67 datasets found
  1. Death Profiles by Leading Causes of Death

    • data.ca.gov
    • data.chhs.ca.gov
    • +4more
    web link, zip
    Updated Apr 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by Leading Causes of Death [Dataset]. https://data.ca.gov/dataset/death-profiles-by-leading-causes-of-death
    Explore at:
    web link, zipAvailable download formats
    Dataset updated
    Apr 22, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data for deaths by leading cause of death categories are now available in the death profiles dataset for each geographic granularity.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

    Cause of death categories for years 1999 and later are based on tenth revision of International Classification of Diseases (ICD-10) codes. Comparable categories are provided for years 1979 through 1998 based on ninth revision (ICD-9) codes. For more information on the comparability of cause of death classification between ICD revisions see Comparability of Cause-of-death Between ICD Revisions.

  2. C

    Death Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    csv, zip
    Updated Jul 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv(74351424), csv(75015194), csv(11738570), csv(1128641), csv(15127221), csv(60517511), csv(73906266), csv(60201673), csv(60676655), csv(28125832), csv(60023260), csv(51592721), csv(74689382), csv(52019564), csv(5095), csv(74043128), csv(24264506), zip, csv(24235858), csv(74497014)Available download formats
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  3. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  4. A

    ‘😷 NYC Leading Causes of Death’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘😷 NYC Leading Causes of Death’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-nyc-leading-causes-of-death-388c/ccd5c97c/?iid=004-017&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    Analysis of ‘😷 NYC Leading Causes of Death’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/nyc-leading-causes-of-deathe on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    NYC Leading Causes of Death Data

    Rows: 3840; Columns: 6

    The data includes items, such as:

    • Year
    • Ethnicity
    • Sex
    • Cause of Death
    • Count
    • Percent

    Source: NYC Open Data

    https://data.cityofnewyork.us/Health/New-York-City-Leading-Causes-of-Death/jb7j-dtam

    This dataset was created by Data Society and contains around 4000 samples along with Ethnicity, Sex, technical information and other features such as: - Percent - Count - and more.

    How to use this dataset

    • Analyze Cause Of Death in relation to Year
    • Study the influence of Ethnicity on Sex
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Data Society

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  5. Death in the United States

    • kaggle.com
    zip
    Updated Aug 3, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2017). Death in the United States [Dataset]. https://www.kaggle.com/cdc/mortality
    Explore at:
    zip(766333584 bytes)Available download formats
    Dataset updated
    Aug 3, 2017
    Dataset authored and provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Every year the CDC releases the country’s most detailed report on death in the United States under the National Vital Statistics Systems. This mortality dataset is a record of every death in the country for 2005 through 2015, including detailed information about causes of death and the demographic background of the deceased.

    It's been said that "statistics are human beings with the tears wiped off." This is especially true with this dataset. Each death record represents somebody's loved one, often connected with a lifetime of memories and sometimes tragically too short.

    Putting the sensitive nature of the topic aside, analyzing mortality data is essential to understanding the complex circumstances of death across the country. The US Government uses this data to determine life expectancy and understand how death in the U.S. differs from the rest of the world. Whether you’re looking for macro trends or analyzing unique circumstances, we challenge you to use this dataset to find your own answers to one of life’s great mysteries.

    Overview

    This dataset is a collection of CSV files each containing one year's worth of data and paired JSON files containing the code mappings, plus an ICD 10 code set. The CSVs were reformatted from their original fixed-width file formats using information extracted from the CDC's PDF manuals using this script. Please note that this process may have introduced errors as the text extracted from the pdf is not a perfect match. If you have any questions or find errors in the preparation process, please leave a note in the forums. We hope to publish additional years of data using this method soon.

    A more detailed overview of the data can be found here. You'll find that the fields are consistent within this time window, but some of data codes change every few years. For example, the 113_cause_recode entry 069 only covers ICD codes (I10,I12) in 2005, but by 2015 it covers (I10,I12,I15). When I post data from years prior to 2005, expect some of the fields themselves to change as well.

    All data comes from the CDC’s National Vital Statistics Systems, with the exception of the Icd10Code, which are sourced from the World Health Organization.

