This is a dataset I found online through the Google Dataset Search portal.
The American Community Survey (ACS) 2009-2013 multi-year data are used to list all languages spoken in the United States that were reported during the sample period. These tables provide detailed counts of many more languages than the 39 languages and language groups that are published annually as a part of the routine ACS data release. This is the second tabulation beyond 39 languages since ACS began.
The tables include all languages that were reported in each geography during the 2009 to 2013 sampling period. For the purpose of tabulation, reported languages are classified in one of 380 possible languages or language groups. Because the data are a sample of the total population, there may be languages spoken that are not reported, either because the ACS did not sample the households where those languages are spoken, or because the person filling out the survey did not report the language or reported another language instead.
The tables also provide information about self-reported English-speaking ability. Respondents who reported speaking a language other than English were asked to indicate their ability to speak English in one of the following categories: "Very well," "Well," "Not well," or "Not at all." The data on ability to speak English represent the person’s own perception about his or her own ability or, because ACS questionnaires are usually completed by one household member, the responses may represent the perception of another household member.
These tables are also available through the Census Bureau's application programming interface (API). Please see the developers page for additional details on how to use the API to access these data.
Sources:
Google Dataset Search: https://toolbox.google.com/datasetsearch
2009-2013 American Community Survey
Original dataset: https://www.census.gov/data/tables/2013/demo/2009-2013-lang-tables.html
Downloaded From: https://data.world/kvaughn/languages-county
Banner and thumbnail photo by Farzad Mohsenvand on Unsplash
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Languages spoken across various nations’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/shubhamptrivedi/languages-spoken-across-various-nations on 13 February 2022.
--- Dataset description provided by original source is as follows ---
I was fascinated by this type of data as this gives a slight peek on cultural diversity of a nation and what kind of literary work to be expected from that nation
This dataset is a collection of all the languages that are spoken by the different nations around the world. Nowadays, Most nations are bi or even trilingual in nature this can be due to different cultures and different groups of people are living in the same nation in harmony. This type of data can be very useful for linguistic research, market research, advertising purposes, and the list goes on.
This dataset was published on the site Infoplease which is a general information website.
I think this dataset can be useful to understand which type of literature publication can be done for maximum penetration of the market base
--- Original source retains full ownership of the source dataset ---
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdf
The GlobalPhone corpus developed in collaboration with the Karlsruhe Institute of Technology (KIT) was designed to provide read speech data for the development and evaluation of large continuous speech recognition systems in the most widespread languages of the world, and to provide a uniform, multilingual speech and text database for language independent and language adaptive speech recognition as well as for language identification tasks. The entire GlobalPhone corpus enables the acquisition of acoustic-phonetic knowledge of the following 22 spoken languages: Arabic (ELRA-S0192), Bulgarian (ELRA-S0319), Chinese-Mandarin (ELRA-S0193), Chinese-Shanghai (ELRA-S0194), Croatian (ELRA-S0195), Czech (ELRA-S0196), French (ELRA-S0197), German (ELRA-S0198), Hausa (ELRA-S0347), Japanese (ELRA-S0199), Korean (ELRA-S0200), Polish (ELRA-S0320), Portuguese (Brazilian) (ELRA-S0201), Russian (ELRA-S0202), Spanish (Latin America) (ELRA-S0203), Swahili (ELRA-S0375), Swedish (ELRA-S0204), Tamil (ELRA-S0205), Thai (ELRA-S0321), Turkish (ELRA-S0206), Ukrainian (ELRA-S0377), and Vietnamese (ELRA-S0322).In each language about 100 sentences were read from each of the 100 speakers. The read texts were selected from national newspapers available via Internet to provide a large vocabulary. The read articles cover national and international political news as well as economic news. The speech is available in 16bit, 16kHz mono quality, recorded with a close-speaking microphone (Sennheiser 440-6). The transcriptions are internally validated and supplemented by special markers for spontaneous effects like stuttering, false starts, and non-verbal effects like laughing and hesitations. Speaker information like age, gender, occupation, etc. as well as information about the recording setup complement the database. The entire GlobalPhone corpus contains over 450 hours of speech spoken by more than 2100 native adult speakers.Data is shortened by means of the shorten program written by Tony Robinson. Alternatively, the data could be delivered unshorten.The Polish part of GlobalPhone was collected from altogether 102 native speakers in Poland, of which 48 speakers were female and 54 speakers were male. The majority of speakers are between 20 and 39 years old, the age distribution ranges from 18 to 65 years. Most of the speakers are non-smokers in good health conditions. Each speaker read on average about 100 utterances from newspaper articles, in total we recorded 10130 utterances. The speech was recorded using a close-talking microphone Sennheiser HM420 in a push-to-talk scenario. All data were recorded at 16kHz and 16bit resolution in PCM format. The data collection took place in small and large rooms, about half of the recordings took place under very quiet noise conditions, the other half with moderate background noise. Information on recording place and environmental noise conditions are provided in a separate speaker session file for each speaker. The text data used for reco...
