24 datasets found
  1. h

    Population-in-the-largest-city-percentage-of-urban-population-africa

    • huggingface.co
    Updated Aug 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Electric Sheep (2025). Population-in-the-largest-city-percentage-of-urban-population-africa [Dataset]. https://huggingface.co/datasets/electricsheepafrica/Population-in-the-largest-city-percentage-of-urban-population-africa
    Explore at:
    Dataset updated
    Aug 27, 2025
    Dataset authored and provided by
    Electric Sheep
    License

    https://choosealicense.com/licenses/gpl/https://choosealicense.com/licenses/gpl/

    Area covered
    Africa
    Description

    Africa: Population in the largest city (% of urban population)

      Dataset summary
    

    This dataset provides values for "Population in the largest city (% of urban population)" across African countries, standardized and made ML-ready. Geographic scope: 54 African countries. Temporal coverage: 1960–2024 (annual). Units: As defined by the World Bank indicator.

      Source & licensing
    

    Source: World Bank – World Development Indicators (WDI), Indicator code:… See the full description on the dataset page: https://huggingface.co/datasets/electricsheepafrica/Population-in-the-largest-city-percentage-of-urban-population-africa.

  2. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  3. f

    DataSheet1_Scaling Beyond Cities.CSV

    • frontiersin.figshare.com
    • datasetcatalog.nlm.nih.gov
    txt
    Updated Jun 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rafael Prieto Curiel; Carmen Cabrera-Arnau; Steven Richard Bishop (2023). DataSheet1_Scaling Beyond Cities.CSV [Dataset]. http://doi.org/10.3389/fphy.2022.858307.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    Frontiers
    Authors
    Rafael Prieto Curiel; Carmen Cabrera-Arnau; Steven Richard Bishop
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    City population size is a crucial measure when trying to understand urban life. Many socio-economic indicators scale superlinearly with city size, whilst some infrastructure indicators scale sublinearly with city size. However, the impact of size also extends beyond the city’s limits. Here, we analyse the scaling behaviour of cities beyond their boundaries by considering the emergence and growth of nearby cities. Based on an urban network from African continental cities, we construct an algorithm to create the region of influence of cities. The number of cities and the population within a region of influence are then analysed in the context of urban scaling. Our results are compared against a random permutation of the network, showing that the observed scaling power of cities to enhance the emergence and growth of cities is not the result of randomness. By altering the radius of influence of cities, we observe three regimes. Large cities tend to be surrounded by many small towns for small distances. For medium distances (above 114 km), large cities are surrounded by many other cities containing large populations. Large cities boost urban emergence and growth (even more than 190 km away), but their scaling power decays with distance.

  4. Z

    Data from: Large Landing Trajectory Data Set for Go-Around Analysis

    • data.niaid.nih.gov
    • zenodo.org
    Updated Dec 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcel Dettling (2022). Large Landing Trajectory Data Set for Go-Around Analysis [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7148116
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset provided by
    Timothé Krauth
    Raphael Monstein
    Manuel Waltert
    Marcel Dettling
    Benoit Figuet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Large go-around, also referred to as missed approach, data set. The data set is in support of the paper presented at the OpenSky Symposium on November the 10th.

    If you use this data for a scientific publication, please consider citing our paper.

    The data set contains landings from 176 (mostly) large airports from 44 different countries. The landings are labelled as performing a go-around (GA) or not. In total, the data set contains almost 9 million landings with more than 33000 GAs. The data was collected from OpenSky Network's historical data base for the year 2019. The published data set contains multiple files:

    go_arounds_minimal.csv.gz

    Compressed CSV containing the minimal data set. It contains a row for each landing and a minimal amount of information about the landing, and if it was a GA. The data is structured in the following way:

        Column name
        Type
        Description
    
    
    
    
        time
        date time
        UTC time of landing or first GA attempt
    
    
        icao24
        string
        Unique 24-bit (hexadecimal number) ICAO identifier of the aircraft concerned
    
    
        callsign
        string
        Aircraft identifier in air-ground communications
    
    
        airport
        string
        ICAO airport code where the aircraft is landing
    
    
        runway
        string
        Runway designator on which the aircraft landed
    
    
        has_ga
        string
        "True" if at least one GA was performed, otherwise "False"
    
    
        n_approaches
        integer
        Number of approaches identified for this flight
    
    
        n_rwy_approached
        integer
        Number of unique runways approached by this flight
    

    The last two columns, n_approaches and n_rwy_approached, are useful to filter out training and calibration flight. These have usually a large number of n_approaches, so an easy way to exclude them is to filter by n_approaches > 2.

    go_arounds_augmented.csv.gz

    Compressed CSV containing the augmented data set. It contains a row for each landing and additional information about the landing, and if it was a GA. The data is structured in the following way:

