The number of hospitals in the United States was forecast to continuously decrease between 2024 and 2029 by in total 13 hospitals (-0.23 percent). According to this forecast, in 2029, the number of hospitals will have decreased for the twelfth consecutive year to 5,548 hospitals. Depicted is the number of hospitals in the country or region at hand. As the OECD states, the rules according to which an institution can be registered as a hospital vary across countries.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of hospitals in countries like Canada and Mexico.
The number of hospital beds in the United States was forecast to continuously increase between 2024 and 2029 by in total 16.6 thousand beds (+1.75 percent). After the fifteenth consecutive increasing year, the number of hospital beds is estimated to reach 967.9 thousand beds and therefore a new peak in 2029. Notably, the number of hospital beds of was continuously increasing over the past years.Depicted is the estimated total number of hospital beds in the country or region at hand.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of hospital beds in countries like Mexico and Canada.
The National Hospital Ambulatory Medical Care Survey (NHAMCS), conducted by the National Center for Health Statistics (NCHS), collects annual data on visits to emergency departments to describe patterns of utilization and provision of ambulatory care delivery in the United States. Data are collected from nonfederal, general, and short-stay hospitals from all 50 U.S. states and the District of Columbia, and are used to develop nationally representative estimates. The data include counts and rates of emergency department visits from 2016-2022 for the 10 leading primary diagnoses and reasons for visit, stratified by selected patient and hospital characteristics. Rankings for the 10 leading categories were identified using weighted data from 2022 and were then assessed in prior years.
The average number of hospital beds available per 1,000 people in the United States was forecast to continuously decrease between 2024 and 2029 by in total 0.1 beds (-3.7 percent). After the eighth consecutive decreasing year, the number of available beds per 1,000 people is estimated to reach 2.63 beds and therefore a new minimum in 2029. Depicted is the number of hospital beds per capita in the country or region at hand. As defined by World Bank this includes inpatient beds in general, specialized, public and private hospitals as well as rehabilitation centers.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the average number of hospital beds available per 1,000 people in countries like Canada and Mexico.
Success.ai’s Healthcare Industry Leads Data and B2B Contact Data for US Healthcare Professionals offers an extensive and verified database tailored to connect businesses with key executives and administrators in the healthcare industry across the United States. With over 170M verified profiles, including work emails and direct phone numbers, this dataset enables precise targeting of decision-makers in hospitals, clinics, and healthcare organizations.
Backed by AI-driven validation technology for unmatched accuracy and reliability, this contact data empowers your marketing, sales, and recruitment strategies. Designed for industry professionals, our continuously updated profiles provide the actionable insights you need to grow your business in the competitive healthcare sector.
Key Features of Success.ai’s US Healthcare Contact Data:
Hospital Executives: CEOs, CFOs, and COOs managing top-tier facilities. Healthcare Administrators: Decision-makers driving operational excellence. Medical Professionals: Physicians, specialists, and nurse practitioners. Clinic Managers: Leaders in small and mid-sized healthcare organizations.
AI-Validated Accuracy and Updates
99% Verified Accuracy: Our advanced AI technology ensures data reliability for optimal engagement. Real-Time Updates: Profiles are continuously refreshed to maintain relevance and accuracy. Minimized Bounce Rates: Save time and resources by reaching verified contacts.
Customizable Delivery Options Choose how you access the data to match your business requirements:
API Integration: Connect our data directly to your CRM or sales platform. Flat File Delivery: Receive customized datasets in formats suited to your needs.
Why Choose Success.ai for Healthcare Data?
Best Price Guarantee We ensure competitive pricing for our verified contact data, offering the most comprehensive and cost-effective solution in the market.
Compliance-Driven and Ethical Data Our data collection adheres to strict global standards, including HIPAA, GDPR, and CCPA compliance, ensuring secure and ethical usage.
