Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
Country: Name of the country.
Density (P/Km2): Population density measured in persons per square kilometer.
Abbreviation: Abbreviation or code representing the country.
Agricultural Land (%): Percentage of land area used for agricultural purposes.
Land Area (Km2): Total land area of the country in square kilometers.
Armed Forces Size: Size of the armed forces in the country.
Birth Rate: Number of births per 1,000 population per year.
Calling Code: International calling code for the country.
Capital/Major City: Name of the capital or major city.
CO2 Emissions: Carbon dioxide emissions in tons.
CPI: Consumer Price Index, a measure of inflation and purchasing power.
CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
Currency_Code: Currency code used in the country.
Fertility Rate: Average number of children born to a woman during her lifetime.
Forested Area (%): Percentage of land area covered by forests.
Gasoline_Price: Price of gasoline per liter in local currency.
GDP: Gross Domestic Product, the total value of goods and services produced in the country.
Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
Largest City: Name of the country's largest city.
Life Expectancy: Average number of years a newborn is expected to live.
Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
Minimum Wage: Minimum wage level in local currency.
Official Language: Official language(s) spoken in the country.
Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
Physicians per Thousand: Number of physicians per thousand people.
Population: Total population of the country.
Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
Tax Revenue (%): Tax revenue as a percentage of GDP.
Total Tax Rate: Overall tax burden as a percentage of commercial profits.
Unemployment Rate: Percentage of the labor force that is unemployed.
Urban Population: Percentage of the population living in urban areas.
Latitude: Latitude coordinate of the country's location.
Longitude: Longitude coordinate of the country's location.
Potential Use Cases
Analyze population density and land area to study spatial distribution patterns.
Investigate the relationship between agricultural land and food security.
Examine carbon dioxide emissions and their impact on climate change.
Explore correlations between economic indicators such as GDP and various socio-economic factors.
Investigate educational enrollment rates and their implications for human capital development.
Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
Study labor market dynamics through indicators such as labor force participation and unemployment rates.
Investigate the role of taxation and its impact on economic development.
Explore urbanization trends and their social and environmental consequences.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is used for article of macroeconomic of some Asian countries in long period which explained about four Asian countries, such as Indonesia, Malaysia, Singapore, and South Korea. This data has taken from World Bank Development Indicators (WDI) database and is formed by Vector Auto Regression (VAR) model, then empirical result is executed by Granger causality model on E-views 11 program to gauge the relationship between gross domestic product, exchange rate, inflation rate, foreign direct investment, net export, government expenditures, unemployment rate, and savings. The results showed that most of gross domestic product of sample and other macro-economy variables have not causality relationship.
The International Macroeconomic Data Set provides data from 1969 through 2030 for real (adjusted for inflation) gross domestic product (GDP), population, real exchange rates, and other variables for the 190 countries and 34 regions that are most important for U.S. agricultural trade. The data presented here are a key component of the USDA Baseline projections process, and can be used as a benchmark for analyzing the impacts of U.S. and global macroeconomic shocks.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Member countries are allocated votes at the time of membership and subsequently for additional subscriptions to capital. Votes are allocated differently in each organization.
Each member receives the votes it is allocated under IDA replenishments according to the rules established in each IDA replenishment resolution. Votes consist of subscription votes and membership votes.
Latest information about voting power is available at http://www.worldbank.org/en/about/leadership/votingpowers
This is a dataset hosted by the World Bank. The organization has an open data platform found here and they update their information according the amount of data that is brought in. Explore World Bank's Financial Data using Kaggle and all of the data sources available through the World Bank organization page!
This dataset is maintained using Socrata's API and Kaggle's API. Socrata has assisted countless organizations with hosting their open data and has been an integral part of the process of bringing more data to the public.
This dataset is distributed under a Creative Commons Attribution 3.0 IGO license.
Cover photo by Brandon Mowinkel on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
This dataset is distributed under Creative Commons Attribution 3.0 IGO
Well-functioning financial systems serve a vital purpose, offering savings, credit, payment, and risk management products to people with a wide range of needs. Yet until now little had been known about the global reach of the financial sector - the extent of financial inclusion and the degree to which such groups as the poor, women, and youth are excluded from formal financial systems. Systematic indicators of the use of different financial services had been lacking for most economies.