        Column name
        Type
        Description
    
    
    
    
        time
        date time
        UTC time of landing or first GA attempt
    
    
        icao24
        string
        Unique 24-bit (hexadecimal number) ICAO identifier of the aircraft concerned
    
    
        callsign
        string
        Aircraft identifier in air-ground communications
    
    
        airport
        string
        ICAO airport code where the aircraft is landing
    
    
        runway
        string
        Runway designator on which the aircraft landed
    
    
        has_ga
        string
        "True" if at least one GA was performed, otherwise "False"
    
    
        n_approaches
        integer
        Number of approaches identified for this flight
    
    
        n_rwy_approached
        integer
        Number of unique runways approached by this flight
    
    
        registration
        string
        Aircraft registration
    
    
        typecode
        string
        Aircraft ICAO typecode
    
    
        icaoaircrafttype
        string
        ICAO aircraft type
    
    
        wtc
        string
        ICAO wake turbulence category
    
    
        glide_slope_angle
        float
        Angle of the ILS glide slope in degrees
    
    
        has_intersection
    

    string

        Boolean that is true if the runway has an other runway intersecting it, otherwise false
    
    
        rwy_length
        float
        Length of the runway in kilometre
    
    
        airport_country
        string
        ISO Alpha-3 country code of the airport
    
    
        airport_region
        string
        Geographical region of the airport (either Europe, North America, South America, Asia, Africa, or Oceania)
    
    
        operator_country
        string
        ISO Alpha-3 country code of the operator
    
    
        operator_region
        string
        Geographical region of the operator of the aircraft (either Europe, North America, South America, Asia, Africa, or Oceania)
    
    
        wind_speed_knts
        integer
        METAR, surface wind speed in knots
    
    
        wind_dir_deg
        integer
        METAR, surface wind direction in degrees
    
    
        wind_gust_knts
        integer
        METAR, surface wind gust speed in knots
    
    
        visibility_m
        float
        METAR, visibility in m
    
    
        temperature_deg
        integer
        METAR, temperature in degrees Celsius
    
    
        press_sea_level_p
        float
        METAR, sea level pressure in hPa
    
    
        press_p
        float
        METAR, QNH in hPA
    
    
        weather_intensity
        list
        METAR, list of present weather codes: qualifier - intensity
    
    
        weather_precipitation
        list
        METAR, list of present weather codes: weather phenomena - precipitation
    
    
        weather_desc
        list
        METAR, list of present weather codes: qualifier - descriptor
    
    
        weather_obscuration
        list
        METAR, list of present weather codes: weather phenomena - obscuration
    
    
        weather_other
        list
        METAR, list of present weather codes: weather phenomena - other
    

    This data set is augmented with data from various public data sources. Aircraft related data is mostly from the OpenSky Network's aircraft data base, the METAR information is from the Iowa State University, and the rest is mostly scraped from different web sites. If you need help with the METAR information, you can consult the WMO's Aerodrom Reports and Forecasts handbook.

    go_arounds_agg.csv.gz

    Compressed CSV containing the aggregated data set. It contains a row for each airport-runway, i.e. every runway at every airport for which data is available. The data is structured in the following way:

        Column name
        Type
        Description
    
    
    
    
        airport
        string
        ICAO airport code where the aircraft is landing
    
    
        runway
        string
        Runway designator on which the aircraft landed
    
    
        n_landings
        integer
        Total number of landings observed on this runway in 2019
    
    
        ga_rate
        float
        Go-around rate, per 1000 landings
    
    
        glide_slope_angle
        float
        Angle of the ILS glide slope in degrees
    
    
        has_intersection
        string
        Boolean that is true if the runway has an other runway intersecting it, otherwise false
    
    
        rwy_length
        float
        Length of the runway in kilometres
    
    
        airport_country
        string
        ISO Alpha-3 country code of the airport
    
    
        airport_region
        string
        Geographical region of the airport (either Europe, North America, South America, Asia, Africa, or Oceania)
    

    This aggregated data set is used in the paper for the generalized linear regression model.

    Downloading the trajectories

    Users of this data set with access to OpenSky Network's Impala shell can download the historical trajectories from the historical data base with a few lines of Python code. For example, you want to get all the go-arounds of the 4th of January 2019 at London City Airport (EGLC). You can use the Traffic library for easy access to the database:

    import datetime from tqdm.auto import tqdm import pandas as pd from traffic.data import opensky from traffic.core import Traffic

    load minimum data set

    df = pd.read_csv("go_arounds_minimal.csv.gz", low_memory=False) df["time"] = pd.to_datetime(df["time"])

    select London City Airport, go-arounds, and 2019-01-04

    airport = "EGLC" start = datetime.datetime(year=2019, month=1, day=4).replace( tzinfo=datetime.timezone.utc ) stop = datetime.datetime(year=2019, month=1, day=5).replace( tzinfo=datetime.timezone.utc )

    df_selection = df.query("airport==@airport & has_ga & (@start <= time <= @stop)")

    iterate over flights and pull the data from OpenSky Network

    flights = [] delta_time = pd.Timedelta(minutes=10) for _, row in tqdm(df_selection.iterrows(), total=df_selection.shape[0]): # take at most 10 minutes before and 10 minutes after the landing or go-around start_time = row["time"] - delta_time stop_time = row["time"] + delta_time