Strategic Benefits for Your Business Success.ai’s US healthcare professional data unlocks numerous business opportunities:
Targeted Marketing: Develop tailored campaigns aimed at healthcare executives and decision-makers. Efficient Sales Outreach: Engage with key contacts to accelerate your sales process. Recruitment Optimization: Access verified profiles to identify and recruit top talent in the healthcare industry. Market Intelligence: Use detailed firmographic and demographic insights to guide strategic decisions. Partnership Development: Build valuable relationships within the healthcare ecosystem.
Key APIs for Advanced Functionality
Enrichment API Enhance your existing contact data with real-time updates, ensuring accuracy and relevance for your outreach initiatives.
Lead Generation API Drive high-quality lead generation efforts by utilizing verified contact information, including work emails and direct phone numbers, for up to 860,000 API calls per day.
Use Cases
Healthcare Marketing Campaigns Target verified executives and administrators to deliver personalized and impactful marketing campaigns.
Sales Enablement Connect with key decision-makers in healthcare organizations, ensuring higher conversion rates and shorter sales cycles.
Talent Acquisition Source and engage healthcare professionals and administrators with accurate, up-to-date contact information.
Strategic Partnerships Foster collaborations with healthcare institutions and professionals to expand your business network.
Industry Analysis Leverage enriched contact data to gain insights into the US healthcare market, helping you refine your strategies.
Verified Accuracy: AI-driven technology ensures 99% reliability for all contact details. Comprehensive Reach: Covering healthcare professionals from large hospital systems to smaller clinics nationwide. Flexible Access: Customizable data delivery methods tailored to your business needs. Ethical Standards: Fully compliant with healthcare and data protection regulations.
Success.ai’s B2B Contact Data for US Healthcare Professionals is the ultimate solution for connecting with industry leaders, driving impactful marketing campaigns, and optimizing your recruitment strategies. Our commitment to quality, accuracy, and affordability ensures you achieve exceptional results while adhering to ethical and legal standards.
No one beats us on price. Period.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
COVID-19 tests, cases, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes.
Starting in July 2020, this dataset will be updated every weekday.
Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.
A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.
A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.
Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
Starting April 4, 2022, negative rapid antigen and rapid PCR test results for SARS-CoV-2 are no longer required to be reported to the Connecticut Department of Public Health as of April 4. Negative test results from laboratory based molecular (PCR/NAAT) results are still required to be reported as are all positive test results from both molecular (PCR/NAAT) and antigen tests.
On 5/16/2022, 8,622 historical cases were included in the data. The date range for these cases were from August 2021 – April 2022.”
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
The Veterans Health Administration Medical Facilities dataset includes Veteran Affairs hospitals, Veteran Affairs Residential Rehabilitation Treatment Programs (RRTP), Veteran Affairs Nursing Home Care Units (NHCU), Veteran Affairs Outpatient Clinics (VAOC), Vet Centers, and Veteran Affairs Medical Centers (VAMC). It should not include planned and suspended (non-operational) sites and mobile clinics. These definitions were set by the Veterans Health Administration (VHA) Policy Board in December 1998 and are the basis for defining the category and the additional service types for each VHA service site. These definitions cover sites generally owned by the Department of Veterans Affairs (VA) with the exception of leased and contracted community-based outpatient clinics (CBOCs). 1. VA HOSPITAL: an institution (health care site) that is owned, staffed and operated by VA and whose primary function is to provide inpatient services. NOTE: Each geographically unique inpatient division of an integrated facility is counted as a separate hospital. 2. VA RESIDENTIAL REHABILITATION TREATMENT PROGRAM (RRTP): provides comprehensive health and social services in a VA facility for eligible veterans who are ambulatory and do not require the level of care provided in nursing homes. 3. VA NURSING HOME CARE UNITS (NHCU): provides care to individuals who are not in need of hospital care, but who require nursing care and related medical or psychosocial services in an institutional setting. VA NHCUs are facilities designed to care for patients who require a comprehensive care management system coordinated by an interdisciplinary team. Services provided include nursing, medical, rehabilitative, recreational, dietetic, psychosocial, pharmaceutical, radiological, laboratory, dental and spiritual. 