Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
These files provide more detailed outputs from BITRE's 'Freight vehicle congestion in Australia’s five major cities - 2019' publication (see: https://www.bitre.gov.au/publications/2021/freight-vehicle-congestion-australias-five-major-cities-2019), which reported freight vehicle telematics based measures of traffic congestion for freight vehicles on 53 selected routes across Australia’s five mainland state capital cities—Sydney, Melbourne, Brisbane, Adelaide and Perth. The selected routes comprise the major motorways, highways and arterial roads within each city that service both passenger and freight vehicles.\r \r Disclaimers: https://www.infrastructure.gov.au/disclaimers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supplementary Information Files for Socio-economic groups moving apart: An analysis of recent trends in residential segregation in Australia's main capital citiesWe study changes in the spatial distribution and segregation of socio-economic groups in Australia using a new data set with harmonised census data for 1991 and 2011. We find a general increase in residential segregation by education and occupation groups across the major capital cities in Australia. Importantly, these trends cannot be explained in general by changes in the demographic structure of groups and areas but rather by the rise in the over and underrepresentation of groups across areas. In particular, our analysis reveals clear diverging trends in the spatial configuration of high and low socio-economic groups as measured by their occupation and education. Whereas high-skilled groups became more concentrated in the inner parts of cities, the low-educated and those working in low-status occupations became increasingly overrepresented in outer areas. This pattern is observed in all five major capital cities, but it is especially marked in Sydney, Melbourne and Brisbane.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data for the ACT is (C) Access canberra and licenced for reuse under the CC By 4.0 International, https://creativecommons.org/licenses/by/4.0/
Data for NSW was provided by the Office of Environment and Heritage, NSW Government.
Data for the Northern Territory was sourced from the Northern Territory Environment Protection Authority.
Data for Queensland was provided by the State of Queensland, Department of Science, Information Technology and Innovation.
Data for South Australia was created and supplied by the Environment Protection Authority, SA.
Data for Tasmania was provided by EPA Tasmania, DPIPWE.
Data for Victoria was provided by the Environment Protection Authority Victoria.
Data for Western Australia was provided by the Western Australian Department of Environment Regulation.
Data used to produce Figure ATM34 of SoE 2016. See https://soe.environment.gov.au/theme/ambient-air-quality/topic/2016/fine-particulate-matter-pm25#ambient-air-quality-figure-ATM34
The final Australian National Liveability Study 2018 datasets comprise a suite of policy relevant spatial indicators of local neighbourhood liveability and amenity access estimated for residential address points across Australia's 21 largest cities, and summarised at range of larger area scales (Mesh Block, Statistical Areas 1-4, Suburb, LGA, and overall city summaries). The indicators and measures included encompass topics including community and health services, employment, food, housing, public open space, transportation, walkability and overall liveability. The datasets were produced through analysis of built environment and social data from multiple sources including OpenStreetMap the Australian Bureau of Statistics, and public transport agency GTFS feed data. These are provided in CSV format under an Open Data Commons Open Database licence. The 2018 Australian National Liveability data will be of interest to planners, population health and urban researchers with an interest in the spatial distribution of built environment exposures and outcomes for data linkage, modelling and mapping purposes. Area level summaries for the data were used to create the indicators for the Australian Urban Observatory at its launch in 2020.
A detailed description of the datasets and the study has been published in Nature Scientific Data, and notes and code illustrating usage of the data are located on GitHub.
The spatial data were developed by the Healthy Liveable Cities Lab, Centre for Urban Research with funding support provided from the Australian Prevention Partnership Centre #9100003, NESP Clean Air and Urban Landscapes Hub, NHMRC Centre of Research Excellence in Healthy, Liveable Communities #1061404 and an NHMRC Senior Principal Research Fellowship GNT1107672; with interactive spatial indicator maps accessible via the Australian Urban Observatory. Any publications utilising the data are not necessarily the view of or endorsed by RMIT University or the Centre of Urban Research. RMIT excludes all liability for any reliance on the data.
Polluted air is a major health hazard in developing countries. Improvements in pollution monitoring and statistical techniques during the last several decades have steadily enhanced the ability to measure the health effects of air pollution. Current methods can detect significant increases in the incidence of cardiopulmonary and respiratory diseases, coughing, bronchitis, and lung cancer, as well as premature deaths from these diseases resulting from elevated concentrations of ambient Particulate Matter (Holgate 1999).