    Project ideas

    • The CDC's mortality data was the basis of a widely publicized paper, by Anne Case and Nobel prize winner Angus Deaton, arguing that middle-aged whites are dying at elevated rates. One of the criticisms against the paper is that it failed to properly account for the exact ages within the broad bins available through the CDC's WONDER tool. What do these results look like with exact/not-binned age data?
    • Similarly, how sensitive are the mortality trends being discussed in the news to the choice of bin-widths?
    • As noted above, the data preparation process could have introduced errors. Can you find any discrepancies compared to the aggregate metrics on WONDER? If so, please let me know in the forums!
    • WONDER is cited in numerous economics, sociology, and public health research papers. Can you find any papers whose conclusions would be altered if they used the exact data available here rather than binned data from Wonder?

    Differences from the first version of the dataset

    • This version of the dataset was prepared in a completely different many. This has allowed us to provide a much larger volume of data and ensure that codes are available for every field.
    • We've replaced the batch of sql files with a single JSON per year. Kaggle's platform currently offer's better support for JSON files, and this keeps the number of files manageable.
    • A tutorial kernel providing a quick introduction to the new format is available here.
    • Lastly, I apologize if the transition has interrupted anyone's work! If need be, you can still download v1.
  6. Data Science for Good: WHO NCDs Dataset

    • kaggle.com
    Updated Jun 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Beni Vitai (2020). Data Science for Good: WHO NCDs Dataset [Dataset]. https://www.kaggle.com/benivitai/ncd-who-dataset/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 22, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Beni Vitai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context

    In the shadows of the Covid-19 pandemic, there is another global health crisis that has gone largely unnoticed. This is the Noncommunicable Disease (NCD) pandemic.

    The WHO website describes NCDs as follows:

    Noncommunicable diseases (NCDs), also known as chronic diseases, tend to be of long duration and are the result of a combination of genetic, physiological, environmental and behaviours factors.

    The main types of NCDs are cardiovascular diseases (like heart attacks and stroke), cancers, chronic respiratory diseases (such as chronic obstructive pulmonary disease and asthma) and diabetes.

    NCDs disproportionately affect people in low- and middle-income countries where more than three quarters of global NCD deaths – 32million – occur.

    Key facts:

    • Noncommunicable diseases (NCDs) kill 41 million people each year, equivalent to 71% of all deaths globally.
    • Each year, 15 million people die from a NCD between the ages of 30 and 69 years; over 85% of these "premature" deaths occur in low- and middle-income > * countries.
    • Cardiovascular diseases account for most NCD deaths, or 17.9 million people annually, followed by cancers (9.0 million), respiratory diseases (3.9million), and diabetes (1.6 million).
    • These 4 groups of diseases account for over 80% of all premature NCD deaths.
    • Tobacco use, physical inactivity, the harmful use of alcohol and unhealthy diets all increase the risk of dying from a NCD.
    • Detection, screening and treatment of NCDs, as well as palliative care, are key components of the response to NCDs.

    Content

    This data repository consists of 3 CSV files: WHO-cause-of-death-by-NCD.csv is the main dataset, which provides the percentage of deaths caused by NCDs out of all causes of death, for each nation globally. Metadata_Country.csv and Metadata_Indicator.csv provide additional metadata which is helpful for interpreting the main CSV.

    The data collected spans a period from 2000 to 2016. The main CSV has columns for every year from 1960 to 2019. It is advisable to drop all redundant columns where no data was collected.

    Furthermore, it is advisable to merge Metadata_Country.csv with the main CSV as it provides valuable additional information, particularly on the economic situation of each nation.

    Acknowledgements

    This dataset has been extracted from The World Bank 'Cause of death, by non-communicable diseases (% of total)' Dataset, derived based on the data from WHO's Global Health Estimates. It is freely provided under a Creative Commons Attribution 4.0 International License (CC BY 4.0), with the additional terms as stated on the World Bank website: World Bank Terms of Use for Datasets.

