Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Sustainable cities depend on urban forests. City trees -- a pillar of urban forests -- improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about urban forests as ecosystems, particularly their spatial composition, nativity statuses, biodiversity, and tree health. Here, we assembled and standardized a new dataset of N=5,660,237 trees from 63 of the largest US cities. The data comes from tree inventories conducted at the level of cities and/or neighborhoods. Each data sheet includes detailed information on tree location, species, nativity status (whether a tree species is naturally occurring or introduced), health, size, whether it is in a park or urban area, and more (comprising 28 standardized columns per datasheet). This dataset could be analyzed in combination with citizen-science datasets on bird, insect, or plant biodiversity; social and demographic data; or data on the physical environment. Urban forests offer a rare opportunity to intentionally design biodiverse, heterogenous, rich ecosystems. Methods See eLife manuscript for full details. Below, we provide a summary of how the dataset was collected and processed.
Data Acquisition We limited our search to the 150 largest cities in the USA (by census population). To acquire raw data on street tree communities, we used a search protocol on both Google and Google Datasets Search (https://datasetsearch.research.google.com/). We first searched the city name plus each of the following: street trees, city trees, tree inventory, urban forest, and urban canopy (all combinations totaled 20 searches per city, 10 each in Google and Google Datasets Search). We then read the first page of google results and the top 20 results from Google Datasets Search. If the same named city in the wrong state appeared in the results, we redid the 20 searches adding the state name. If no data were found, we contacted a relevant state official via email or phone with an inquiry about their street tree inventory. Datasheets were received and transformed to .csv format (if they were not already in that format). We received data on street trees from 64 cities. One city, El Paso, had data only in summary format and was therefore excluded from analyses.
Data Cleaning All code used is in the zipped folder Data S5 in the eLife publication. Before cleaning the data, we ensured that all reported trees for each city were located within the greater metropolitan area of the city (for certain inventories, many suburbs were reported - some within the greater metropolitan area, others not). First, we renamed all columns in the received .csv sheets, referring to the metadata and according to our standardized definitions (Table S4). To harmonize tree health and condition data across different cities, we inspected metadata from the tree inventories and converted all numeric scores to a descriptive scale including “excellent,” “good”, “fair”, “poor”, “dead”, and “dead/dying”. Some cities included only three points on this scale (e.g., “good”, “poor”, “dead/dying”) while others included five (e.g., “excellent,” “good”, “fair”, “poor”, “dead”). Second, we used pandas in Python (W. McKinney & Others, 2011) to correct typos, non-ASCII characters, variable spellings, date format, units used (we converted all units to metric), address issues, and common name format. In some cases, units were not specified for tree diameter at breast height (DBH) and tree height; we determined the units based on typical sizes for trees of a particular species. Wherever diameter was reported, we assumed it was DBH. We standardized health and condition data across cities, preserving the highest granularity available for each city. For our analysis, we converted this variable to a binary (see section Condition and Health). We created a column called “location_type” to label whether a given tree was growing in the built environment or in green space. All of the changes we made, and decision points, are preserved in Data S9. Third, we checked the scientific names reported using gnr_resolve in the R library taxize (Chamberlain & Szöcs, 2013), with the option Best_match_only set to TRUE (Data S9). Through an iterative process, we manually checked the results and corrected typos in the scientific names until all names were either a perfect match (n=1771 species) or partial match with threshold greater than 0.75 (n=453 species). BGS manually reviewed all partial matches to ensure that they were the correct species name, and then we programmatically corrected these partial matches (for example, Magnolia grandifolia-- which is not a species name of a known tree-- was corrected to Magnolia grandiflora, and Pheonix canariensus was corrected to its proper spelling of Phoenix canariensis). Because many of these tree inventories were crowd-sourced or generated in part through citizen science, such typos and misspellings are to be expected. Some tree inventories reported species by common names only. Therefore, our fourth step in data cleaning was to convert common names to scientific names. We generated a lookup table by summarizing all pairings of common and scientific names in the inventories for which both were reported. We manually reviewed the common to scientific name pairings, confirming that all were correct. Then we programmatically assigned scientific names to all common names (Data S9). Fifth, we assigned native status to each tree through reference to the Biota of North America Project (Kartesz, 2018), which has collected data on all native and non-native species occurrences throughout the US states. Specifically, we determined whether each tree species in a given city was native to that state, not native to that state, or that we did not have enough information to determine nativity (for cases where only the genus was known). Sixth, some cities reported only the street address but not latitude and longitude. For these cities, we used the OpenCageGeocoder (https://opencagedata.com/) to convert addresses to latitude and longitude coordinates (Data S9). OpenCageGeocoder leverages open data and is used by many academic institutions (see https://opencagedata.com/solutions/academia). Seventh, we trimmed each city dataset to include only the standardized columns we identified in Table S4. After each stage of data cleaning, we performed manual spot checking to identify any issues.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the New York population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of New York across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of New York was 19.87 million, a 0.66% increase year-by-year from 2023. Previously, in 2023, New York population was 19.74 million, an increase of 0.17% compared to a population of 19.7 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of New York increased by 870,289. In this period, the peak population was 20.11 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New York Population by Year. You can refer the same here
Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of California across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of California was 39.43 million, a 0.59% increase year-by-year from 2023. Previously, in 2023, California population was 39.2 million, an increase of 0.14% compared to a population of 39.14 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of California increased by 5.44 million. In this period, the peak population was 39.52 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California Population by Year. You can refer the same here
https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions
A dataset listing Georgia cities by population for 2024.