The Global Financial Inclusion (Global Findex) database provides such indicators. This database contains the first round of Global Findex indicators, measuring how adults in more than 140 economies save, borrow, make payments, and manage risk. The data set can be used to track the effects of financial inclusion policies globally and develop a deeper and more nuanced understanding of how people around the world manage their day-to-day finances. By making it possible to identify segments of the population excluded from the formal financial sector, the data can help policy makers prioritize reforms and design new policies.
National Coverage.
Individual
The target population is the civilian, non-institutionalized population 15 years and above. The sample is nationally representative.
Sample survey data [ssd]
The Global Findex indicators are drawn from survey data collected by Gallup, Inc. over the 2011 calendar year, covering more than 150,000 adults in 148 economies and representing about 97 percent of the world's population. Since 2005, Gallup has surveyed adults annually around the world, using a uniform methodology and randomly selected, nationally representative samples. The second round of Global Findex indicators was collected in 2014 and is forthcoming in 2015. The set of indicators will be collected again in 2017.
Surveys were conducted face-to-face in economies where landline telephone penetration is less than 80 percent, or where face-to-face interviewing is customary. The first stage of sampling is the identification of primary sampling units, consisting of clusters of households. The primary sampling units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid.
Surveys were conducted by telephone in economies where landline telephone penetration is over 80 percent. The telephone surveys were conducted using random digit dialing or a nationally representative list of phone numbers. In selected countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to teach a person in each household, spread over different days and times of year.
The sample size in Japan was 1,000 individuals.
Landline telephone
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup, Inc. also provided valuable input. The questionnaire was piloted in over 20 countries using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.
Questions on insurance, mobile payments, and loan purposes were asked only in developing economies. The indicators on awareness and use of microfinance insitutions (MFIs) are not included in the public dataset. However, adults who report saving at an MFI are considered to have an account; this is reflected in the composite account indicator.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country- and indicator-specific standard errors, refer to the Annex and Country Table in Demirguc-Kunt, Asli and L. Klapper. 2012. "Measuring Financial Inclusion: The Global Findex." Policy Research Working Paper 6025, World Bank, Washington, D.C.
The Open Economics project provides open content, data and code related to Economics. This site itself provides interfaces to some (though not all) of the Open Economics datasets and models.
Current datasets (all available as csv):
We are in the process of merging this data catalog in CKAN (so each dataset will become a package on CKAN).
All Open Economics datasets are openly licensed though not always possible to gauge status of underlying data used. Individual datasets have more information about their license status.
https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/GV8NBLhttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/GV8NBL
The NATCOOP project set out to study how nature shapes the preferences and incentives of economic agents and how this in turn affects common-pool resource management. Imagine a group of fishermen targeting a species that requires a lot of teamwork to harvest. Do these fishers become more social over time compared to fishers that work in a more solitary manner? If so, does this have implications for how the fishery should be managed? To study this, the NATCOOP team travelled to Chile and Tanzania and collected data using surveys and economic experiments. These two very different countries have a large population of small-scale fishermen, and both host several distinct types of fisheries. Over the course of five field trips, the project team surveyed more than 2500 fishermen with each field trip contributing to the main research question by measuring fishermen’s preferences for cooperation and risk. Additionally, each fieldtrip aimed to answer another smaller research question that was either focused on risk taking or cooperation behavior in the fisheries. The data from both surveys and experiments are now publicly available and can be freely studied by other researchers, resource managers, or interested citizens. Overall, the NATCOOP dataset contains participants’ responses to a plethora of survey questions and their actions during incentivized economic experiments. It is available in both the .dta and .csv format, and its use is recommended with statistical software such as R or Stata. For those unaccustomed with statistical analysis, we included a video tutorial on how to use the data set in the open-source program R.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population
http://data.worldbank.org/data-catalog/ed-stats
https://cloud.google.com/bigquery/public-data/world-bank-education
Citation: The World Bank: Education Statistics
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @till_indeman from Unplash.
