Facebook
TwitterThis dataset presents a rich collection of physicochemical parameters from 147 reservoirs distributed across the conterminous U.S. One hundred and eight of the reservoirs were selected using a statistical survey design and can provide unbiased inferences to the condition of all U.S. reservoirs. These data could be of interest to local water management specialists or those assessing the ecological condition of reservoirs at the national scale. These data have been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. This dataset is not publicly accessible because: It is too large. It can be accessed through the following means: https://portal-s.edirepository.org/nis/mapbrowse?scope=edi&identifier=2033&revision=1. Format: This dataset presents water quality and related variables for 147 reservoirs distributed across the U.S. Water quality parameters were measured during the summers of 2016, 2018, and 2020 – 2023. Measurements include nutrient concentration, algae abundance, dissolved oxygen concentration, and water temperature, among many others. Dataset includes links to other national and global scale data sets that provide additional variables.
Facebook
TwitterThis dataset is designed for beginners to practice regression problems, particularly in the context of predicting house prices. It contains 1000 rows, with each row representing a house and various attributes that influence its price. The dataset is well-suited for learning basic to intermediate-level regression modeling techniques.
Beginner Regression Projects: This dataset can be used to practice building regression models such as Linear Regression, Decision Trees, or Random Forests. The target variable (house price) is continuous, making this an ideal problem for supervised learning techniques.
Feature Engineering Practice: Learners can create new features by combining existing ones, such as the price per square foot or age of the house, providing an opportunity to experiment with feature transformations.
Exploratory Data Analysis (EDA): You can explore how different features (e.g., square footage, number of bedrooms) correlate with the target variable, making it a great dataset for learning about data visualization and summary statistics.
Model Evaluation: The dataset allows for various model evaluation techniques such as cross-validation, R-squared, and Mean Absolute Error (MAE). These metrics can be used to compare the effectiveness of different models.
The dataset is highly versatile for a range of machine learning tasks. You can apply simple linear models to predict house prices based on one or two features, or use more complex models like Random Forest or Gradient Boosting Machines to understand interactions between variables.
It can also be used for dimensionality reduction techniques like PCA or to practice handling categorical variables (e.g., neighborhood quality) through encoding techniques like one-hot encoding.
This dataset is ideal for anyone wanting to gain practical experience in building regression models while working with real-world features.
Facebook
TwitterThe Geisinger Rural Aging Study (GRAS) was initiated between 1994-99 as a longitudinal study of health outcomes in relation to nutritional status among 21,645 individuals ≥65-years of age. At the time of initiation, the participants were recruited from within the Geisinger Health System service area located in about 25 counties of north central and eastern Pennsylvania. Active participant data collection is complete but passive data collected through the Electronic Health Record continues for those surviving. Prior patient reported data were collected at baseline and at a rescreening visit occurring 3-4 years after baseline, using questionnaires that encompass multiple domains of nutrition risk. Our investigations have found high prevalence of poor-quality diets, obesity, and ill health. Low diet quality as revealed by the Diet Quality Screening Questionnaire (DQSQ) is associated with outcomes measured within our electronic medical record (low body mass index, increased co-morbidity, and increased mortality risk). The GRAS dataset currently spans more than two decades including patient reported data, clinical data captured within an electronic medical record, and includes novel sub-cohorts such as the oldest old (≥85 years) and centenarians (≥100 years).
Facebook
TwitterThe QoG Institute is an independent research institute within the Department of Political Science at the University of Gothenburg. Overall 30 researchers conduct and promote research on the causes, consequences and nature of Good Governance and the Quality of Government - that is, trustworthy, reliable, impartial, uncorrupted and competent government institutions.
The main objective of our research is to address the theoretical and empirical problem of how political institutions of high quality can be created and maintained. A second objective is to study the effects of Quality of Government on a number of policy areas, such as health, the environment, social policy, and poverty.
The dataset was created as part of a research project titled “Quality of Government and the Conditions for Sustainable Social Policy”. The aim of the dataset is to promote cross-national comparative research on social policy output and its correlates, with a special focus on the connection between social policy and Quality of Government (QoG).
The data comes in three versions: one cross-sectional dataset, and two cross-sectional time-series datasets for a selection of countries. The two combined datasets are called “long” (year 1946-2009) and “wide” (year 1970-2005).
The data contains six types of variables, each provided under its own heading in the codebook: Social policy variables, Tax system variables, Social Conditions, Public opinion data, Political indicators, Quality of government variables.
QoG Social Policy Dataset can be downloaded from the Data Archive of the QoG Institute at http://qog.pol.gu.se/data/datadownloads/data-archive Its variables are now included in QoG Standard.