4. VA OUTPATIENT CLINICS: a. Community-Based Outpatient Clinic (CBOC): a VA-operated, VA-funded, or VA-reimbursed health care facility or site geographically distinct or separate from a parent medical facility. This term encompasses all types of VA outpatient clinics, except hospital-based, independent and mobile clinics. Satellite, community-based, and outreach clinics have been redefined as CBOCs. Technically, CBOCs fall into four Categories, which are: > (i) VA-owned. A CBOC that is owned and staffed by VA. > (ii) Leased. A CBOC where the space is leased (contracted), but is staffed by VA. NOTE: This includes donated space staffed by VA. > (iii) Contracted. A CBOC where the space and the staff are not VA. This is typically a Healthcare Management Organization (HMO)-type provided where multiple sites can be associated with a single station identifier. > (iv) Not Operational. A CBOC which has been approved by Congress, but has not yet begun operating. b. Hospital-Based Outpatient Clinic: outpatient clinic functions located at a hospital. c. Independent Outpatient Clinic: a full-time, self-contained, freestanding, ambulatory care clinic that has no management, program, or fiscal relationship to a VA medical facility. Primary and specialty health care services are provided in an outpatient setting. 5. VET CENTER: Provides professional readjustment counseling, community education, outreach to special populations, brokering of services with community agencies, and access to links between the veteran and VA. 6. VA MEDICAL CENTER (VAMC): a medical center is a unique VA site of care providing two or more types of services that reside at a single physical site location. The services provided are the primary service as tracked in the VHA Site Tracking (VAST) (i.e., VA Hospital, Nursing Home, Domiciliary, independent outpatient clinic (IOC), hospital-based outpatient clinic (HBOC), and CBOC). The definition of VA medical center does not include the Vet Centers as an identifying service. This dataset is based upon GFI data received from the National Geospatial-Intelligence Agency (NGA). At the request of NGA, text fields in this dataset have been set to all upper case to facilitate consistent database engine search results. At the request of NGA, all diacritics (e.g., the German umlaut or the Spanish tilde) have been replaced with their closest equivalent English character to facilitate use with database systems that may not support diacritics. The currentness of this dataset is indicated by the [CONTDATE] attribute. Based upon this attribute, the oldest record dates from 09/21/2007 and the newest record dates from 10/15/2007.
Success.ai’s Healthcare Industry Leads Data for the North American Healthcare Sector provides businesses with a comprehensive dataset designed to connect with healthcare organizations, decision-makers, and key stakeholders across the United States, Canada, and Mexico. Covering hospitals, pharmaceutical firms, biotechnology companies, and medical equipment providers, this dataset delivers verified contact information, firmographic details, and actionable business insights.
With access to over 170 million verified professional profiles and 30 million company profiles, Success.ai ensures your outreach, market research, and strategic initiatives are powered by accurate, continuously updated, and AI-validated data. Backed by our Best Price Guarantee, this solution is your key to success in the North American healthcare market.
Why Choose Success.ai’s Healthcare Industry Leads Data?
Verified Contact Data for Precision Targeting
Comprehensive Coverage of North America’s Healthcare Sector
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Healthcare Decision-Maker Profiles
Advanced Filters for Precision Targeting
Market and Operational Insights
AI-Driven Enrichment
Strategic Use Cases:
Sales and Lead Generation
Marketing and Demand Generation
Regulatory Compliance and Risk Mitigation
Recruitment and Workforce Optimization
Why Choose Success.ai?
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
References
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.
May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.
June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.
July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.
July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.
July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.
July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.
July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.
August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.
August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.
August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.
August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.
August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.
September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.
