in the user manual. Further details on the contents of the dataset files are available here.

    Citation: When using this dataset please cite this publication:

    Charlton P.H. et al. Modelling arterial pulse wave propagation during healthy ageing, In World Congress of Biomechanics 2018, Dublin, Ireland, 2018.

    Version History:

    • v.1.0: Originally uploaded to PhysioNet. This is the version which was used in the accompanying presentation.

    • v.2.0: The initial upload to this DOI. The database was curated using the PWDB Algorithms v.0.1.1. It differs slightly from the originally reported version in that: (i) the augmentation pressure and index were calculated at the aortic root rather than the carotid artery.

    Text adapted from: Charlton P.H. et al., 'A database for the development of pulse wave analysis algorithms', BioMedEng18, London, 2018.

  15. Youtube users in Vietnam 2017-2025

    • statista.com
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Youtube users in Vietnam 2017-2025 [Dataset]. https://www.statista.com/forecasts/1146013/youtube-users-in-vietnam
    Explore at:
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2017 - 2019
    Area covered
    Vietnam
    Description

    In 2021, YouTube's user base in Vietnam amounts to approximately 66.63 million users. The number of YouTube users in Vietnam is projected to reach 75.44 million users by 2025. User figures have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  16. YouTube users in Europe 2020-2029

    • statista.com
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). YouTube users in Europe 2020-2029 [Dataset]. https://www.statista.com/topics/3853/internet-usage-in-europe/
    Explore at:
    Dataset updated
    May 21, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Europe
    Description

    The number of Youtube users in Europe was forecast to continuously increase between 2024 and 2029 by in total 7.8 million users (+3.61 percent). After the ninth consecutive increasing year, the Youtube user base is estimated to reach 223.61 million users and therefore a new peak in 2029. Notably, the number of Youtube users of was continuously increasing over the past years.User figures, shown here regarding the platform youtube, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Youtube users in countries like North America and Australia & Oceania.

  17. Hours of video uploaded to YouTube every minute 2007-2022

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Hours of video uploaded to YouTube every minute 2007-2022 [Dataset]. https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2007 - Jun 2022
    Area covered
    Worldwide, YouTube
    Description

    As of June 2022, more than *** hours of video were uploaded to YouTube every minute. This equates to approximately ****** hours of newly uploaded content per hour. The amount of content on YouTube has increased dramatically as consumer’s appetites for online video has grown. In fact, the number of video content hours uploaded every 60 seconds grew by around ** percent between 2014 and 2020. YouTube global users Online video is one of the most popular digital activities worldwide, with ** percent of internet users worldwide watching more than ** hours of online videos on a weekly basis in 2023. It was estimated that in 2023 YouTube would reach approximately *** million users worldwide. In 2022, the video platform was one of the leading media and entertainment brands worldwide, with a value of more than ** billion U.S. dollars. YouTube video content consumption The most viewed YouTube channels of all time have racked up billions of viewers, millions of subscribers and cover a wide variety of topics ranging from music to cosmetics. The YouTube channel owner with the most video views is Indian music label T-Series, which counted ****** billion lifetime views. Other popular YouTubers are gaming personalities such as PewDiePie, DanTDM and Markiplier.

  18. YouTube users in Africa 2020-2029

    • statista.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). YouTube users in Africa 2020-2029 [Dataset]. https://www.statista.com/topics/9813/internet-usage-in-africa/
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The number of Youtube users in Africa was forecast to continuously increase between 2024 and 2029 by in total 0.03 million users (+3.95 percent). The Youtube user base is estimated to amount to 0.79 million users in 2029. User figures, shown here regarding the platform youtube, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Youtube users in countries like Worldwide and the Americas.

  19. Youtube users in Thailand 2017-2025

    • statista.com
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Youtube users in Thailand 2017-2025 [Dataset]. https://www.statista.com/forecasts/1146362/youtube-users-in-thailand
    Explore at:
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2017 - 2019
    Area covered
    Thailand
    Description

    In 2021, YouTube's user base in Thailand amounts to approximately 50.76 million users. The number of YouTube users in Thailand is projected to reach 54.02 million users by 2025. User figures have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  20. Youtube users in Nigeria 2017-2025

    • statista.com
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Youtube users in Nigeria 2017-2025 [Dataset]. https://www.statista.com/forecasts/1144636/youtube-users-in-nigeria
    Explore at:
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2017 - 2019
    Area covered
    Nigeria
    Description

    In 2021, YouTube's user base in Nigeria amounts to approximately 5.29 million users. The number of YouTube users in Nigeria is projected to reach 11.99 million users by 2025. User figures have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). YouTube users worldwide 2020-2029 [Dataset]. https://www.statista.com/forecasts/1144088/youtube-users-in-the-world
Organization logo

YouTube users worldwide 2020-2029

Explore at:
51 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Mar 3, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

The global number of Youtube users in was forecast to continuously increase between 2024 and 2029 by in total 232.5 million users (+24.91 percent). After the ninth consecutive increasing year, the Youtube user base is estimated to reach 1.2 billion users and therefore a new peak in 2029. Notably, the number of Youtube users of was continuously increasing over the past years.User figures, shown here regarding the platform youtube, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Youtube users in countries like Africa and South America.

Search
Clear search
Close search
Google apps
Main menu