Purpose:
The primary aim of QoG is to conduct and promote research on corruption. One aim of the QoG Institute is to make publicly available cross-national comparative data on QoG and its correlates. The aim of the QoG Social Policy Dataset is to promote cross-national comparative research on social policy output and its correlates, with a special focus on the connection between social policy and Quality of Government (QoG).
A cross-section dataset based on data from and around 2002 of QoG Social Policy-dataset. If there was no data for 2002 on a variable, data from the year closest year available have been used, however not further back in time than 1995.
Samanni, Marcus. Jan Teorell, Staffan Kumlin, Stefan Dahlberg, Bo Rothstein, Sören Holmberg & Richard Svensson. 2012. The QoG Social Policy Dataset, version 4Apr12. University of Gothenburg:The Quality of Government Institute. http://www.qog.pol.gu.se
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides a unique resource for researchers and data scientists interested in the global dynamics of the COVID-19 pandemic. It focuses on the impact of different SARS-CoV-2 variants and mutations on the duration of local epidemics. By combining variant information with epidemiological data, this dataset allows for a comprehensive analysis of factors influencing the trajectory of the pandemic.
Data Source: The data combines information from the Johns Hopkins University COVID-19 dataset (confirmed_cases.csv and deaths_cases.csv) and the covariants.org dataset (variants.csv). The dataset you see here is the combination of two datasets from Johns Hopkins University and covariants.org.
This dataset is designed for a diverse set of analytical questions. Here are some ideas to inspire the Kaggle community:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Tuscaloosa population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Tuscaloosa across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Tuscaloosa was 110,602, a 1.39% increase year-by-year from 2021. Previously, in 2021, Tuscaloosa population was 109,082, an increase of 4.67% compared to a population of 104,214 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Tuscaloosa increased by 31,687. In this period, the peak population was 110,602 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Tuscaloosa Population by Year. You can refer the same here
Facebook
TwitterThis study developed a framework for quantifying the amount of risk sharing among states in the United States, and constructed data that allowed researchers to decompose the cross-sectional variance in gross state product into levels of smoothing capital markets, federal government, and credit market smoothing. The collection contains 67 Excel data files, that were grouped into 17 datasets based on the organizational ordering schematic provided by the principal investigator, including:
Dataset 1 - State Personal Income: n=1,938, 51 variables; Dataset 2 - Federal Taxes and Contributions: n=17,948, 424 variables; Dataset 3 - State Population: n=1,887, 51 variables; Dataset 4 - State and Local Personal Taxes: n=11,526, 306 variables; Dataset 5 - Interests on State and Local Funds: n=7,609, 205 variables; Dataset 6 - Transfers: n=5,814, 153 variables; Dataset 7 - Non Federal State Income: n=1,887, 51 variables; Dataset 8 - Federal Grants: n=1,938, 51 variables; Dataset 9 - Federal Transfers to Individuals: n=27,415, 766 variables; Dataset 10 - Federal Personal Taxes: n=1,938, 51 variables; Dataset 11 - State Government Expenditure: n=1,887, 51 variables; Dataset 12 - Disposable State Income: n=1,836, 51 variables; Dataset 13 - State Consumption: n=5,508, 153 variables; Dataset 14 - State and Local Transfers: n=1,836, 51 variables; Dataset 15 - Gross State Product: n=1,910, 52 variables; Dataset 16 - Retail Sales: n=3,774, 102 variables; Dataset 17 - Personal Consumption Expenditures: n=38, 2 variables;
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Gratis by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Gratis across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.0% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gratis Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterThe gender pay gap or gender wage gap is the average difference between the remuneration for men and women who are working. Women are generally considered to be paid less than men. There are two distinct numbers regarding the pay gap: non-adjusted versus adjusted pay gap. The latter typically takes into account differences in hours worked, occupations were chosen, education, and job experience. In the United States, for example, the non-adjusted average female's annual salary is 79% of the average male salary, compared to 95% for the adjusted average salary.
The reasons link to legal, social, and economic factors, and extend beyond "equal pay for equal work".
The gender pay gap can be a problem from a public policy perspective because it reduces economic output and means that women are more likely to be dependent upon welfare payments, especially in old age.
This dataset aims to replicate the data used in the famous paper "The Gender Wage Gap: Extent, Trends, and Explanations", which provides new empirical evidence on the extent of and trends in the gender wage gap, which declined considerably during the 1980–2010 period.
fedesoriano. (January 2022). Gender Pay Gap Dataset. Retrieved [Date Retrieved] from https://www.kaggle.com/fedesoriano/gender-pay-gap-dataset.