    # fetch the data from OpenSky Network
    flights.append(
      opensky.history(
        start=start_time.strftime("%Y-%m-%d %H:%M:%S"),
        stop=stop_time.strftime("%Y-%m-%d %H:%M:%S"),
        callsign=row["callsign"],
        return_flight=True,
      )
    )
    

    The flights can be converted into a Traffic object

    Traffic.from_flights(flights)

    Additional files

    Additional files are available to check the quality of the classification into GA/not GA and the selection of the landing runway. These are:

    validation_table.xlsx: This Excel sheet was manually completed during the review of the samples for each runway in the data set. It provides an estimate of the false positive and false negative rate of the go-around classification. It also provides an estimate of the runway misclassification rate when the airport has two or more parallel runways. The columns with the headers highlighted in red were filled in manually, the rest is generated automatically.

    validation_sample.zip: For each runway, 8 batches of 500 randomly selected trajectories (or as many as available, if fewer than 4000) classified as not having a GA and up to 8 batches of 10 random landings, classified as GA, are plotted. This allows the interested user to visually inspect a random sample of the landings and go-arounds easily.

  5. Data from: A Large Crowdsourced Street View Dataset for Mapping Road Surface...

    • figshare.com
    bin
    Updated Mar 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie Qiao (2025). A Large Crowdsourced Street View Dataset for Mapping Road Surface Types in Africa [Dataset]. http://doi.org/10.6084/m9.figshare.27719577.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 6, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Jie Qiao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes Mapillary street view images and corresponding location data from Africa. The street view images are saved in JPG format, with each image assigned a unique ID number, totaling 200,000 images. The location data is represented as point vector data in Esri Shapefile format, where each point includes: a unique street view ID, longitude, latitude, and road surface type , with a total of 200,000 points. All data are projected using the World Geodetic System (WGS) 84 and the pseudo-Mercator coordinate system (EPSG: 3857) .

  6. d

    A database of artisanal, small-scale, and large-scale mining in the...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). A database of artisanal, small-scale, and large-scale mining in the Copperbelt region of the Democratic Republic of Congo and Zambia [Dataset]. https://catalog.data.gov/dataset/a-database-of-artisanal-small-scale-and-large-scale-mining-in-the-copperbelt-region-of-the
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Zambia, Copperbelt Province, Democratic Republic of the Congo
    Description

    Cobalt, designated a critical mineral by the European Union and the United States, is a crucial component of the lithium-ion batteries found in cell phones, electric vehicles, and personal computing devices. Over half of the world’s cobalt supply is produced in the Democratic Republic of the Congo (DRC), where cobalt is mined in both large-scale and artisanal or small-scale operations. This dataset focuses on Africa’s mineral-rich Copperbelt region, an area mined for both copper and cobalt, that extends south across the DRC boundary into neighboring Zambia. Existing geoscientific data and remote sensing analysis were investigated to build a comprehensive dataset describing cobalt mining extent and technique (large- or artisanal/small-scale). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  7. Mortality and Causes of Death 1997-2017 - South Africa

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2020). Mortality and Causes of Death 1997-2017 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/3800
    Explore at:
    Dataset updated
    Oct 19, 2020
    Dataset provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Department of Home Affairs
    Time period covered
    1997 - 2017
    Area covered
    South Africa
    Description

    Abstract

    This cumulative dataset contains statistics on mortality and causes of death in South Africa covering the period 1997-2017. The mortality and causes of death dataset is part of a regular series published by Stats SA, based on data collected through the civil registration system. This dataset is the most recent cumulative round in the series which began with the separately available dataset Recorded Deaths 1996.

    The main objective of this dataset is to outline emerging trends and differentials in mortality by selected socio-demographic and geographic characteristics for deaths that occurred in the registered year and over time. Reliable mortality statistics, are the cornerstone of national health information systems, and are necessary for population health assessment, health policy and service planning; and programme evaluation. They are essential for studying the occurrence and distribution of health-related events, their determinants and management of related health problems. These data are particularly critical for monitoring the Sustainable Development Goals (SDGs) and Agenda 2063 which share the same goal for a high standard of living and quality of life, sound health and well-being for all and at all ages. Mortality statistics are also required for assessing the impact of non-communicable diseases (NCD's), emerging infectious diseases, injuries and natural disasters.

    Geographic coverage

    National coverage

    Analysis unit

    Individuals

    Universe

    This dataset is based on information on mortality and causes of death from the South African civil registration system. It covers all death notification forms from the Department of Home Affairs for deaths that occurred in 1997-2017, that reached Stats SA during the 2018/2019 processing phase.

    Kind of data

    Administrative records data [adm]

    Mode of data collection

    Other [oth]

    Research instrument

    The registration of deaths is captured using two instruments: form BI-1663 and form DHA-1663 (Notification/Register of death/stillbirth).

    Data appraisal

    This cumulative dataset is part of a regular series published by Stats SA and includes all previous rounds in the series (excluding Recorded Deaths 1996). Stats SA only includes one variable to classify the occupation group of the deceased (OccupationGrp) in the current round (1997-2017). Prior to 2016, Stats SA included both occupation group (OccupationGrp) and industry classification (Industry) in all previous rounds. Therefore, DataFirst has made the 1997-2015 cumulative round available as a separately downloadable dataset which includes both occupation group and industry classification of the deceased spanning the years 1997-2015.