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdf
The GlobalPhone corpus developed in collaboration with the Karlsruhe Institute of Technology (KIT) was designed to provide read speech data for the development and evaluation of large continuous speech recognition systems in the most widespread languages of the world, and to provide a uniform, multilingual speech and text database for language independent and language adaptive speech recognition as well as for language identification tasks. The entire GlobalPhone corpus enables the acquisition of acoustic-phonetic knowledge of the following 22 spoken languages: Arabic (ELRA-S0192), Bulgarian (ELRA-S0319), Chinese-Mandarin (ELRA-S0193), Chinese-Shanghai (ELRA-S0194), Croatian (ELRA-S0195), Czech (ELRA-S0196), French (ELRA-S0197), German (ELRA-S0198), Hausa (ELRA-S0347), Japanese (ELRA-S0199), Korean (ELRA-S0200), Polish (ELRA-S0320), Portuguese (Brazilian) (ELRA-S0201), Russian (ELRA-S0202), Spanish (Latin America) (ELRA-S0203), Swahili (ELRA-S0375), Swedish (ELRA-S0204), Tamil (ELRA-S0205), Thai (ELRA-S0321), Turkish (ELRA-S0206), Ukrainian (ELRA-S0377), and Vietnamese (ELRA-S0322).In each language about 100 sentences were read from each of the 100 speakers. The read texts were selected from national newspapers available via Internet to provide a large vocabulary. The read articles cover national and international political news as well as economic news. The speech is available in 16bit, 16kHz mono quality, recorded with a close-speaking microphone (Sennheiser 440-6). The transcriptions are internally validated and supplemented by special markers for spontaneous effects like stuttering, false starts, and non-verbal effects like laughing and hesitations. Speaker information like age, gender, occupation, etc. as well as information about the recording setup complement the database. The entire GlobalPhone corpus contains over 450 hours of speech spoken by more than 2100 native adult speakers.Data is shortened by means of the shorten program written by Tony Robinson. Alternatively, the data could be delivered unshorten.The Spanish (Latin America) corpus was produced using the La Nacion newspaper. It contains recordings of 100 speakers (44 males, 56 females) recorded in Heredia and San Jose, Costa Rica. The following age distribution has been obtained: 20 speakers are below 19, 54 speakers are between 20 and 29, 13 speakers are between 30 and 39, 5 speakers are between 40 and 49, and 8 speakers are over 50.
Does the person speak a language other than English at home? This map takes a look at answers to this question from Census Night.Colour:For each SA1 geography, the colour indicates which language 'wins'.SA1 geographies not coloured are either tied between two languages or not enough data Colour Intensity:The colour intensity compares the values of the winner to all other values and returns its dominance over other languages in the same geographyNotes:Only considers top 6 languages for VICCensus 2016 DataPacksPredominance VisualisationsSource CodeNotice that while one language level appears to dominate certain geographies, it doesn't necessarily mean it represents the majority of the population. In fact, as you explore most areas, you will find the predominant language makes up just a fraction of the population due to the number of languages considered.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Card for "XLingHealth"
XLingHealth is a Cross-Lingual Healthcare benchmark for clinical health inquiry that features the top four most spoken languages in the world: English, Spanish, Chinese, and Hindi.
Statistics
Dataset
HealthQA 1,134 7.72 ± 2.41 242.85 ± 221.88
LiveQA 246 41.76 ± 37.38 115.25 ± 112.75
MedicationQA 690 6.86 ± 2.83 61.50 ± 69.44
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
Dataset Card for [Dataset Name]
Dataset Summary
JamPatoisNLI provides the first dataset for natural language inference in a creole language, Jamaican Patois. Many of the most-spoken low-resource languages are creoles. These languages commonly have a lexicon derived from a major world language and a distinctive grammar reflecting the languages of the original speakers and the process of language birth by creolization. This gives them a distinctive place in exploring the… See the full description on the dataset page: https://huggingface.co/datasets/Ruth-Ann/jampatoisnli.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
PLEASE UPVOTE IF YOU LIKE THIS CONTENT! 😍
Duolingo is an American educational technology company that produces learning apps and provides language certification. There main app is considered the most popular language learning app in the world.