There are 2 files in this dataset: a) the Panel Study of Income Dynamics (PSID) microdata over the 1980-2010 period, and b) the Current Population Survey (CPS) to provide some additional US national data on the gender pay gap.
PSID variables:
NOTES: THE VARIABLES WITH fz ADDED TO THEIR NAME REFER TO EXPERIENCE WHERE WE HAVE FILLED IN SOME ZEROS IN THE MISSING PSID YEARS WITH DATA FROM THE RESPONDENTS’ ANSWERS TO QUESTIONS ABOUT JOBS WORKED ON DURING THESE MISSING YEARS. THE fz variables WERE USED IN THE REGRESSION ANALYSES THE VARIABLES WITH A predict PREFIX REFER TO THE COMPUTATION OF ACTUAL EXPERIENCE ACCUMULATED DURING THE YEARS IN WHICH THE PSID DID NOT SURVEY THE RESPONDENTS. THERE ARE MORE PREDICTED EXPERIENCE LEVELS THAT ARE NEEDED TO IMPUTE EXPERIENCE IN THE MISSING YEARS IN SOME CASES. NOTE THAT THE VARIABLES yrsexpf, yrsexpfsz, etc., INCLUDE THESE COMPUTATIONS, SO THAT IF YOU WANT TO USE FULL TIME OR PART TIME EXPERIENCE, YOU DON’T NEED TO ADD THESE PREDICT VARIABLES IN. THEY ARE INCLUDED IN THE DATA SET TO ILLUSTRATE THE RESULTS OF THE COMPUTATION PROCESS. THE VARIABLES WITH AN orig PREFIX ARE THE ORIGINAL PSID VARIABLES. THESE HAVE BEEN PROCESSED AND IN SOME CASES RENAMED FOR CONVENIENCE. THE hd SUFFIX MEANS THAT THE VARIABLE REFERS TO THE HEAD OF THE FAMILY, AND THE wf SUFFIX MEANS THAT IT REFERS TO THE WIFE OR FEMALE COHABITOR IF THERE IS ONE. AS SHOWN IN THE ACCOMPANYING REGRESSION PROGRAM, THESE orig VARIABLES AREN’T USED DIRECTLY IN THE REGRESSIONS. THERE ARE MORE OF THE ORIGINAL PSID VARIABLES, WHICH WERE USED TO CONSTRUCT THE VARIABLES USED IN THE REGRESSIONS. HD MEANS HEAD AND WF MEANS WIFE OR FEMALE COHABITOR.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Lakeville by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Lakeville across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 58.0% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lakeville Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterData set of yearly regional atmospheric climate model RACMO2.3p2 data over Antarctica. At the lateral and ocean boundaries the model is forced by ERA5 reanalysis data every 6 hours from 1979-2021. The model is run at 27 km horizontal resolution for the entire Antarctic ice sheet, which constitutes an update of the simulation forced from 1979-2018 by ERA-Interim reported in van Wessem et al., 2018. Upper air relaxation is also active.
To simulate the recent past (1950-2014) and the future (2015-2100) we use RACMO2.3p2 at 27 km resolution to dynamically downscale one historical and three future projections emission scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5) of the Coupled Model Intercomparison Project Phase 6 (CMIP6). Detailed CESM2 description and latest updates are provided in Danabasoglu et., al 2020 and an evaluation over Greenland in Van Kampenhout et al., 2020.
These data are then used to fit exponential and linear relations of annual total liquid water production (melt + rain) and snow accumulation (snowfall - sublimation) to calculate MoA sensitivity as a function of annual average 2 m temperature.
Data set includes:
RACMO2.3p2-ERA5-3H - Yearly average precipitation, snowfall, snowmelt and sublimation for the period 1979-2021 in mm w.e per year, and yearly average 2 m temperature in K, forced by 3 hourly ERA5 reanalysis data.
RACMO2.3p2-hist_r567 - Yearly average precipitation, snowfall, snowmelt and sublimation for the period 1950-2014 in mm w.e per year, and yearly average 2 m temperature in K, forced by 6 hourly CESM2 historical data.
RACMO2.3p2-SSP''126,245,585''_r567 - Yearly average precipitation, snowfall, snowmelt and sublimation for the period 2015-2100 in mm w.e per year, and yearly average 2 m temperature in K, forced by 6 hourly CESM2 future scenario (SSP1-2.6, SSP2-4.5, SSP5-8.5) data.