https://www.colorado-demographics.com/terms_and_conditionshttps://www.colorado-demographics.com/terms_and_conditions
A dataset listing Colorado cities by population for 2024.
https://www.massachusetts-demographics.com/terms_and_conditionshttps://www.massachusetts-demographics.com/terms_and_conditions
A dataset listing Massachusetts cities by population for 2024.
https://www.wisconsin-demographics.com/terms_and_conditionshttps://www.wisconsin-demographics.com/terms_and_conditions
A dataset listing Wisconsin cities by population for 2024.
The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.
https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions
A dataset listing Washington cities by population for 2024.
https://www.virginia-demographics.com/terms_and_conditionshttps://www.virginia-demographics.com/terms_and_conditions
A dataset listing Virginia cities by population for 2024.
https://www.oregon-demographics.com/terms_and_conditionshttps://www.oregon-demographics.com/terms_and_conditions
A dataset listing Oregon cities by population for 2024.
https://www.mississippi-demographics.com/terms_and_conditionshttps://www.mississippi-demographics.com/terms_and_conditions
A dataset listing Mississippi cities by population for 2024.
https://www.louisiana-demographics.com/terms_and_conditionshttps://www.louisiana-demographics.com/terms_and_conditions
A dataset listing Louisiana cities by population for 2024.
Supermarkets are one of the most popular and convenient ways in which Americans gain access to healthy food, such as fresh meat and fish, or fresh fruits and vegetables. There are various ways in which people gain access to supermarkets. People in the suburbs drive to supermarkets and load up the car with many bags of food. People in cities depend much more on walking to the local store, or taking a bus or train.This map came about after asking a simple question: how many Americans live within a reasonable walk or drive to a supermarket?In this case, "reasonable" was defined as a 10 minute drive, or a 1 mile walk. The ArcGIS Network Analyst extension performed the calculations on streets data from StreetMap Premium, and the ArcGIS Spatial Analyst extension created a heat map of the walkable access and drivable access to supermarkets.The green dots represent populations in poverty who live within one mile of a supermarket. The red dots represent populations in poverty who live beyond a one mile walk to a supermarket, but may live within a 10 minute drive...which presumes they have access to a car or public transit. The grey dots represent the total population in a given area.This is an excellent map to use as backdrop to show how people are improving access to healthy food in their community. Open this map in ArcGIS Pro or ArcGIS Online to use it as a backdrop to your local analysis work. Or open it in ArcGIS Explorer to add your favorite farmers' market, CSA, or transit line -- then share that map via Facebook, Twitter or email. See this web map for a map with a popup layer.This map shows data for the entire U.S. The supermarkets included in the analysis have annual sales of $1 million or more.Data source: see this map package.
https://www.newmexico-demographics.com/terms_and_conditionshttps://www.newmexico-demographics.com/terms_and_conditions
A dataset listing New Mexico cities by population for 2024.
https://www.indiana-demographics.com/terms_and_conditionshttps://www.indiana-demographics.com/terms_and_conditions
A dataset listing Indiana cities by population for 2024.
https://www.montana-demographics.com/terms_and_conditionshttps://www.montana-demographics.com/terms_and_conditions
A dataset listing Montana cities by population for 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name