To progress in their learning journey, each user of the application needs to complete a set of lessons in which they are presented with the words of the language they want to learn. In an infinite set of lessons, each word is applied in a different context and, on top of that, Duolingo uses a spaced repetition approach, where the user sees an already known word again to reinforce their learning.
Each line in this file refers to a Duolingo lesson that had a target word to practice.
The columns are as follows:
p_recall
- proportion of exercises from this lesson/practice where the word/lexeme was correctly recalledtimestamp
- UNIX timestamp of the current lesson/practice delta
- time (in seconds) since the last lesson/practice that included this word/lexemeuser_id
- student user ID who did the lesson/practice (anonymized)learning_language
- language being learnedui_language
- user interface language (presumably native to the student)lexeme_id
- system ID for the lexeme tag (i.e., word)lexeme_string
- lexeme tag (see below)history_seen
- total times user has seen the word/lexeme prior to this lesson/practicehistory_correct
- total times user has been correct for the word/lexeme prior to this lesson/practicesession_seen
- times the user saw the word/lexeme during this lesson/practicesession_correct
- times the user got the word/lexeme correct during this lesson/practiceThe lexeme_string
column contains a string representation of the "lexeme tag" used by Duolingo for each lesson/practice (data instance) in our experiments. The lexeme_string field uses the following format:
`surface-form/lemma
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please cite the following paper when using this dataset:
N. Thakur, “Five Years of COVID-19 Discourse on Instagram: A Labeled Instagram Dataset of Over Half a Million Posts for Multilingual Sentiment Analysis”, Proceedings of the 7th International Conference on Machine Learning and Natural Language Processing (MLNLP 2024), Chengdu, China, October 18-20, 2024 (Paper accepted for publication, Preprint available at: https://arxiv.org/abs/2410.03293)
Abstract
The outbreak of COVID-19 served as a catalyst for content creation and dissemination on social media platforms, as such platforms serve as virtual communities where people can connect and communicate with one another seamlessly. While there have been several works related to the mining and analysis of COVID-19-related posts on social media platforms such as Twitter (or X), YouTube, Facebook, and TikTok, there is still limited research that focuses on the public discourse on Instagram in this context. Furthermore, the prior works in this field have only focused on the development and analysis of datasets of Instagram posts published during the first few months of the outbreak. The work presented in this paper aims to address this research gap and presents a novel multilingual dataset of 500,153 Instagram posts about COVID-19 published between January 2020 and September 2024. This dataset contains Instagram posts in 161 different languages. After the development of this dataset, multilingual sentiment analysis was performed using VADER and twitter-xlm-roberta-base-sentiment. This process involved classifying each post as positive, negative, or neutral. The results of sentiment analysis are presented as a separate attribute in this dataset.
For each of these posts, the Post ID, Post Description, Date of publication, language code, full version of the language, and sentiment label are presented as separate attributes in the dataset.
The Instagram posts in this dataset are present in 161 different languages out of which the top 10 languages in terms of frequency are English (343041 posts), Spanish (30220 posts), Hindi (15832 posts), Portuguese (15779 posts), Indonesian (11491 posts), Tamil (9592 posts), Arabic (9416 posts), German (7822 posts), Italian (5162 posts), Turkish (4632 posts)
There are 535,021 distinct hashtags in this dataset with the top 10 hashtags in terms of frequency being #covid19 (169865 posts), #covid (132485 posts), #coronavirus (117518 posts), #covid_19 (104069 posts), #covidtesting (95095 posts), #coronavirusupdates (75439 posts), #corona (39416 posts), #healthcare (38975 posts), #staysafe (36740 posts), #coronavirusoutbreak (34567 posts)
The following is a description of the attributes present in this dataset
Open Research Questions
This dataset is expected to be helpful for the investigation of the following research questions and even beyond:
All the Instagram posts that were collected during this data mining process to develop this dataset were publicly available on Instagram and did not require a user to log in to Instagram to view the same (at the time of writing this paper).