  8. F

    African Facial Images Dataset | Selfie & ID Card Images

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). African Facial Images Dataset | Selfie & ID Card Images [Dataset]. https://www.futurebeeai.com/dataset/image-dataset/facial-images-selfie-id-african
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the African Human Facial Images Dataset, curated to advance facial recognition technology and support the development of secure biometric identity systems, KYC verification processes, and AI-driven computer vision applications. This dataset is designed to serve as a robust foundation for real-world face matching and recognition use cases.

    Facial Image Data

    The dataset contains over 2,000 facial image sets of African individuals. Each set includes:

    Selfie Images: 5 high-quality selfie images taken under different conditions
    ID Card Images: 2 clear facial images extracted from different government-issued ID cards

    Diversity & Representation

    Geographic Diversity: Participants represent African countries including Kenya, Malawi, Nigeria, Ethiopia, Benin, Somalia, Uganda, and more
    Demographics: Individuals aged 18 to 70 years with a 60:40 male-to-female ratio
    File Formats: Images are provided in JPEG and HEIC formats for compatibility and quality retention

    Image Quality & Capture Conditions

    All images were captured with real-world variability to enhance dataset robustness:

    Lighting: Captured under diverse lighting setups to simulate real environments
    Backgrounds: A wide variety of indoor and outdoor backgrounds
    Device Quality: Captured using modern smartphones to ensure high resolution and clarity

    Metadata

    Each participant’s data is accompanied by rich metadata to support AI model training, including:

    Unique participant ID
    Image file names
    Age at the time of capture
    Gender
    Country of origin
    Demographic details
    File format information

    This metadata enables targeted filtering and training across diverse scenarios.

    Use Cases & Applications

    This dataset is ideal for a wide range of AI and biometric applications:

    Facial Recognition: Train accurate and generalizable face matching models
    KYC & Identity Verification: Enhance onboarding and compliance systems in fintech and government services
    Biometric Identification: Build secure facial recognition systems for access control and identity authentication
    Age Prediction: Train models to estimate age from facial features
    Generative AI: Provide reference data for synthetic face generation or augmentation tasks

    Secure & Ethical Collection

    Data Security: All images were securely stored and processed on FutureBeeAI’s proprietary platform
    Ethical Compliance: Data collection was conducted in full alignment with privacy laws and ethical standards
    Informed Consent: Every participant provided written consent, with full awareness of the intended uses of the data

    Dataset Updates & Customization

    To meet evolving AI demands, this dataset is regularly updated and can be customized. Available options include:

    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap: 16px; align-items:

  9. Twitter users in Africa 2019-2028

    • statista.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Twitter users in Africa 2019-2028 [Dataset]. https://www.statista.com/topics/9813/internet-usage-in-africa/
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Africa
    Description

    The number of Twitter users in Africa was forecast to continuously increase between 2024 and 2028 by in total 28.1 million users (+100.75 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 55.96 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Australia & Oceania and North America.

  10. Z

    Database (4/5) for manuscript 'Suitability of 17 rainfall and temperature...

    • data.niaid.nih.gov
    Updated Nov 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dembélé, Moctar (2020). Database (4/5) for manuscript 'Suitability of 17 rainfall and temperature gridded datasets for large-scale hydrological modelling in West Africa' [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3663068
    Explore at:
    Dataset updated
    Nov 16, 2020
    Dataset authored and provided by
    Dembélé, Moctar
    Area covered
    West Africa
    Description

    ******************************************************************************************************************************************************NOTICE: all datasets and tools provided in this database can and should only be used to reproduce the original experiment for which the database was created. The use of any datasets and tools in this database is subject to third party restrictions. Before copying or using this database for other purposes than reproducing the original experiment for which it was created, please ask for adequate authorisations to the author (Moctar Dembélé, mocdembele@gmail.com), who might additionaly need the authorization of the providers of the data and the tools available in this database. ******************************************************************************************************************************************************

    These datasets are parts of the database for the manuscript 'Suitability of 17 rainfall and temperature gridded datasets for large-scale hydrological modelling in West Africa' by Dembélé et al.

    It contains parts of the output datasets used to calibrate and run the hydrological model.

    Folders:

    -inputAnalysis contains the results and the files of the analysis of the model inputs using the MATLAB software.

    -combiMeteoAnalysis contains the results and the files of the analysis of the model outputs using the MATLAB software.

    -WFDEI contains the model outputs when using the input data from the WFDEI dataset.