    Inspiration

    I would be interested to see some good data wrangling (dropping redundant columns), as well as kernels interpreting additional information in 'SpecialNotes' column in Metadata_country.csv

    It would also be great to see what different factors influence NCDs: most of all, the geopolitical factors. Would be great to see some choropleth visualisations to get an idea of which regions are most affected by NCDs.

  7. d

    Death Profiles by ZIP Code

    • catalog.data.gov
    • data.ca.gov
    • +3more
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by ZIP Code [Dataset]. https://catalog.data.gov/dataset/death-profiles-by-zip-code-017c1
    Explore at:
    Dataset updated
    Jul 23, 2025
    Dataset provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California residents by ZIP Code based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths of California residents. The data tables include deaths of residents of California by ZIP Code of residence (by residence). The data are reported as totals, as well as stratified by age and gender. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years. The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  8. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(419332), csv(5034), csv(5401561), csv(463460), csv(2026589), csv(16301), csv(200270), csv(4689434), zip, csv(164006), csv(385695)Available download formats
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  9. t

    Causes of death, by sex - Vdataset - LDM

    • service.tib.eu
    Updated Jan 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Causes of death, by sex - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/eurostat_xlagqajierwffbsknlconq
    Explore at:
    Dataset updated
    Jan 8, 2025
    Description

    Death rate of a population adjusted to a standard age distribution. As most causes of death vary significantly with people's age and sex, the use of standardised death rates improves comparability over time and between countries, as they aim at measuring death rates independently of different age structures of populations. The standardised death rates used here are calculated on the basis of a standard European population (defined by the World Health Organization). Detailed data for 65 causes of death are available in the database (under the heading 'Data').

  10. Causes of Death in World

    • kaggle.com
    Updated Sep 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamadreza Momeni (2023). Causes of Death in World [Dataset]. https://www.kaggle.com/imtkaggleteam/causes-of-death-in-world/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 7, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Mohamadreza Momeni
    Area covered
    World
    Description

    What are people dying from?

    This question is essential to guide decisions in public health, and find ways to save lives.

    Many leading causes of death receive little mainstream attention. If news reports reflected what children died from, they would say that around 1,400 young children die from diarrheal diseases, 1,000 die from malaria, and 1,900 from respiratory infections – every day.

    This can change. Over time, death rates from these causes have declined across the world.

    A better understanding of the causes of death has led to the development of technologies, preventative measures, and better healthcare, reducing the chances of dying from a wide range of different causes, across all age groups.

    In the past, infectious diseases dominated. But death rates from infectious diseases have fallen quickly – faster than other causes. This has led to a shift in the leading causes of death. Now, non-communicable diseases – such as heart diseases and cancers – are the most common causes of death globally.

    More progress is possible, and the impact of causes of death can fall further.

    On this page, you will find global data and research on leading causes of death and how they can be prevented.

    This data can also help understand the burden of disease more broadly, and offer a lens to see the impacts of healthcare and medicine, habits and behaviours, environmental factors, health infrastructure, and more.

    By Saloni Dattani, Fiona Spooner, Hannah Ritchie and Max Roser

  11. g

    Death due to homicide, assault, by sex | gimi9.com

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Death due to homicide, assault, by sex | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_1q8bgy4l7vdbgk3puk5eqa
    Explore at:
    Description

    Death rate of a population adjusted to a standard age distribution. As most causes of death vary significantly with people's age and sex, the use of standardised death rates improves comparability over time and between countries, as they aim at measuring death rates independently of different age structures of populations. The standardised death rates used here are calculated on the basis of a standard European population (defined by the World Health Organization). Detailed data for 65 causes of death are available in the database (under the heading 'Data').

  12. A

    ‘Deaths in 122 U.S. cities’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Deaths in 122 U.S. cities’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-deaths-in-122-u-s-cities-58ce/63fac692/?iid=015-334&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Analysis of ‘Deaths in 122 U.S. cities’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/deaths-in-122-u-s-citiese on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    TABLE III. Deaths in 122 U.S. cities – 2016. 122 Cities Mortality Reporting System — Each week, the vital statistics offices of 122 cities across the United States report the total number of death certificates processed and the number of those for which pneumonia or influenza was listed as the underlying or contributing cause of death by age group (Under 28 days, 28 days –1 year, 1-14 years, 15-24 years, 25-44 years, 45-64 years, 65-74 years, 75-84 years, and ≥ 85 years).