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Local ecological evidence is key to informing conservation. However, many global biodiversity indicators often neglect local ecological evidence published in languages other than English, potentially biassing our understanding of biodiversity trends in areas where English is not the dominant language. Brazil is a megadiverse country with a thriving national scientific publishing landscape. Here, using Brazil and a species abundance indicator as examples, we assess how well bilingual literature searches can both improve data coverage for a country where English is not the primary language and help tackle biases in biodiversity datasets. We conducted a comprehensive screening of articles containing abundance data for vertebrates published in 59 Brazilian journals (articles in Portuguese or English) and 79 international English-only journals. These were grouped into three datasets according to journal origin and article language (Brazilian-Portuguese, Brazilian-English and International). We analysed the taxonomic, spatial and temporal coverage of the datasets, compared their average abundance trends and investigated predictors of such trends with a modelling approach. Our results showed that including data published in Brazilian journals, especially those in Portuguese, strongly increased representation of Brazilian vertebrate species (by 10.1 times) and populations (by 7.6 times) in the dataset. Meanwhile, international journals featured a higher proportion of threatened species. There were no marked differences in spatial or temporal coverage between datasets, in spite of different bias towards infrastructures. Overall, while country-level trends in relative abundance did not substantially change with the addition of data from Brazilian journals, uncertainty considerably decreased. We found that population trends in international journals showed stronger and more frequent decreases in average abundance than those in national journals, regardless of whether the latter were published in Portuguese or English. Policy implications. Collecting data from local sources markedly further strengthens global biodiversity databases by adding species not previously included in international datasets. Furthermore, the addition of these data helps to understand spatial and temporal biases that potentially influence abundance trends at both national and global level. We show how incorporating non-English-language studies in global databases and indicators could provide a more complete understanding of biodiversity trends and therefore better inform global conservation policy. Methods Data collection We collected time-series of vertebrate population abundance suitable for entry into the LPD (livingplanetindex.org), which provides the repository for one of the indicators in the GBF, the Living Planet Index (LPI, Ledger et al., 2023). Despite the continuous addition of new data, LPI coverage remains incomplete for some regions (Living Planet Report 2024 – A System in Peril, 2024). We collected data from three sets of sources: a) Portuguese-language articles from Brazilian journals (hereafter “Brazilian-Portuguese” dataset), b) English-language articles from Brazilian journals (“Brazilian-English” dataset) and c) English-language articles from non-Brazilian journals (“International” dataset). For a) and b), we first compiled a list of Brazilian biodiversity-related journals using the list of non-English-language journals in ecology and conservation published by the translatE project (www.translatesciences.com) as a starting point. The International dataset was obtained from the LPD team and sourced from the 78 journals they routinely monitor as part of their ongoing data searches. We excluded journals whose scope was not relevant to our work (e.g. those focusing on agroforestry or crop science), and taxon-specific journals (e.g. South American Journal of Herpetology) since they could introduce taxonomic bias to the data collection process. We considered only articles published between 1990 and 2015, and thus further excluded journals that published articles exclusively outside of this timeframe. We chose this period because of higher data availability (Deinet et al., 2024), since less monitoring took place in earlier decades, and data availability for the last decade is also not as high as there is a lag between data being collected and trends becoming available in the literature. Finally, we excluded any journals that had inactive links or that were no longer available online. While we acknowledge that biodiversity data are available from a wider range of sources (grey literature, online databases, university theses etc.), here we limited our searches to peer-reviewed journals and articles published within a specific timeframe to standardise data collection and allow for comparison between datasets. We screened a total of 59 Brazilian journals; of these, nine accept articles only in English, 13 only in Portuguese and 37 in both languages. We systematically checked all articles of all issues published between 1990 and 2015. Articles that appeared to contain abundance data for vertebrate species based on title and/or abstract were further evaluated by reading the material and methods section. For an article to be included in our dataset, we followed the criteria applied for inclusion into the LPD (livingplanetindex.org/about_index#data): a) data must have been collected using comparable methods for at least two years for the same population, and b) units must be of population size, either a direct measure such as population counts or densities, or indices, or a reliable proxy such as breeding pairs, capture per unit effort or measures of biomass for a single species (e.g. fish data are often available in one of the latter two formats). Assessing search effectiveness and dataset representation We calculated the encounter rate of relevant articles (i.e. those that satisfied the criteria for inclusion in our datasets) for each journal as the proportion of such articles relative to the total number of articles screened for that journal. We assessed the taxonomic representation of each dataset by calculating