Scarce public resources have limited the monitoring of atmospheric particulate matter (PM) concentrations in developing countries, despite their large potential health effects. As a result, policymakers in many developing countries remain uncertain about the exposure of their residents to PM air pollution. The Global Model of Ambient Particulates (GMAPS) is an attempt to bridge this information gap through an econometrically estimated model for predicting PM levels in world cities (Pandey et al. forthcoming).
The estimation model is based on the latest available monitored PM pollution data from the World Health Organization, supplemented by data from other reliable sources. The current model can be used to estimate PM levels in urban residential areas and non-residential pollution hotspots. The results of the model are used to project annual average ambient PM concentrations for residential and non-residential areas in 3,226 world cities with populations larger than 100,000, as well as national capitals.
The study finds wide, systematic variations in ambient PM concentrations, both across world cities and over time. PM concentrations have risen at a slower rate than total emissions. Overall emission levels have been rising, especially for poorer countries, at nearly 6 percent per year. PM concentrations have not increased by as much, due to improvements in technology and structural shifts in the world economy. Additionally, within-country variations in PM levels can diverge greatly (by a factor of 5 in some cases), because of the direct and indirect effects of geo-climatic factors.
The primary determinants of PM concentrations are the scale and composition of economic activity, population, the energy mix, the strength of local pollution regulation, and geographic and atmospheric conditions that affect pollutant dispersion in the atmosphere.
The database covers the following countries:
Afghanistan
Albania
Algeria
Andorra
Angola
Antigua and Barbuda
Argentina
Armenia
Australia
Austria
Azerbaijan
Bahamas, The
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bhutan
Bolivia
Bosnia and Herzegovina
Brazil
Brunei
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Cayman Islands
Central African Republic
Chad
Chile
China
Colombia
Comoros
Congo, Dem. Rep.
Congo, Rep.
Costa Rica
Cote d'Ivoire
Croatia
Cuba
Cyprus
Czech Republic
Denmark
Dominica
Dominican Republic
Ecuador
Egypt, Arab Rep.
El Salvador
Eritrea
Estonia
Ethiopia
Faeroe Islands
Fiji
Finland
France
Gabon
Gambia, The
Georgia
Germany
Ghana
Greece
Grenada
Guatemala
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hong Kong, China
Hungary
Iceland
India
Indonesia
Iran, Islamic Rep.
Iraq
Ireland
Israel
Italy
Jamaica
Japan
Jordan
Kazakhstan
Kenya
Korea, Dem. Rep.
Korea, Rep.
Kuwait
Kyrgyz Republic
Lao PDR
Latvia
Lebanon
Lesotho
Liberia
Liechtenstein
Lithuania
Luxembourg
Macao, China
Macedonia, FYR
Madagascar
Malawi
Malaysia
Maldives
Mali
Mauritania
Mexico
Moldova
Mongolia
Morocco
Mozambique
Myanmar
Namibia
Nepal
Netherlands
Netherlands Antilles
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Norway
Oman
Pakistan
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Poland
Portugal
Puerto Rico
Qatar
Romania
Russian Federation
Rwanda
Sao Tome and Principe
Saudi Arabia
Senegal
Sierra Leone
Singapore
Slovak Republic
Slovenia
Solomon Islands
Somalia
South Africa
Spain
Sri Lanka
St. Kitts and Nevis
St. Lucia
St. Vincent and the Grenadines
Sudan
Suriname
Swaziland
Sweden
Switzerland
Syrian Arab Republic
Tajikistan
Tanzania
Thailand
Togo
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Uganda
Ukraine
United Arab Emirates
United Kingdom
United States
Uruguay
Uzbekistan
Vanuatu
Venezuela, RB
Vietnam
Virgin Islands (U.S.)
Yemen, Rep.
Yugoslavia, FR (Serbia/Montenegro)
Zambia
Zimbabwe
Observation data/ratings [obs]
Other [oth]
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
These files provide more detailed outputs from BITRE's 'Freight vehicle congestion in Australia’s five major cities - 2019' publication (see: https://www.bitre.gov.au/publications/2021/freight-vehicle-congestion-australias-five-major-cities-2019), which reported freight vehicle telematics based measures of traffic congestion for freight vehicles on 53 selected routes across Australia’s five mainland state capital cities—Sydney, Melbourne, Brisbane, Adelaide and Perth. The selected routes comprise the major motorways, highways and arterial roads within each city that service both passenger and freight vehicles.\r \r Disclaimers: https://www.infrastructure.gov.au/disclaimers.