    FOOTNOTE: U: Unavailable. —: No reported cases. * Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.

    †Pneumonia and influenza.

    § Total includes unknown ages.

    Source: https://catalog.data.gov/dataset/table-iii-deaths-in-122-u-s-cities

    This dataset was created by Health and contains around 5000 samples along with Reporting Area, All Causes, By Age (years), All Ages**, technical information and other features such as: - All Causes, By Age (years), All Ages**, Flag - All Causes, By Age (years), Lt 1, Flag - and more.

    How to use this dataset

    • Analyze All Causes, By Age (years), ≥65, Flag in relation to All Causes, By Age (years), ≥65
    • Study the influence of P&i† Total on All Causes, By Age (years), 25–44, Flag
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Health

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  13. t

    Death due to accidents, by sex

    • service.tib.eu
    • gimi9.com
    Updated Jan 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Death due to accidents, by sex [Dataset]. https://service.tib.eu/ldmservice/dataset/eurostat_igqsxywbiamow67p7a1edq
    Explore at:
    Dataset updated
    Jan 8, 2025
    Description

    Death rate of a population adjusted to a standard age distribution. As most causes of death vary significantly with people's age and sex, the use of standardised death rates improves comparability over time and between countries, as they aim at measuring death rates independently of different age structures of populations. The standardised death rates used here are calculated on the basis of a standard European population (defined by the World Health Organization). Detailed data for 65 causes of death are available in the database (under the heading 'Data').

  14. g

    Cross-National Statistics on the Causes of Death, 1966-1974 - Archival...

    • search.gesis.org
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations (2021). Cross-National Statistics on the Causes of Death, 1966-1974 - Archival Version [Dataset]. http://doi.org/10.3886/ICPSR07624
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    ICPSR - Interuniversity Consortium for Political and Social Research
    GESIS search
    Authors
    United Nations
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de441841https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de441841

    Description

    Abstract (en): These data are a collection of demographic statistics for the populations of 125 countries or areas throughout the world, prepared by the Statistical Office of the United Nations. The units of analysis are both country and data year. The primary source of data is a set of questionnaires sent monthly and annually to national statistical services and other appropriate government offices. Data include statistics on approximately 50 types of causes of death for the years 1966 through 1974 for males, females, and total populations. Causes of death in 125 countries or areas throughout the world between the years 1966 and 1974. 2005-11-04 On 2005-03-14 new files were added to one or more datasets. These files included additional setup files as well as one or more of the following: SAS program, SAS transport, SPSS portable, and Stata system files. The metadata record was revised 2005-11-04 to reflect these additions. The causes of death are classified according to the 6th, 7th, and 8th versions of an abbreviated list of the World Health Organization's INTERNATIONAL STATISTICAL CLASSIFICATION OF DISEASES, INJURIES, AND CAUSES OF DEATH. Therefore, data for causes of death are not necessarily comparable across countries or data years. Users should refer to Variable 5 in the Variable List for full discussion of this problem. Users interested in comparing deaths for countries or years that use different versions of the Abbreviated list should consult two publications: A. Joan Klebba, and Alice B. Dolman. COMPARABILITY OF MORTALITY STATISTICS FOR THE SEVENTH AND EIGHTH REVISIONS OF THE INTERNATIONAL CLASSIFICATION OF DISEASES, UNITED STATES. Rockville, MD: United States Department of Health, Education, and Welfare. Public Health Service. Health Services and Mental Health Administration. National Center for Health Statistics, 1975, and World Health Organization. MANUAL OF THE INTERNATIONAL STATISTICAL CLASSIFICATION OF DISEASES, INJURIES, AND CAUSES OF DEATH. Geneva, Switzerland: World Health Organization, 1967.The user should note that countries have data covering a variety of time spans (the maximum span being 1965-1973), and the data have not been padded to supply missing data codes for those years for which a country does not have data. Thus, Egypt has data for years 1965 through 1972, while Kenya has data for only 1970. (See Appendix D in the codebook to determine the years for which a country has data.)It is important that any user of these data consult the United Nations' DEMOGRAPHIC YEARBOOK, 1976, for further explanation of the data's limitations. Certain countries have modified reporting procedures which are presented in both the footnotes and the technical notes accompanying the tables in the Yearbook. There is no way to identify these problems using only the machine-readable data.In order to eliminate unnecessary repetition of identifying information, data were merged so that each record now contains all the data for a country for one particular year. In this process, breakdowns of deaths by ethnic group and/or urban/rural classification were omitted since only a few countries provided such information. Each record now contains the data for the number of deaths from each cause of death for male, female, and total.While the data appear to be in a rectangular matrix, such is not the case. This occurs because different versions of the abbreviated list are referenced in different data years. The lack of a rectangular data matrix does little to restrict the manageability of the dataset. See codebook for examples.While the data have been reformatted and documented by ICPSR staff, there has been no attempt to verify the accuracy and consistency of the data received from the U.N. Statistical Office.