the percentage of species of each vertebrate group (all fishes combined, amphibians, reptiles, birds and mammals) with relevant abundance data in relation to the number of species of these groups known to occur in Brazil. The total number of known species for each taxon was compiled from national-level sources (amphibians, Segalla et al. 2021; birds, (Pacheco et al., 2021); mammals, Abreu et al. 2022; reptiles, Costa, Guedes and Bérnils, 2022) or through online databases (Fishbase, Froese and Pauly, 2024). We calculated accumulation curves using 1,000 permutations and applying the rarefaction method, using the vegan package (Jari Oksanen et al., 2024). These represent the cumulative number of new species added with each article containing relevant data, allowing us to assess how additional data collection could increase coverage of abundance data across datasets. To compare species threat status among datasets, we used the category for each species available in the Brazilian (‘Sistema de Avaliação do Risco de Extinção da Biodiversidade – SALVE’, 2024) and IUCN Red List (IUCN, 2024), and calculated the percentage of species in each category per dataset. To assess and compare the temporal coverage of the different datasets, we calculated the number of populations and species across time. To assess geographic gaps, we mapped the locations of each population using QGIS version 3.6 (QGIS Development Team, 2019). We then quantified the bias of terrestrial records towards proximity to infrastructures (airports, cities, roads and waterbodies) at a 0.5º resolution (circa 55.5 km x 55.5 km at the equator) and a 2º buffer using posterior weights from the R package sampbias (Zizka, Antonelli and Silvestro, 2021). Higher posterior weights indicate stronger bias effect. Generalised linear mixed models and population abundance trends We used the rlpi R package (Freeman et al., 2017) to calculate trends in relative abundance. We calculated the average lambda (logged annual rate of change) for each time-series by averaging the lambda values across all years between the start and the end year of the time-series. We then built generalised linear mixed models (GLMM) to test how average lambdas changed across language (Portuguese vs English), journal origin (national vs international), and taxonomic group, using location, journal name, and species as random intercepts (Table 1). We offset these by the number of sampled years to adjust summed lambda to a standardised measure, to allow comparison across different observations with different length of time series and plotted the beta coefficients (effect sizes) of all factors. Finally, we performed a post-hoc test to check pairwise differences between taxonomic groups (Table S2). To assess the influence of national-level data on global trends in relative abundance, we calculated the trends for both the International dataset and the two combined Brazilian datasets (Brazilian-Portuguese and Brazilian-English), using only years for which data were available for more than one species, to be able to estimate trend variation. We also plotted the trends for the Brazilian datasets separately. All analyses were performed in R 4.4.1 (R Core Team, 2024).
As of June 2024, the most popular database management system (DBMS) worldwide was Oracle, with a ranking score of *******; MySQL and Microsoft SQL server rounded out the top three. Although the database management industry contains some of the largest companies in the tech industry, such as Microsoft, Oracle and IBM, a number of free and open-source DBMSs such as PostgreSQL and MariaDB remain competitive. Database Management Systems As the name implies, DBMSs provide a platform through which developers can organize, update, and control large databases. Given the business world’s growing focus on big data and data analytics, knowledge of SQL programming languages has become an important asset for software developers around the world, and database management skills are seen as highly desirable. In addition to providing developers with the tools needed to operate databases, DBMS are also integral to the way that consumers access information through applications, which further illustrates the importance of the software.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset provides details on the 10,000 most popular films globally, sourced from The Movie Database (TMDb) via its read API. TMDb is a crowd-sourced movie information database widely used by various film-related platforms and applications. The dataset is ideal for film-related analysis, building recommender systems, and natural language processing tasks, even for those new to data analysis, as it contains some missing values.
The dataset is provided in a CSV file format. It comprises approximately 10,000 individual movie records. While exact row and record counts are not specified, the dataset is structured as tabular data, with each row representing a unique movie entry and columns detailing various attributes.
This dataset is well-suited for a variety of applications, including: * Developing and enhancing film-related consoles, websites, and mobile applications. * Creating movie recommender systems. * Performing data visualisations related to film trends and popularity. * Conducting natural language processing (NLP) tasks on movie overviews. * Data analysis and exploration, particularly for those looking to practise handling missing data.
The dataset covers movies from across the world, offering a global scope. While a specific time range for the movies is not explicitly stated, the data is fetched from TMDb, which updates its API periodically. It's noted that the dataset includes some null values where information was missing from the original TMDb database.
CCO
This dataset is intended for a broad audience including: * Young analysts: To practise data cleaning and analysis with datasets containing missing values. * Developers: For integrating movie information into media managers, mobile apps, and social sites. * Researchers: For studies on movie popularity, audience reception, and content analysis. * Data scientists: For building and testing machine learning models such as recommender systems and NLP models.