    Check the main database at https://doi.org/10.5281/zenodo.3662308

    For further information, please contact Moctar Dembélé, mocdembele@gmail.com

  11. MAPE: A Dataset of Correspondence from the Portuguese Empire

    • zenodo.org
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agata Błoch; Agata Błoch; Demival Vasques Filho; Demival Vasques Filho; Michał Bojanowski; Michał Bojanowski; Clodomir Santana; Clodomir Santana; Saddam Hussain; Saddam Hussain (2025). MAPE: A Dataset of Correspondence from the Portuguese Empire [Dataset]. http://doi.org/10.5281/zenodo.15481608
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Agata Błoch; Agata Błoch; Demival Vasques Filho; Demival Vasques Filho; Michał Bojanowski; Michał Bojanowski; Clodomir Santana; Clodomir Santana; Saddam Hussain; Saddam Hussain
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Portuguese Empire
    Description

    We present the MAPE dataset: Mapping the Atlantic Portuguese Empire: a large-scale historical resource curated from archival material. The dataset is made available in different versions together with its detailed description:

    1. MAPE Dataset: Raw Archival Materials (version 1)

    2. MAPE Dataset: Bilingual Version (Portuguese-English) (version 2)

    3. MAPE Dataset: Bilingual Version with Senders and Recipients (version 3) - in progress

    The MAPE dataset comprises 182,491 historical correspondence records from the Arquivo Histórico Ultramarino de Lisboa (Portuguese Overseas Archives of Lisbon, hereafter AHU), in particular from the collection of the Conselho Ultramarino (Overseas Council), covering the period from 1581 to 1859.

    The AHU holds an extensive archive of correspondence covering the administrative, diplomatic and commercial activities of the Portuguese Empire. The “Conselho Ultramarino”, created in 1642, represents formal bureaucratic communication between Lisbon and its overseas dominions and covers topics such as colonial administration, trade, diplomacy and social developments.

    Originally, these materials were only available as unstructured PDF files, which posed a major challenge for data analysis and large-scale retrieval. These PDF documents contained not only the core correspondence registers, but also a variety of non-essential metadata, such as cataloging details, pagination markers, section headings, and record summaries. The mixing of primary records with additional metadata hindered effective content analysis, searching and visualization.

    To overcome these challenges, we converted the PDFs into a structured format (CSV) that isolates the main data elements, improving searchability, navigation and analytical potential. This restructuring allows researchers to work directly with the primary correspondence records without the noise of the surrounding archival metadata.

    The data for this study were obtained from the Arquivo Histórico Ultramarino, where historical documents were preserved primarily in unstructured formats, predominantly as PDF files. These documents were publicly available for free download at https://actd.iict.pt/collection/actd:CU. The collections were originally divided into large sections such as Portugal, Africa, Brazil, etc. Within each section there are further subdivisions corresponding to the different colonies of the Portuguese empire at that time. The correspondence register of each colony is stored in individual PDF files, which are organized chronologically. However, these files also contain extraneous metadata such as headings, page numbers, cataloging details and document summaries, which make it difficult to extract the relevant content. As a rule, a header is followed by a short summary of the correspondence, with each document being provided with details of the archiving source.

    Our research focuses primarily on specific collections within the AHU, arranged chronologically and geographically, which include the following:

    1. Africa:

      1. The Angola Collection (Série Angola), whose cataloging was financially supported by the Portuguese Fundação para a Ciência e Tecnologia as part of the project África Atlântica: da documentação ao conhecimento, sécs. XVII-XIX (Atlantic Africa: from documentation to knowledge, seventeenth to nineteenth centuries).

      2. The Cabo Verde and Guinea Collection (Série Cabo Verde, Série Guiné), which was cataloged as part of two separate projects: the aforementioned África Atlântica and the Resgate do acervo histórico de Cabo Verde em Portugal (Rescue the historical collection of Cape Verde in Portugal) funded by Camões, Instituto da Cooperação e da Língua (ICL).

      3. The São Tomé Collection (Série S. Tomé e Príncipe), also cataloged within the África Atlântica project.

    2. Brazil:

      1. The “Barão do Rio Branco” — Historical Documentation Rescue Project known as Projeto Resgate (Bertoletti et al. 2022; Boschi 2018) includes 26 catalogues of documents referring to Brazilian regions, cataloged at different times and by different researchers. The Projeto Resgate collection is currently managed by the National Library of Rio de Janeiro in Brazil, but is housed in the AHU.

    3. Portugal: Madeira-CA and Madeira.

    4. Rio da Prata:

      1. Nova Colónia do Sacramento,

      2. Montevideu,

      3. Buenos Aires,

      4. Paraguai

    5. Oriente

      1. Macau

      2. Timor

    1. MAPE Dataset: Raw Archival Materials (version 1)

    Column

    Type

    Description

    doc_id

    Integer

    Unique identifier for each record.

    doc_source

    String

    Archival origin (e.g. ALAGOAS, BAHIA, Cabo Verde).

    doc_box

    String

    Physical box code within the archive (e.g. Cx.1).

    doc_number

    String

    Document number within the box (zero-padded, e.g. 00001).

    doc_type

    String

    Type of register (e.g. INFORMACAO, CONSULTA, CARTA, PROPOSTA, REQUERIMENTO, PARECER).

    year

    Integer

    Four-digit year of the correspondence (e.g. 1690).

    month

    Integer

    Month of the register (1–12). Blank if not recorded in the original.

    day

    Integer

    Day of the month (1–31). Blank if not recorded.

    reference_code

    String

    Integer Unique identifier for each record.

    doc_link

    URL

    Direct link to the AHU catalog entry for the document.