Of total government spending, what percentage is spent on education?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data collected during a study "Transparency of open data ecosystems in smart cities: Definition and assessment of the maturity of transparency in 22 smart cities" (Sustainable Cities and Society (SCS), vol.82, 103906) conducted by Martin Lnenicka (University of Pardubice), Anastasija Nikiforova (University of Tartu), Mariusz Luterek (University of Warsaw), Otmane Azeroual (German Centre for Higher Education Research and Science Studies), Dandison Ukpabi (University of Jyväskylä), Visvaldis Valtenbergs (University of Latvia), Renata Machova (University of Pardubice).
This study inspects smart cities’ data portals and assesses their compliance with transparency requirements for open (government) data by means of the expert assessment of 34 portals representing 22 smart cities, with 36 features.
It being made public both to act as supplementary data for the paper and in order for other researchers to use these data in their own work potentially contributing to the improvement of current data ecosystems and build sustainable, transparent, citizen-centered, and socially resilient open data-driven smart cities.
Purpose of the expert assessment The data in this dataset were collected in the result of the applying the developed benchmarking framework for assessing the compliance of open (government) data portals with the principles of transparency-by-design proposed by Lněnička and Nikiforova (2021)* to 34 portals that can be considered to be part of open data ecosystems in smart cities, thereby carrying out their assessment by experts in 36 features context, which allows to rank them and discuss their maturity levels and (4) based on the results of the assessment, defining the components and unique models that form the open data ecosystem in the smart city context.
Methodology Sample selection: the capitals of the Member States of the European Union and countries of the European Economic Area were selected to ensure a more coherent political and legal framework. They were mapped/cross-referenced with their rank in 5 smart city rankings: IESE Cities in Motion Index, Top 50 smart city governments (SCG), IMD smart city index (SCI), global cities index (GCI), and sustainable cities index (SCI). A purposive sampling method and systematic search for portals was then carried out to identify relevant websites for each city using two complementary techniques: browsing and searching. To evaluate the transparency maturity of data ecosystems in smart cities, we have used the transparency-by-design framework (Lněnička & Nikiforova, 2021)*. The benchmarking supposes the collection of quantitative data, which makes this task an acceptability task. A six-point Likert scale was applied for evaluating the portals. Each sub-dimension was supplied with its description to ensure the common understanding, a drop-down list to select the level at which the respondent (dis)agree, and a comment to be provided, which has not been mandatory. This formed a protocol to be fulfilled on every portal. Each sub-dimension/feature was assessed using a six-point Likert scale, where strong agreement is assessed with 6 points, while strong disagreement is represented by 1 point. Each website (portal) was evaluated by experts, where a person is considered to be an expert if a person works with open (government) data and data portals daily, i.e., it is the key part of their job, which can be public officials, researchers, and independent organizations. In other words, compliance with the expert profile according to the International Certification of Digital Literacy (ICDL) and its derivation proposed in Lněnička et al. (2021)* is expected to be met. When all individual protocols were collected, mean values and standard deviations (SD) were calculated, and if statistical contradictions/inconsistencies were found, reassessment took place to ensure individual consistency and interrater reliability among experts’ answers. *Lnenicka, M., & Nikiforova, A. (2021). Transparency-by-design: What is the role of open data portals?. Telematics and Informatics, 61, 101605 *Lněnička, M., Machova, R., Volejníková, J., Linhartová, V., Knezackova, R., & Hub, M. (2021). Enhancing transparency through open government data: the case of data portals and their features and capabilities. Online Information Review.
Test procedure (1) perform an assessment of each dimension using sub-dimensions, mapping out the achievement of each indicator (2) all sub-dimensions in one dimension are aggregated, and then the average value is calculated based on the number of sub-dimensions – the resulting average stands for a dimension value - eight values per portal (3) the average value from all dimensions are calculated and then mapped to the maturity level – this value of each portal is also used to rank the portals.