Original Data Source: Popular Movies of IMDb
http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj
Language is a controlled vocabulary that lists world languages and language varieties, including sign languages. Its main purpose is to support activities associated with the publication process. The full set of languages contains more than 8000 language varieties, each identified by a code equivalent to the ISO 639-3 code. Concepts are aligned with the ISO 639 international standard, which is issued in several parts: ISO 639-1 contains strictly two alphabetic letters (alpha-2), ISO 639-2/B (B = bibliographic) is used for bibliographic purpose (alpha-3), ISO 639-2/T (T = terminology) is used for technical purpose (alpha-3), ISO 639-3 covers all the languages and macro-languages of the world (alpha-3); the values are compliant with ISO 639-2/T. If an authority code is needed for a language without an assigned ISO code, an alphanumeric code is created to avoid confusion with the strictly alphabetic ISO codes. Labels are provided in all 24 official EU languages for the most frequently used languages. Language is under governance of the Interinstitutional Metadata and Formats Committee (IMFC). It is maintained by the Publications Office of the European Union and disseminated on the EU Vocabularies website. It is a corporate reference data asset covered by the Corporate Reference Data Management policy of the European Commission.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IndQNER
IndQNER is a Named Entity Recognition (NER) benchmark dataset that was created by manually annotating 8 chapters in the Indonesian translation of the Quran. The annotation was performed using a web-based text annotation tool, Tagtog, and the BIO (Beginning-Inside-Outside) tagging format. The dataset contains:
3117 sentences
62027 tokens
2475 named entities
18 named entity categories
Named Entity Classes
The named entity classes were initially defined by analyzing the existing Quran concepts ontology. The initial classes were updated based on the information acquired during the annotation process. Finally, there are 20 classes, as follows:
Allah
Allah's Throne
Artifact
Astronomical body
Event
False deity
Holy book
Language
Angel
Person
Messenger
Prophet
Sentient
Afterlife location
Geographical location
Color
Religion
Food
Fruit
The book of Allah
Annotation Stage
There were eight annotators who contributed to the annotation process. They were informatics engineering students at the State Islamic University Syarif Hidayatullah Jakarta.
Anggita Maharani Gumay Putri
Muhammad Destamal Junas
Naufaldi Hafidhigbal
Nur Kholis Azzam Ubaidillah
Puspitasari
Septiany Nur Anggita
Wilda Nurjannah
William Santoso
Verification Stage
We found many named entity and class candidates during the annotation stage. To verify the candidates, we consulted Quran and Tafseer (content) experts who are lecturers at Quran and Tafseer Department at the State Islamic University Syarif Hidayatullah Jakarta.
Dr. Eva Nugraha, M.Ag.
Dr. Jauhar Azizy, MA
Dr. Lilik Ummi Kultsum, MA
Evaluation
We evaluated the annotation quality of IndQNER by performing experiments in two settings: supervised learning (BiLSTM+CRF) and transfer learning (IndoBERT fine-tuning).
Supervised Learning Setting
The implementation of BiLSTM and CRF utilized IndoBERT to provide word embeddings. All experiments used a batch size of 16. These are the results:
Maximum sequence length Number of e-poch Precision Recall F1 score
256 10 0.94 0.92 0.93
256 20 0.99 0.97 0.98
256 40 0.96 0.96 0.96
256 100 0.97 0.96 0.96
512 10 0.92 0.92 0.92
512 20 0.96 0.95 0.96
512 40 0.97 0.95 0.96
512 100 0.97 0.95 0.96
Transfer Learning Setting
We performed several experiments with different parameters in IndoBERT fine-tuning. All experiments used a learning rate of 2e-5 and a batch size of 16. These are the results:
Maximum sequence length Number of e-poch Precision Recall F1 score
256 10 0.67 0.65 0.65
256 20 0.60 0.59 0.59
256 40 0.75 0.72 0.71
256 100 0.73 0.68 0.68
512 10 0.72 0.62 0.64
512 20 0.62 0.57 0.58
512 40 0.72 0.66 0.67
512 100 0.68 0.68 0.67
This dataset is also part of the NusaCrowd project which aims to collect Natural Language Processing (NLP) datasets for Indonesian and its local languages.