    Doc_Text

    String

    Original Portuguese summary of the correspondence, as transcribed from the archival register.

    The MAPE dataset is provided as a single CSV file the repository root. It consolidates all correspondence registers extracted from the AHU PDFs into a uniform tabular structure.

    2. MAPE Dataset: Bilingual Version (Portuguese-English) (version 2)

    It is an updated version of MAPE Dataset: Raw Archival Materials (version 1)

    Multilingual

  12. Migration Household Survey 2009 - South Africa

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jun 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Human Sciences Research Council (HSRC) (2019). Migration Household Survey 2009 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/96
    Explore at:
    Dataset updated
    Jun 3, 2019
    Dataset provided by
    Human Sciences Research Councilhttps://hsrc.ac.za/
    Authors
    Human Sciences Research Council (HSRC)
    Time period covered
    2009
    Area covered
    South Africa
    Description

    Abstract

    The Human Sciences Research Council (HSRC) carried out the Migration and Remittances Survey in South Africa for the World Bank in collaboration with the African Development Bank. The primary mandate of the HSRC in this project was to come up with a migration database that includes both immigrants and emigrants. The specific activities included: · A household survey with a view of producing a detailed demographic/economic database of immigrants, emigrants and non migrants · The collation and preparation of a data set based on the survey · The production of basic primary statistics for the analysis of migration and remittance behaviour in South Africa.

    Like many other African countries, South Africa lacks reliable census or other data on migrants (immigrants and emigrants), and on flows of resources that accompanies movement of people. This is so because a large proportion of African immigrants are in the country undocumented. A special effort was therefore made to design a household survey that would cover sufficient numbers and proportions of immigrants, and still conform to the principles of probability sampling. The approach that was followed gives a representative picture of migration in 2 provinces, Limpopo and Gauteng, which should be reflective of migration behaviour and its impacts in South Africa.

    Geographic coverage

    Two provinces: Gauteng and Limpopo

    Limpopo is the main corridor for migration from African countries to the north of South Africa while Gauteng is the main port of entry as it has the largest airport in Africa. Gauteng is a destination for internal and international migrants because it has three large metropolitan cities with a great economic potential and reputation for offering employment, accommodations and access to many different opportunities within a distance of 56 km. These two provinces therefore were expected to accommodate most African migrants in South Africa, co-existing with a large host population.

    Analysis unit

    • Household
    • Individual

    Universe

    The target group consists of households in all communities. The survey will be conducted among metro and non-metro households. Non-metro households include those in: - small towns, - secondary cities, - peri-urban settlements and - deep rural areas. From each selected household, one adult respondent will be selected to participate in the study.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Migration data for South Africa are available for 2007 only at the level of local governments or municipalities from the 2007 Census; for smaller areas called "sub places" (SPs) only as recently as the 2001 census, and for the desired EAs only back so far as the Census of 1996. In sum, there was no single source that provided recent data on the five types of migrants of principal interest at the level of the Enumeration Area, which was the area for which data were needed to draw the sample since it was going to be necessary to identify migrant and non-migrant households in the sample areas in order to oversample those with migrants for interview.

    In an attempt to overcome the data limitations referred to above, it was necessary to adopt a novel approach to the design of the sample for the World Bank's household migration survey in South Africa, to identify EAs with a high probability of finding immigrants and those with a low probability. This required the combined use of the three sources of data described above. The starting point was the CS 2007 survey, which provided data on migration at a local government level, classifying each local government cluster in terms of migration level, taking into account the types of migrants identified. The researchers then spatially zoomed in from these clusters to the so-called sub-places (SPs) from the 2001 Census to classifying SP clusters by migration level. Finally, the 1996 Census data were used to zoom in even further down to the EA level, using the 1996 census data on migration levels of various typed, to identify the final level of clusters for the survey, namely the spatially small EAs (each typically containing about 200 households, and hence amenable to the listing operation in the field).

    A higher score or weight was attached to the 2007 Community Survey municipality-level (MN) data than to the Census 2001 sub-place (SP) data, which in turn was given a greater weight than the 1996 enumerator area (EA) data. The latter was derived exclusively from the Census 1996 EA data, but has then been reallocated to the 2001 EAs proportional to geographical size. Although these weights are purely arbitrary since it was composed from different sources, they give an indication of the relevant importance attached to the different migrant categories. These weighted migrant proportions (secondary strata), therefore constituted the second level of clusters for sampling purposes.

    In addition, a system of weighting or scoring the different persons by migrant type was applied to ensure that the likelihood of finding migrants would be optimised. As part of this procedure, recent migrants (who had migrated in the preceding five years) received a higher score than lifetime migrants (who had not migrated during the preceding five years). Similarly, a higher score was attached to international immigrants (both recent and lifetime, who had come to SA from abroad) than to internal migrants (who had only moved within SA's borders). A greater weight also applied to inter-provincial (internal) than to intra-provincial migrants (who only moved within the same South African province).