  15. d

    Deaths from all causes in Western Europe by month, 1914-1918, from Bunle, H....

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    More, Alexander (2023). Deaths from all causes in Western Europe by month, 1914-1918, from Bunle, H. (1954). Le Mouvement naturel de la population dans le monde de 1906 à 1936. Paris, Institut national d’études démographiques, pp. 432-438. [Dataset]. http://doi.org/10.7910/DVN/GW0DGF
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    More, Alexander
    Area covered
    Western Europe
    Description

    Dataset title: Deaths from all causes in Western Europe by month, 1914-1918 Related publication: More, A. F. et al. (2020). The impact of a six-year climate anomaly on the ‘Spanish Flu’ Pandemic and WWI. GeoHealth, American Geophysical Union. Figures 2 and 3. Dataset source: Bunle, H. (1954). Le Mouvement naturel de la population dans le monde de 1906 à 1936. Paris, Institut national d’études démographiques, pp. 432-438. N.B. Please cite the original source if you use this dataset. N.B. Please note that Bunle did not publish mortality statistics for Belgium, Bulgaria, and several other countries for the period 1914-20 due to his inability to find reliable sources, as indicated in his footnotes and on p. 12. This dataset includes countries of western Europe with the most reliable data. Units: Thousands of deaths. Each monthly figure should be multiplied by 1000 to obtain the total deaths for a specific month. Each year is divided in 12 monthly entries, with decimals increasing by 0.083 (1/12) for each month.

  16. t

    Death due to diseases of the nervous system, by sex

    • service.tib.eu
    • gimi9.com
    Updated Jan 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Death due to diseases of the nervous system, by sex [Dataset]. https://service.tib.eu/ldmservice/dataset/eurostat_ntrg1rweql6pvzx55dcdsw
    Explore at:
    Dataset updated
    Jan 8, 2025
    Description

    Death rate of a population adjusted to a standard age distribution. As most causes of death vary significantly with people's age and sex, the use of standardised death rates improves comparability over time and between countries, as they aim at measuring death rates independently of different age structures of populations. The standardised death rates used here are calculated on the basis of a standard European population (defined by the World Health Organization). Detailed data for 65 causes of death are available in the database (under the heading 'Data').

  17. Cancer types causing Death

    • kaggle.com
    Updated Apr 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shuvo Kumar Basak-4004.o (2025). Cancer types causing Death [Dataset]. http://doi.org/10.34740/kaggle/dsv/11587862
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 27, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Shuvo Kumar Basak-4004.o
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Source: https://ourworldindata.org/cancer

    The dataset titled "Cancer Types Causing Death," sourced from Our World in Data, provides a comprehensive overview of global cancer mortality trends. According to the dataset, lung cancer leads as the most fatal cancer worldwide, with approximately 1.8 million deaths in 2022, accounting for 18.7% of all cancer-related fatalities . Following lung cancer, colorectal cancer ranks second, causing about 900,000 deaths (9.3%), while liver cancer and breast cancer account for 760,000 (7.8%) and 670,000 (6.9%) deaths, respectively. Stomach cancer also remains a significant cause of death, with 660,000 fatalities (6.8%) .