Description of the data in this data set Sheet#1 "comparison_overall" provides results by portal Sheet#2 "comparison_category" provides results by portal and category Sheet#3 "category_subcategory" provides list of categories and its elements
Format of the file .xls
Licenses or restrictions CC-BY
For more info, see README.txt
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CURRENT ACCOUNT reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
National coverage
Individuals
The target population is the civilian, non-institutionalized population 15 years and above.
Observation data/ratings [obs]
The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world's population (see Table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.
Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
The sample size was 1000.
Landline and cellular telephone
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.
Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank
The presented dataset shows that most countries increased their R&D spending - 16 of those 26 members of the European Union for which Eurostat has complete data did so. This also translated into the average ratio for the entire Community, in 2012 it amounted to 2.06% of GDP compared to 2.01% in 2009. The most severely limited their expenses were the leaders of the 2009 ranking, including Finland, Sweden and Denmark. Despite this, they kept their places and, more importantly, maintained the ideal, according to the "Strategy 2020" ratio of R&D expenditure to GDP (it is 3% and more). How important an element of innovation policy is the R&D sector can be seen by comparing the leaders of the above list with those of the "Summary Innovation Index" presented in the previous chapter. In two rankings, the same countries are in the top four. As for Poland, it increased R&D spending from 0.67% of GDP to 0.90% of GDP. This puts seven countries ahead of them.
Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
See Methodology document for country-specific geographic coverage details.
The target population is the civilian, non-institutionalized population 15 years and above.
Observation data/ratings [obs]
The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world’s population (see Table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.
Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer’s gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Other [oth]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.
Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank
What was the average price of a house in the United Kingdom in 1935? When will India's population surpass that of China? Where can you admire publicly funded works of art in Seattle? The data to answer many, many questions like these exists somewhere on the Internet - but it's not always easy to find. The Open Data platform, created as part of the actions foreseen by the Tuscan Digital Agenda, makes reusable public data available in open format, thus maximizing transparency and ease of access to the many pieces of information available to the Tuscany Region. The goal is to publish, through a gradual process, the many datasets whose ownership belongs to the Tuscany Region and other Public Administrations of the regional territory adhering to the Tuscan Regional Telematics Network (RTRT), creating an infrastructure that will allow public and private entities and civil society to create new services and applications capable of improving access to information, transparency, and therefore the social, cultural, and economic life of the entire Tuscan territory. This site is based on a powerful open-source data cataloging software, called CKAN, developed by the Open Knowledge Foundation. Each 'dataset' entry on CKAN contains a description of the data and other useful information, such as the available formats, the holder, the freedom of access and reuse, and the topics that the data address. Other users can improve or modify this information (CKAN keeps a history of all these changes). CKAN is used for several data catalogs on the Internet. The Data Hub is a freely editable and reusable catalog, in the style of Wikipedia. The British government uses CKAN for the data.gov.uk portal, which currently has about 8000 government datasets. The official public data of most European countries are collected in a CKAN catalog on publicdata.eu. There is also a list of these catalogs from all over the world on datacatalogs.org, which is in turn based on CKAN. Most of the data on the Tuscany Region Open Data portal is freely accessible and reusable: anyone has the right to use and reuse the data in any way they prefer. Maybe someone will take that nice dataset on the city's works of art that you found, and add it to a tourist map - or develop a new app for your smartphone, which will help you find monuments when you visit the city. Open data means more enterprise, collaborative scientific research, and transparent public administration. You can learn more about this topic in the Open Data Handbook. The Open Knowledge Foundation is a non-profit organization that promotes free knowledge: the development and constant improvement of CKAN is one of the ways to achieve this goal. If you want to participate in the design or development, join the public discussion or development lists, or check out the OKFN website to discover the other ongoing projects. CKAN is the world's leading platform for open-source data portals. CKAN is a complete and