How to Cite
@InProceedings{10.1007/978-3-031-35320-8_12,author="Gusmita, Ria Hariand Firmansyah, Asep Fajarand Moussallem, Diegoand Ngonga Ngomo, Axel-Cyrille",editor="M{\'e}tais, Elisabethand Meziane, Faridand Sugumaran, Vijayanand Manning, Warrenand Reiff-Marganiec, Stephan",title="IndQNER: Named Entity Recognition Benchmark Dataset from the Indonesian Translation of the Quran",booktitle="Natural Language Processing and Information Systems",year="2023",publisher="Springer Nature Switzerland",address="Cham",pages="170--185",abstract="Indonesian is classified as underrepresented in the Natural Language Processing (NLP) field, despite being the tenth most spoken language in the world with 198 million speakers. The paucity of datasets is recognized as the main reason for the slow advancements in NLP research for underrepresented languages. Significant attempts were made in 2020 to address this drawback for Indonesian. The Indonesian Natural Language Understanding (IndoNLU) benchmark was introduced alongside IndoBERT pre-trained language model. The second benchmark, Indonesian Language Evaluation Montage (IndoLEM), was presented in the same year. These benchmarks support several tasks, including Named Entity Recognition (NER). However, all NER datasets are in the public domain and do not contain domain-specific datasets. To alleviate this drawback, we introduce IndQNER, a manually annotated NER benchmark dataset in the religious domain that adheres to a meticulously designed annotation guideline. Since Indonesia has the world's largest Muslim population, we build the dataset from the Indonesian translation of the Quran. The dataset includes 2475 named entities representing 18 different classes. To assess the annotation quality of IndQNER, we perform experiments with BiLSTM and CRF-based NER, as well as IndoBERT fine-tuning. The results reveal that the first model outperforms the second model achieving 0.98 F1 points. This outcome indicates that IndQNER may be an acceptable evaluation metric for Indonesian NER tasks in the aforementioned domain, widening the research's domain range.",isbn="978-3-031-35320-8"}
Contact
If you have any questions or feedback, feel free to contact us at ria.hari.gusmita@uni-paderborn.de or ria.gusmita@uinjkt.ac.id
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Extinct Languages’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/the-guardian/extinct-languages on 28 January 2022.
--- Dataset description provided by original source is as follows ---
A recent Guardian blog post asks: "How many endangered languages are there in the World and what are the chances they will die out completely?" The United Nations Education, Scientific and Cultural Organisation (UNESCO) regularly publishes a list of endangered languages, using a classification system that describes its danger (or completion) of extinction.
The full detailed dataset includes names of languages, number of speakers, the names of countries where the language is still spoken, and the degree of endangerment. The UNESCO endangerment classification is as follows:
Data was originally organized and published by The Guardian, and can be accessed via this Datablog post.
--- Original source retains full ownership of the source dataset ---
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Finnish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Finnish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Finnish communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Finnish speech models that understand and respond to authentic Finnish accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Finnish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Finnish speech and language AI applications:
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Largest Bengali Newspaper Dataset for news type classification.
Abstract:
Knowledge is central to human and scientific developments. Natural Language Processing (NLP) allows automated analysis and creation of knowledge. Data is a crucial NLP and machine learning ingredient. The scarcity of open datasets is a well-known problem in machine and deep learning research. This is very much the case for textual NLP datasets in English and other major world languages. For the Bangla language, the situation is even more challenging and the number of large datasets for NLP research is practically nil. We hereby present Potrika, a large single-label Bangla news article textual dataset curated for NLP research from six popular online news portals in Bangladesh (Jugantor, Jaijaidin, Ittefaq, Kaler Kontho, Inqilab, and Somoyer Alo) for the period 2014-2020. The articles are classified into eight distinct categories (National, Sports, Inter-national, Entertainment, Economy, Education, Politics, and Science & Technology) providing five attributes (News Article, Category, Headline, Publication Date, and newspaper Source). The raw dataset contains 185.51 million words and 12.57 million sentences contained in 664,880 news articles. Moreover, using NLP augmentation techniques, we create from the raw (unbalanced) dataset another (balanced) dataset comprising 320,000 news articles with 40,000 articles in each of the eight news categories. Potrika contains both the datasets (raw and balanced) to suit a wide range of NLP research. By far, to the best of our knowledge, Potrika is the largest and the most extensive dataset for news classification.