    How the three data sources were combined to provide overall scores for EA can be briefly described. First, in each of the two provinces, all local government units were given migration scores according to the numbers or relative proportions of the population classified in the various categories of migrants (with non-migrants given a score of 1.0. Migrants were assigned higher scores according to their priority, with international migrants given higher scores than internal migrants and recent migrants higher scores than lifetime migrants. Then within the local governments, sub-places were assigned scores assigned on the basis of inter vs. intra-provincial migrants using the 2001 census data. Each SP area in a local government was thus assigned a value which was the product of its local government score (the same for all SPs in the local government) and its own SP score. The third and final stage was to develop relative migration scores for all the EAs from the 1996 census by similarly weighting the proportions of migrants (and non-migrants, assigned always 1.0) of each type. The the final migration score for an EA is the product of its own EA score from 1996, the SP score of which it is a part (assigned to all the EAs within the SP), and the local government score from the 2007 survey.

    Based on all the above principles the set of weights or scores was developed.

    In sum, we multiplied the proportion of populations of each migrant type, or their incidence, by the appropriate final corresponding EA scores for persons of each type in the EA (based on multiplying the three weights together), to obtain the overall score for each EA. This takes into account the distribution of persons in the EA according to migration status in 1996, the SP score of the EA in 2001, and the local government score (in which the EA is located) from 2007. Finally, all EAs in each province were then classified into quartiles, prior to sampling from the quartiles.

    From the EAs so classified, the sampling took the form of selecting EAs, i.e., primary sampling units (PSUs, which in this case are also Ultimate Sampling Units, since this is a single stage sample), according to their classification into quartiles. The proportions selected from each quartile are based on the range of EA-level scores which are assumed to reflect weighted probabilities of finding desired migrants in each EA. To enhance the likelihood of finding migrants, much higher proportions of EAs were selected into the sample from the quartiles with the higher scores compared to the lower scores (disproportionate sampling). The decision on the most appropriate categorisations was informed by the observed migration levels in the two provinces of the study area during 2007, 2001 and 1996, analysed at the lowest spatial level for which migration data was available in each case.

    Because of the differences in their characteristics it was decided that the provinces of Gauteng and Limpopo should each be regarded as an explicit stratum for sampling purposes. These two provinces therefore represented the primary explicit strata. It was decided to select an equal number of EAs from these two primary strata.

    The migration-level categories referred to above were treated as secondary explicit strata to ensure optimal coverage of each in the sample. The distribution of migration levels was then used to draw EAs in such a way that greater preference could be given to areas with higher proportions of migrants in general, but especially immigrants (note the relative scores assigned to each type of person above). The proportion of EAs selected into the sample from the quartiles draws upon the relative mean weighted migrant scores (referred to as proportions) found below the table, but this is a coincidence and not necessary, as any disproportionate sampling of EAs from the quartiles could be done, since it would be rectified in the weighting at the end for the analysis.

    The resultant proportions of migrants then led to the following proportional allocation of sampled EAs (Quartile 1: 5 per cent (instead of 25% as in an equal distribution), Quartile 2: 15 per cent (instead

  13. Facebook users in Africa 2019-2028

    • statista.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Facebook users in Africa 2019-2028 [Dataset]. https://www.statista.com/topics/9813/internet-usage-in-africa/
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Africa
    Description

    The number of Facebook users in Africa was forecast to continuously increase between 2024 and 2028 by in total 141.6 million users (+56.79 percent). After the ninth consecutive increasing year, the Facebook user base is estimated to reach 390.94 million users and therefore a new peak in 2028. Notably, the number of Facebook users of was continuously increasing over the past years.User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Facebook users in countries like Europe and Asia.

  14. Traffic Signs Dataset (Mapillary and DFG)

    • kaggle.com
    Updated Jun 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nouman Ahsan (2022). Traffic Signs Dataset (Mapillary and DFG) [Dataset]. https://www.kaggle.com/datasets/nomihsa965/traffic-signs-dataset-mapillary-and-dfg
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 6, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Nouman Ahsan
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    This dataset has been refined particularly for the region of Africa. Two open sourced datasets were used to extract only those traffic signs which are used in Africa region.

    1. Mapillary Traffic Sign Dataset - https://www.mapillary.com/dataset/trafficsign
    2. DFG Traffic Sign Data Set - https://www.vicos.si/resources/dfg/

    This dataset contains 76 classes from all categories e.g. regulatory, warning, guide and information signs. This dataset contains total of 19,346 images and at least 200 instances for every class.

    Things included in the dataset: 1. classes.json: contains a list of all classes with information about class name, class index and number of instances in the dataset. 2. dataset.yaml: used to specify the number of classes, names of classes and paths to train/test sets. This file is used for training YOLOv5. 3. crops: This directory contains the crops of all instances of all classes organized by class name. 4. images: This directory contains all images of the dataset. 5. xmls: This directory contains annotations in xml format. 6. txtx (YOLO): This directory contains annotations in YOLO txt format.