September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,
The Healthcare Cost and Utilization Project (HCUP) Kids' Inpatient Database (KID) is the largest publicly available all-payer pediatric inpatient care database in the United States, containing data from two to three million hospital stays each year. Its large sample size is ideal for developing national and regional estimates and enables analyses of rare conditions, such as congenital anomalies, as well as uncommon treatments, such as organ transplantation. Developed through a Federal-State-Industry partnership sponsored by the Agency for Healthcare Research and Quality, HCUP data inform decision making at the national, State, and community levels.
The KID is a sample of pediatric discharges from 4,000 U.S. hospitals in the HCUP State Inpatient Databases yielding approximately two to three million unweighted hospital discharges for newborns, children, and adolescents per year. About 10 percent of normal newborns and 80 percent of other neonatal and pediatric stays are selected from each hospital that is sampled for patients younger than 21 years of age.
The KID contains clinical and resource use information included in a typical discharge abstract, with safeguards to protect the privacy of individual patients, physicians, and hospitals (as required by data sources). It includes discharge status, diagnoses, procedures, patient demographics (e.g., sex, age), expected source of primary payment (e.g., Medicare, Medicaid, private insurance, self-pay, and other insurance types), and hospital charges and cost.
Restricted access data files are available with a data use agreement and brief online security training.
This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.
This dataset represents preliminary estimates of cumulative U.S. RSV –associated disease burden estimates for the 2024-2025 season, including outpatient visits, hospitalizations, and deaths. Real-time estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed respiratory syncytial virus (RSV) infections. The data come from the Respiratory Syncytial Virus Hospitalization Surveillance Network (RSV-NET), a surveillance platform that captures data from hospitals that serve about 8% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of RSV-associated disease burden estimates that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent RSV-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
Note: Preliminary burden estimates are not inclusive of data from all RSV-NET sites. Due to model limitations, sites with small sample sizes can impact estimates in unpredictable ways and are excluded for the benefit of model stability. CDC is working to address model limitations and include data from all sites in final burden estimates.
References
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The potential for urban open spaces to convey therapeutic benefits is increasingly substantiated. More work is needed to specifically consider how low impact designs to manage stormwater such as ecoroofs perform in this context. Here, we report on a pilot study addressing: (1) factors determining whether a hospital has an ecoroof, and (2) how ecoroofs might convey therapeutic benefits. We utilized a mixed methods approach which encompassed phone interviews of hospital ecoroof managers as well as analysis of national hospital databases. We also conducted a local case study which compared cortisol samples and stress indicators from patients, staff, and caregivers visiting an ecoroof to those waiting indoors at the Oregon Health and Sciences University in Portland OR. Behavioral observations took place at this same location. In 2017, we identified 105 hospitals with ecoroofs in the contiguous United States. Our analysis of a national hospital database found two factors that significantly increased the likelihood of a hospital having an ecoroof: Medicaid discharges per year; and non-profit status. Interviews with practitioners nationally revealed a wide range of motivations but that therapy was a consideration for a majority, but notably not all, of the hospitals surveyed. They similarly noted variation in roof design, maintenance, and programming around horticultural therapy; we highlight some best practices here. Our physiological case study was limited in sample size. Preliminary findings showed that salivary cortisol levels varied by ecoroof visitor type, ranging on average from 0.09 μg/ml for caregivers to 0.30 μg/ml for patients. We did not observe any significant changes in visitor cortisol. This could be explained by low replication or the short treatment duration. Alternatively, these pilot data may indicate a gap in horticultural therapy theory vs. practice. Behavioral observations demonstrated a wide array of different uses of the ecoroof space such as cell phone use and passing by. Though preliminary, our findings suggest that therapeutic effects may vary by user type and activity and depend on roof design and goals. This study offers both information on the therapeutic potential of hospital ecoroofs as well as lessons learned regarding different approaches to researching this somewhat new topic.
Brain Tumor Diagnostics Market Size 2024-2028
The brain tumor diagnostics market size is forecast to increase by USD 152.9 million at a CAGR of 3.4% between 2023 and 2028.