ThresholdT_DeltaT.nc - Antarctic threshold temperature \(T_T\) and \(\Delta T\) for MoA = 0.7 as described in the Methods section.
Height_latlon_ANT27.nc - Grids of latitude, longitude, surface elevation (height), land/ice mask (mask2d), grounded land/ice mask (maskgrounded2d), aspect ratio, and surface slope.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This dataset provides a comprehensive view of students enrolled in various undergraduate degrees offered at a higher education institution. It includes demographic data, social-economic factors and academic performance information that can be used to analyze the possible predictors of student dropout and academic success. This dataset contains multiple disjoint databases consisting of relevant information available at the time of enrollment, such as application mode, marital status, course chosen and more. Additionally, this data can be used to estimate overall student performance at the end of each semester by assessing curricular units credited/enrolled/evaluated/approved as well as their respective grades. Finally, we have unemployment rate, inflation rate and GDP from the region which can help us further understand how economic factors play into student dropout rates or academic success outcomes. This powerful analysis tool will provide valuable insight into what motivates students to stay in school or abandon their studies for a wide range of disciplines such as agronomy, design, education nursing journalism management social service or technologies
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset can be used to understand and predict student dropouts and academic outcomes. The data includes a variety of demographic, social-economic and academic performance factors related to the students enrolled in higher education institutions. The dataset provides valuable insights into the factors that affect student success and could be used to guide interventions and policies related to student retention.
Using this dataset, researchers can investigate two key questions: - which specific predictive factors are linked with student dropout or completion? - how do different features interact with each other? For example, researchers could explore if there any demographic characteristics (e.g., gender, age at enrollment etc.) or immersion conditions (e.g., unemployment rate in region) are associated with higher student success rates, as well as understand what implications poverty has for educational outcomes. By answering these questions, research insight is generated which can provide critical information for administrators on formulating strategies that promote successful degree completion among students from diverse backgrounds in their institutions.
In order to use this dataset effectively it is important that scientists familiarize themselves with all variables provided in the dataset including categorical (qualitative) variables such as gender or application mode; numerical variables such as number of curricular units at the beginning of semesters or age at enrollment; ordinal data measurement type variables such as marital status; studied trends over time such as inflation rate or GDP; frequency measurements variables like percentage of scholarship holders; etc.. Additionally scientists should make sure they aware off all potential bias included in the data prior running analysis–for example understanding if one population is underrepresented compared another -as this phenomenon could lead unexpected results if not taken into consideration while conducting research undertaken using this data set.. Finally it would be important for practitioners realize that this current Kaggle Dataset contains only one semester-worth information on each admission intake whereas additional studies conducted for a longer time period might be able provide more accurate results related selected topic area due further deterioration retention achievement coefficients obtained from those gradually accurate experiments unfolding different year-long admissions seasons
- Prediction of Student Retention: This dataset can be used to develop predictive models that can identify student risk factors for dropout and take early interventions to improve student retention rate.
- Improved Academic Performance: By using this data, higher education institutions could better understand their students' academic progress and identify areas of improvement from both an individual and institutional perspective. This will enable them to develop targeted courses, activities, or initiatives that enhance academic performance more effectively and efficiently.
- Accessibility Assistance: Using the demographic information included in the dataset, institutions could develop s...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Portland by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Portland across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 51.9% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Portland Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Roanoke by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Roanoke across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 51.9% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Roanoke Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Wilmington by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Wilmington across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 53.63% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Wilmington Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Pueblo by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Pueblo across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.09% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Pueblo Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Michigan by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Michigan across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.43% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Michigan Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Plainfield by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Plainfield across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of male population, with 54.56% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Plainfield Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Warrenton by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Warrenton across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 51.68% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Warrenton Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Troy by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Troy across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 59.37% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Troy Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterThis dataset presents a rich collection of physicochemical parameters from 147 reservoirs distributed across the conterminous U.S. One hundred and eight of the reservoirs were selected using a statistical survey design and can provide unbiased inferences to the condition of all U.S. reservoirs. These data could be of interest to local water management specialists or those assessing the ecological condition of reservoirs at the national scale. These data have been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. This dataset is not publicly accessible because: It is too large. It can be accessed through the following means: https://portal-s.edirepository.org/nis/mapbrowse?scope=edi&identifier=2033&revision=1. Format: This dataset presents water quality and related variables for 147 reservoirs distributed across the U.S. Water quality parameters were measured during the summers of 2016, 2018, and 2020 – 2023. Measurements include nutrient concentration, algae abundance, dissolved oxygen concentration, and water temperature, among many others. Dataset includes links to other national and global scale data sets that provide additional variables.