    TODO: There are still some signs which have not been annotated in the dataset e.g. large information/guide signs occurring on freeways. You are encouraged to refine and share the updated dataset. Thanks.

  15. w

    Data from: Africa Soil Profiles Database, version 1.1

    • soilwise-he.containers.wur.nl
    • data.moa.gov.et
    • +4more
    Updated Jul 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Africa Soil Profiles Database, version 1.1 [Dataset]. https://soilwise-he.containers.wur.nl/cat/collections/metadata:main/items/b3df7f8d-aa90-4206-a11c-5d95b4dd2327
    Explore at:
    Dataset updated
    Jul 14, 2021
    Area covered
    Africa
    Description

    The Africa Soil Profiles Database, Version 1.1, is compiled by ISRIC - World Soil Information (World Data Center for Soils) as a project activity for the Globally integrated- Africa Soil Information Service (AfSIS) project (www.africasoils.net/data/legacyprofile). It replaces version 1.0.

    The Africa Soil Profiles Database is a compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa. Version 1.1 (March 2013) identifies 16,711 unique soil profiles inventoried from a wide variety of data sources and includes profile site and layer attribute data. Soil analytical data are available for 13,835 profiles of which 12,683 are georeferenced, including the attributes as specified by GlobalSoilMap.net. Soil attribute values are standardized according to SOTER conventions and are validated according to routine rules. Odd values are flagged. The degree of validation, and associated reliability of the data, varies because reference soil profile data, that are previously and thoroughly validated, are compiled together with non-reference soil profile data of lesser inherent representativeness.

  16. T

    GDP by Country in AFRICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP by Country in AFRICA [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=africa
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Africa
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  17. T

    Nigeria GDP

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Nigeria GDP [Dataset]. https://tradingeconomics.com/nigeria/gdp
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2024
    Area covered
    Nigeria
    Description

    The Gross Domestic Product (GDP) in Nigeria was worth 187.76 billion US dollars in 2024, according to official data from the World Bank. The GDP value of Nigeria represents 0.18 percent of the world economy. This dataset provides the latest reported value for - Nigeria GDP - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  18. Reddit users in Africa 2020-2028

    • statista.com
    Updated Jan 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Reddit users in Africa 2020-2028 [Dataset]. https://www.statista.com/topics/9922/social-media-in-africa/
    Explore at:
    Dataset updated
    Jan 10, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Africa
    Description

    The number of Reddit users in Africa was forecast to continuously increase between 2024 and 2028 by in total 4.7 million users (+66.67 percent). After the eighth consecutive increasing year, the Reddit user base is estimated to reach 11.78 million users and therefore a new peak in 2028. Notably, the number of Reddit users of was continuously increasing over the past years.User figures, shown here with regards to the platform reddit, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once. Reddit users encompass both users that are logged in and those that are not.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Reddit users in countries like North America and Asia.

  19. WhatsApp users in Africa 2020-2029

    • statista.com
    Updated Feb 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). WhatsApp users in Africa 2020-2029 [Dataset]. https://www.statista.com/topics/9813/internet-usage-in-africa/
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Africa
    Description

    The number of WhatsApp users in Africa was forecast to continuously increase between 2024 and 2029 by in total 43.8 million users (+47.79 percent). After the ninth consecutive increasing year, the WhatsApp user base is estimated to reach 135.44 million users and therefore a new peak in 2029. Notably, the number of WhatsApp users of was continuously increasing over the past years.User figures, shown here regarding the platform whatsapp, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of WhatsApp users in countries like Asia and the Americas.

  20. Internet users in Africa 2014-2029

    • statista.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Internet users in Africa 2014-2029 [Dataset]. https://www.statista.com/topics/9813/internet-usage-in-africa/
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Africa
    Description

    The number of internet users in Africa was forecast to continuously increase between 2024 and 2029 by in total 327.8 million users (+51.52 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 964.1 million users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like Europe and the Americas.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Electric Sheep (2025). Population-in-the-largest-city-percentage-of-urban-population-africa [Dataset]. https://huggingface.co/datasets/electricsheepafrica/Population-in-the-largest-city-percentage-of-urban-population-africa

Population-in-the-largest-city-percentage-of-urban-population-africa

electricsheepafrica/Population-in-the-largest-city-percentage-of-urban-population-africa

Explore at:
Dataset updated
Aug 27, 2025
Dataset authored and provided by
Electric Sheep
License

https://choosealicense.com/licenses/gpl/https://choosealicense.com/licenses/gpl/

Area covered
Africa
Description

Africa: Population in the largest city (% of urban population)

  Dataset summary

This dataset provides values for "Population in the largest city (% of urban population)" across African countries, standardized and made ML-ready. Geographic scope: 54 African countries. Temporal coverage: 1960–2024 (annual). Units: As defined by the World Bank indicator.

  Source & licensing

Source: World Bank – World Development Indicators (WDI), Indicator code:… See the full description on the dataset page: https://huggingface.co/datasets/electricsheepafrica/Population-in-the-largest-city-percentage-of-urban-population-africa.

Search
Clear search
Close search
Google apps
Main menu