ready-to-use software solution that makes data accessible and usable – providing tools to optimize its publication, search and use (including data storage and the availability of robust APIs). CKAN is aimed at organizations that publish data (national and local governments, companies and institutions) and want to make it open and accessible to all. CKAN is used by governments and user groups around the world to manage a wide range of data portals for official and community bodies, including portals for local, national and international governments, such as data.gov.uk in the UK and publicdata.eu of the European Union, dados.gov.br in Brazil, government portals of the Netherlands and the Netherlands, as well as city and municipal administration sites in the USA, the United Kingdom, Argentina, Finland and other countries. CKAN: http://ckan.org/ Tour of CKAN: http://ckan.org/tour/ Overview of functions: http://ckan.org/features/ CKAN's page-view tracking feature is enabled. Translated from Italian Original Text: Qual era il prezzo medio di una casa nel Regno Unito nel 1935? Quando avverrà il sorpasso della popolazione dell'India su quella della Cina? Dove si possono ammirare opere d'arte finanziate da enti pubblici a Seattle? I dati per rispondere a molte, molte domande come queste esistono da qualche parte in Internet - ma non è sempre facile trovarli. La piattaforma Open Data, realizzata nell'ambito delle azioni previste dall'Agenda digitale toscana, mette a disposizione dati pubblici riutilizzabili, in formato aperto, favorendo così al massimo la trasparenza e la facilità di accesso alle tante informazioni di cui dispone la Regione Toscana. L'obiettivo è quello di pubblicare, attraverso un processo graduale, i tanti dataset la cui titolarità afferisce alla Regione Toscana e ad altre Pubbliche amministrazioni del territorio regionale aderenti alla Rete telematica regionale toscana (RTRT), creando un'infrastruttura che consentirà a soggetti pubblici, privati e della società civile di creare nuovi servizi e applicazioni in grado di migliorare l'accesso all'informazione, la trasparenza e quindi la vita sociale, culturale ed economica dell'intero territorio toscano. Questo sito è basato su un potente software open-source di catalogazione dei dati, chiamato CKAN, sviluppato dalla Open Knowledge Foundation. Ogni voce di 'dataset' su CKAN contiene una descrizione dei dati e altre informazioni utili, come i formati disponibili, il detentore, la libertà di accesso e riuso, e gli argomenti che i dati affrontano. Gli altri utenti possono migliorare o modificare queste informazioni (CKAN mantiene una cronologia di tutte queste modifiche). CKAN è utilizzato per diversi cataloghi di dati su Internet. The Data Hub è un catalogo liberamente modificabile e riutilizzabile, nello stile di Wikipedia. Il governo britannico usa CKAN per il portale data.gov.uk, che attualmente conta circa 8000 dataset governativi. I dati pubblici ufficiali della maggior parte dei paesi europei sono raccolti in un catalogo CKAN su publicdata.eu. Esiste anche una lista di questi cataloghi da tutto il mondo su datacatalogs.org, che è a sua volta basato su CKAN. La maggior parte dei dati sul portale Open Data della Regione Toscana è liberamente accessibile e riutilizzabile: chiunque ha il diritto di utilizzare e riutilizzare i dati nel modo che preferisce. Magari qualcuno prenderà quel simpatico dataset sulle opere d'arte della città che avevi trovato tu, e lo aggiungerà a una mappa turistica - oppure svilupperà una nuova app per il tuo smartphone, che ti aiuterà a trovare i monumenti quando visiti la città. Gli open data significano più impresa, ricerca scientifica collaborativa e pubblica amministrazione trasparente. Puoi approfondire questo argomento nell'Open Data Handbook. La Open Knowledge Foundation è una organizzazione no-profit che promuove il sapere libero: lo sviluppo e il miglioramento costante di CKAN è uno dei modi per raggiungere questo obiettivo. Se vuoi partecipare alla progettazione o allo sviluppo, unisciti alle liste pubbliche di discussione o sviluppo, o dai un'occhiata al sito della OKFN per scoprire gli altri progetti in corso. CKAN è la piattaforma leader mondiale per i portali di dati open-source. CKAN è una soluzione software completa e pronta all'uso che rende accessibili e utilizzabili i dati – fornendo strumenti per ottimizzarne la pubblicazione, la ricerca e l'utilizzo (inclusa l'archiviazione dei dati e la disponibilità di solide API). CKAN si rivolge alle organizzazioni che pubblicano dati (governi nazionali e locali, aziende ed istituzioni) e desiderano renderli aperti e accessibili a tutti. CKAN è usato da governi e gruppi di utenti in tutto il mondo per gestire una vasta serie di portali di dati di enti ufficiali e di comunità, tra cui portali per governi locali, nazionali e internazionali, come data.gov.uk nel Regno Unito e publicdata.eu dell'Unione Europea, dados.gov.br in Brasile, portali di governo dell'Olanda e dei Paesi Bassi, oltre a siti di amministrazione cittadine e municipali negli USA, nel Regno Unito, Argentina, Finlandia e altri paesi. CKAN: http://ckan.org/ Tour di CKAN: http://ckan.org/tour/ Panoramica delle funzioni: http://ckan.org/features/ CKAN's page-view tracking feature is enabled.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for EMPLOYMENT RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
National coverage
Individuals
The target population is the civilian, non-institutionalized population 15 years and above.