Brain tumor diagnostics is a critical area of medical research and healthcare, with a significant focus on improving patient outcomes for those diagnosed with gliomas and other types of brain cancers. The market for brain tumor diagnostics is experiencing notable growth due to several factors, including the increasing prevalence of brain cancer, advancements in diagnostic procedures, and ongoing research and development in this field. However, challenges persist, such as unfavorable reimbursement scenarios and the need for more effective treatment modalities like chemotherapy and radiotherapy to improve patient survival rates. Hospitals and diagnostic centers are crucial in providing accurate and timely diagnoses, ensuring that patients receive the best possible care. As the demand for advanced diagnostic tools and techniques continues to grow, it is essential to address these challenges and work towards improving patient outcomes and advancing the field of brain tumor diagnostics.
What will be the Size of the Market During the Forecast Period?
Request Free Sample
The market represents a significant area of growth in the healthcare industry, driven by the increasing prevalence of neurological disorders, including brain cancer. According to the American Brain Tumor Association, an estimated 80,000 Americans are diagnosed with a primary brain tumor each year. Early detection and accurate diagnosis of brain tumors, such as malignant glioblastoma, are crucial for improving patient survival rates and effective treatment. Advanced diagnostic solutions are increasingly being adopted for brain tumor diagnostics. These solutions include non-invasive techniques, such as magnetic resonance imaging (MRI), which provides detailed images of the brain and can help identify tumors. Imaging investigations, such as MRIs, play a vital role in diagnosing brain tumors, allowing medical professionals to assess the size, location, and extent of the tumor. Screening programs are also being implemented to increase the early detection of brain tumors. These programs often involve a combination of diagnostic procedures, including neurological evaluations, blood tests, genetic testing, and biopsies.
Brain tumors, including malignant glioblastoma, can be challenging to diagnose due to their non-specific symptoms and the difficulty of accessing brain tissue for biopsy. However, advancements in diagnostic tools and techniques are helping to improve the accuracy and speed of brain tumor diagnoses. These advancements include the development of more sensitive imaging technologies and the integration of artificial intelligence and machine learning algorithms into diagnostic procedures. In conclusion, the market is a critical area of growth in the healthcare industry, driven by the increasing prevalence of neurological disorders and the need for accurate and early diagnosis of brain tumors. Advanced diagnostic solutions, such as non-invasive imaging technologies and screening programs, are playing an increasingly important role in the detection and identification of brain tumors. Effective treatment regimens, including chemotherapy and radiotherapy, rely on accurate and timely diagnoses, making the continued advancement of brain tumor diagnostics a priority for improving patient outcomes.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Type
Imaging test
Biopsy
Molecular testing
Others
Geography
North America
Canada
Mexico
US
Europe
Germany
UK
France
Asia
China
India
Japan
Rest of World (ROW)
By Type Insights
The imaging test segment is estimated to witness significant growth during the forecast period.
Brain tumors are a significant health concern, and timely and accurate diagnosis is crucial for effective treatment. Medical tools play a vital role in the diagnosis of brain tumors, with various methods being employed. Imaging investigations, such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans, are commonly used to identify tumors. Biopsies, which involve extracting tissue samples from the tumor for further examination, are also essential for determining the type and severity of the tumor.
Furthermore, blood tests and genetic testing are other diagnostic methods that are gaining popularity. Neurological evaluations, which assess the function of the nervous system, are also used to diagnose brain tumors. The choice of diagnostic method depe
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The number of hospitals in the United States was forecast to continuously decrease between 2024 and 2029 by in total 13 hospitals (-0.23 percent). According to this forecast, in 2029, the number of hospitals will have decreased for the twelfth consecutive year to 5,548 hospitals. Depicted is the number of hospitals in the country or region at hand. As the OECD states, the rules according to which an institution can be registered as a hospital vary across countries.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of hospitals in countries like Canada and Mexico.