cite:
@misc{ahmad2022potrika,
title={Potrika: Raw and Balanced Newspaper Datasets in the Bangla Language with Eight Topics and Five Attributes},
author={Istiak Ahmad and Fahad AlQurashi and Rashid Mehmood},
year={2022},
eprint={2210.09389},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Dataset Source - Here
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Mexican Spanish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Spanish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Mexican Spanish communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Spanish speech models that understand and respond to authentic Mexican accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Mexican Spanish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Spanish speech and language AI applications:
End-to-end speech-to-text translation (ST) has recently witnessed an increased interest given its system simplicity, lower inference latency and less compounding errors compared to cascaded ST (i.e. speech recognition + machine translation). End-to-end ST model training, however, is often hampered by the lack of parallel data. Thus, we created CoVoST, a large-scale multilingual ST corpus based on Common Voice, to foster ST research with the largest ever open dataset. Its latest version covers translations from English into 15 languages---Arabic, Catalan, Welsh, German, Estonian, Persian, Indonesian, Japanese, Latvian, Mongolian, Slovenian, Swedish, Tamil, Turkish, Chinese---and from 21 languages into English, including the 15 target languages as well as Spanish, French, Italian, Dutch, Portuguese, Russian. It has total 2,880 hours of speech and is diversified with 78K speakers.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
(see https://tblock.github.io/10kGNAD/ for the original dataset page)
This page introduces the 10k German News Articles Dataset (10kGNAD) german topic classification dataset. The 10kGNAD is based on the One Million Posts Corpus and avalaible under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. You can download the dataset here.
English text classification datasets are common. Examples are the big AG News, the class-rich 20 Newsgroups and the large-scale DBpedia ontology datasets for topic classification and for example the commonly used IMDb and Yelp datasets for sentiment analysis. Non-english datasets, especially German datasets, are less common. There is a collection of sentiment analysis datasets assembled by the Interest Group on German Sentiment Analysis. However, to my knowlege, no german topic classification dataset is avaliable to the public.
Due to grammatical differences between the English and the German language, a classifyer might be effective on a English dataset, but not as effectiv on a German dataset. The German language has a higher inflection and long compound words are quite common compared to the English language. One would need to evaluate a classifyer on multiple German datasets to get a sense of it's effectivness.
The 10kGNAD dataset is intended to solve part of this problem as the first german topic classification dataset. It consists of 10273 german language news articles from an austrian online newspaper categorized into nine topics. These articles are a till now unused part of the One Million Posts Corpus.
In the One Million Posts Corpus each article has a topic path. For example Newsroom/Wirtschaft/Wirtschaftpolitik/Finanzmaerkte/Griechenlandkrise
.
The 10kGNAD uses the second part of the topic path, here Wirtschaft
, as class label.
In result the dataset can be used for multi-class classification.
I created and used this dataset in my thesis to train and evaluate four text classifyers on the German language. By publishing the dataset I hope to support the advancement of tools and models for the German language. Additionally this dataset can be used as a benchmark dataset for german topic classification.
As in most real-world datasets the class distribution of the 10kGNAD is not balanced. The biggest class Web consists of 1678, while the smalles class Kultur contains only 539 articles. However articles from the Web class have on average the fewest words, while artilces from the culture class have the second most words.
I propose a stratifyed split of 10% for testing and the remaining articles for training.
To use the dataset as a benchmark dataset, please used the train.csv
and test.csv
files located in the project root.
Python scripts to extract the articles and split them into a train- and a testset avaliable in the code directory of this project.
Make sure to install the requirements.
The original corpus.sqlite3
is required to extract the articles (download here (compressed) or here (uncompressed)).
This dataset is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Please consider citing the authors of the One Million Post Corpus if you use the dataset.
This is a dataset I found online through the Google Dataset Search portal.
The American Community Survey (ACS) 2009-2013 multi-year data are used to list all languages spoken in the United States that were reported during the sample period. These tables provide detailed counts of many more languages than the 39 languages and language groups that are published annually as a part of the routine ACS data release. This is the second tabulation beyond 39 languages since ACS began.
The tables include all languages that were reported in each geography during the 2009 to 2013 sampling period. For the purpose of tabulation, reported languages are classified in one of 380 possible languages or language groups. Because the data are a sample of the total population, there may be languages spoken that are not reported, either because the ACS did not sample the households where those languages are spoken, or because the person filling out the survey did not report the language or reported another language instead.
The tables also provide information about self-reported English-speaking ability. Respondents who reported speaking a language other than English were asked to indicate their ability to speak English in one of the following categories: "Very well," "Well," "Not well," or "Not at all." The data on ability to speak English represent the person’s own perception about his or her own ability or, because ACS questionnaires are usually completed by one household member, the responses may represent the perception of another household member.
These tables are also available through the Census Bureau's application programming interface (API). Please see the developers page for additional details on how to use the API to access these data.
Sources:
Google Dataset Search: https://toolbox.google.com/datasetsearch
2009-2013 American Community Survey
Original dataset: https://www.census.gov/data/tables/2013/demo/2009-2013-lang-tables.html
Downloaded From: https://data.world/kvaughn/languages-county
Banner and thumbnail photo by Farzad Mohsenvand on Unsplash