Observation data/ratings [obs]
The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world's population (see Table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.
Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
The sample size was 1000.
Computer Assisted Personal Interview [capi]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.
Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank
The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.
The Global Findex is the world’s most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of almost 145,000 people in 139 economies, representing 97 percent of the world’s population. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.
The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.
National coverage
Individual
Observation data/ratings [obs]
In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19–related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Additionally, phone surveys were not a viable option in 16 economies in 2021, which were then surveyed in 2022.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender..
In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.
The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).
For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Questionnaires are available on the website.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for BUSINESS CONFIDENCE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This data set has been generated using data from the Gapminder website, which focuses on gathering and sharing statistics and other information about social, economic and environmental development at local, national and global levels.
This particular data set describes the values of several parameters (see the list below) between 1998 and 2018 for a total of 175 countries, having a total of 3675 rows. The parameters included in the data set and the column name of the dataframe are as follows:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
Country: Name of the country.
Density (P/Km2): Population density measured in persons per square kilometer.
Abbreviation: Abbreviation or code representing the country.
Agricultural Land (%): Percentage of land area used for agricultural purposes.
Land Area (Km2): Total land area of the country in square kilometers.
Armed Forces Size: Size of the armed forces in the country.
Birth Rate: Number of births per 1,000 population per year.
Calling Code: International calling code for the country.
Capital/Major City: Name of the capital or major city.
CO2 Emissions: Carbon dioxide emissions in tons.
CPI: Consumer Price Index, a measure of inflation and purchasing power.
CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
Currency_Code: Currency code used in the country.
Fertility Rate: Average number of children born to a woman during her lifetime.
Forested Area (%): Percentage of land area covered by forests.
Gasoline_Price: Price of gasoline per liter in local currency.
GDP: Gross Domestic Product, the total value of goods and services produced in the country.
Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
Largest City: Name of the country's largest city.
Life Expectancy: Average number of years a newborn is expected to live.
Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
Minimum Wage: Minimum wage level in local currency.
Official Language: Official language(s) spoken in the country.
Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
Physicians per Thousand: Number of physicians per thousand people.
Population: Total population of the country.
Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
Tax Revenue (%): Tax revenue as a percentage of GDP.
Total Tax Rate: Overall tax burden as a percentage of commercial profits.
Unemployment Rate: Percentage of the labor force that is unemployed.
Urban Population: Percentage of the population living in urban areas.
Latitude: Latitude coordinate of the country's location.
Longitude: Longitude coordinate of the country's location.
Potential Use Cases
Analyze population density and land area to study spatial distribution patterns.
Investigate the relationship between agricultural land and food security.
Examine carbon dioxide emissions and their impact on climate change.
Explore correlations between economic indicators such as GDP and various socio-economic factors.
Investigate educational enrollment rates and their implications for human capital development.
Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
Study labor market dynamics through indicators such as labor force participation and unemployment rates.
Investigate the role of taxation and its impact on economic development.
Explore urbanization trends and their social and environmental consequences.