    The dataset highlights that lung cancer's prevalence is closely linked to tobacco use, particularly in regions like Asia. In contrast, breast cancer predominantly affects women, while colorectal cancer impacts both genders equally. Notably, the dataset indicates a decline in age-standardized death rates for certain cancers, such as stomach cancer, due to improved hygiene, sanitation, and antibiotic treatments targeting Helicobacter pylori infections . Our World in Data

    Additionally, the dataset underscores the global disparity in cancer mortality, with approximately 70% of cancer deaths occurring in low- and middle-income countries . This disparity is attributed to factors like limited access to early detection, treatment, and preventive measures. The dataset serves as a valuable resource for understanding the global burden of cancer and the need for targeted public health interventions. World Health Organization

  18. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Aug 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 20, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  19. A

    ‘Death Cause by Country’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Death Cause by Country’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-death-cause-by-country-3051/00ae526f/?iid=001-918&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Death Cause by Country’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/majyhain/death-cause-by-country on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Across low- and middle-income countries, mortality from infectious disease, malnutrition, nutritional deficiencies, neonatal and maternal deaths are common – and in some cases, dominant. In Kenya, for example, diarrheal infections are still the primary cause of death. HIV/AIDS is the major cause of death in South Africa and Botswana. However, in high-income countries, the proportion of deaths due by these causes is quite low.

    Content

    The dataset contains thirty two columns and contains the death causes by All Genders (Male, Female) and by all age group.

    Acknowledgements

    Users are allowed to use, copy, distribute and cite the dataset as follows: “Majyhain, Death Causes by Country, Kaggle Dataset, February 04, 2022.”

    Inspiration

    The ideas for this data is to: • The amount of people dying by various diseases.

    • What is the death cause reasons by country.

    • Number of People dying by various diseases.

    • Which disease is causing more deaths by country.

    • Which disease is causing more deaths by world.

    References:

    The Data is collected from the following sites:

    https://www.who.int/

    --- Original source retains full ownership of the source dataset ---

  20. Mortality Projection by Worldwide Health Org.

    • kaggle.com
    Updated Oct 25, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guilherme Diego (2017). Mortality Projection by Worldwide Health Org. [Dataset]. https://www.kaggle.com/guidiego/mortality-projection-who/discussion?sortBy=hot
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 25, 2017
    Dataset provided by
    Kaggle
    Authors
    Guilherme Diego
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The global and regional projections of mortality by cause for years 2015 and 2030 were carried out in 2012 based on the GHE2012 estimates of causes of death for 2011. Earlier projections from 2004 to 2030 were updated using the estimates of deaths by cause for year 2011 as a starting-point, together with revised projections of HIV deaths prepared by UNAIDS and WHO, and revised forecasts of economic growth by region published by the World Bank (baseline scenario). For further information on these estimates and on data sources and methods, refer to The global burden of disease: 2004 update and to the published paper here. It is intended to update these projections soon using the most recent GHE2015 estimates for year 2015 as a starting point.

    Acknowledgements

    All this data could be founded on WHO site, you can read the paper about this dataset here: http://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.0030442&type=printable

    Inspiration

    I'm working on a research about depression and need other illness and mortality data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Department of Public Health (2025). Death Profiles by Leading Causes of Death [Dataset]. https://data.ca.gov/dataset/death-profiles-by-leading-causes-of-death
Organization logo

Death Profiles by Leading Causes of Death

Explore at:
web link, zipAvailable download formats
Dataset updated
Apr 22, 2025
Dataset authored and provided by
California Department of Public Healthhttps://www.cdph.ca.gov/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Data for deaths by leading cause of death categories are now available in the death profiles dataset for each geographic granularity.

The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

Cause of death categories for years 1999 and later are based on tenth revision of International Classification of Diseases (ICD-10) codes. Comparable categories are provided for years 1979 through 1998 based on ninth revision (ICD-9) codes. For more information on the comparability of cause of death classification between ICD revisions see Comparability of Cause-of-death Between ICD Revisions.

Search
Clear search
Close search
Google apps
Main menu