List of the data tables as part of the Immigration System Statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.
If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.
The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
Please tell us what format you need. It will help us if you say what assistive technology you use.
Immigration system statistics, year ending March 2025
Immigration system statistics quarterly release
Immigration system statistics user guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives
https://assets.publishing.service.gov.uk/media/68258d71aa3556876875ec80/passenger-arrivals-summary-mar-2025-tables.xlsx">Passenger arrivals summary tables, year ending March 2025 (MS Excel Spreadsheet, 66.5 KB)
‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.
https://assets.publishing.service.gov.uk/media/681e406753add7d476d8187f/electronic-travel-authorisation-datasets-mar-2025.xlsx">Electronic travel authorisation detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 56.7 KB)
ETA_D01: Applications for electronic travel authorisations, by nationality
ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality
https://assets.publishing.service.gov.uk/media/68247953b296b83ad5262ed7/visas-summary-mar-2025-tables.xlsx">Entry clearance visas summary tables, year ending March 2025 (MS Excel Spreadsheet, 113 KB)
https://assets.publishing.service.gov.uk/media/682c4241010c5c28d1c7e820/entry-clearance-visa-outcomes-datasets-mar-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 29.1 MB)
Vis_D01: Entry clearance visa applications, by nationality and visa type
Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome
Additional dat
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Immigrants Admitted: All Countries data was reported at 1,127,167.000 Person in 2017. This records a decrease from the previous number of 1,183,505.000 Person for 2016. United States Immigrants Admitted: All Countries data is updated yearly, averaging 451,510.000 Person from Sep 1900 (Median) to 2017, with 118 observations. The data reached an all-time high of 1,827,167.000 Person in 1991 and a record low of 23,068.000 Person in 1933. United States Immigrants Admitted: All Countries data remains active status in CEIC and is reported by US Department of Homeland Security. The data is categorized under Global Database’s United States – Table US.G087: Immigration.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 25 series, with data for years 1955 - 2013 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...) Last permanent residence (25 items: Total immigrants; France; Great Britain; Total Europe ...).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data presented in this data project were collected in the context of two H2020 research projects: ‘Enhanced migration measures from a multidimensional perspective’(HumMingBird) and ‘Crises as opportunities: Towards a level telling field on migration and a new narrative of successful integration’(OPPORTUNITIES). The current survey was fielded to investigate the dynamic interplay between media representations of different migrant groups and the governmental and societal (re)actions to immigration. With these data, we provide more insight into these societal reactions by investigating attitudes rooted in values and worldviews. Through an online survey, we collected quantitative data on attitudes towards: Immigrants, Refugees, Muslims, Hispanics, Venezuelans News Media Consumption Trust in News Media and Societal Institutions Frequency and Valence of Intergroup Contact Realistic and Symbolic Intergroup Threat Right-wing Authoritarianism Social Dominance Orientation Political Efficacy Personality Characteristics Perceived COVID-threat, and Socio-demographic Characteristics For the adult population aged 25 to 65 in seven European countries: Austria Belgium Germany Hungary Italy Spain Sweden And for ages ranged from 18 to 65 for: United States of America Colombia The survey in the United States and Colombia was identical to the one in the European countries, although a few extra questions regarding COVID-19 and some region-specific migrant groups (e.g. Venezuelans) were added. We collected the data in cooperation with Bilendi, a Belgian polling agency, and selected the methodology for its cost-effectiveness in cross-country research. Respondents received an e-mail asking them to participate in a survey without specifying the subject matter, which was essential to avoid priming. Three weeks of fieldwork in May and June of 2021 resulted in a dataset of 13,645 respondents (a little over 1500 per country). Sample weights are included in the dataset and can be applied to ensure that the sample is representative for gender and age in each country. The cooperation rate ranged between 12% and 31%, in line with similar online data collections.
Immigration system statistics, year ending March 2023: data tables
This release presents immigration statistics from Home Office administrative sources, covering the period up to the end of March 2023. It includes data on the topics of:
User Guide to Home Office Immigration Statistics
Policy and legislative changes affecting migration to the UK: timeline
Developments in migration statistics
Publishing detailed datasets in Immigration statistics
A range of key input and impact indicators are currently published by the Home Office on the Migration transparency data webpage.
If you have feedback or questions, our email address is MigrationStatsEnquiries@homeoffice.gov.uk.
The Human Sciences Research Council (HSRC) carried out the Migration and Remittances Survey in South Africa for the World Bank in collaboration with the African Development Bank. The primary mandate of the HSRC in this project was to come up with a migration database that includes both immigrants and emigrants. The specific activities included: · A household survey with a view of producing a detailed demographic/economic database of immigrants, emigrants and non migrants · The collation and preparation of a data set based on the survey · The production of basic primary statistics for the analysis of migration and remittance behaviour in South Africa.
Like many other African countries, South Africa lacks reliable census or other data on migrants (immigrants and emigrants), and on flows of resources that accompanies movement of people. This is so because a large proportion of African immigrants are in the country undocumented. A special effort was therefore made to design a household survey that would cover sufficient numbers and proportions of immigrants, and still conform to the principles of probability sampling. The approach that was followed gives a representative picture of migration in 2 provinces, Limpopo and Gauteng, which should be reflective of migration behaviour and its impacts in South Africa.
Two provinces: Gauteng and Limpopo
Limpopo is the main corridor for migration from African countries to the north of South Africa while Gauteng is the main port of entry as it has the largest airport in Africa. Gauteng is a destination for internal and international migrants because it has three large metropolitan cities with a great economic potential and reputation for offering employment, accommodations and access to many different opportunities within a distance of 56 km. These two provinces therefore were expected to accommodate most African migrants in South Africa, co-existing with a large host population.
The target group consists of households in all communities. The survey will be conducted among metro and non-metro households. Non-metro households include those in: - small towns, - secondary cities, - peri-urban settlements and - deep rural areas. From each selected household, one adult respondent will be selected to participate in the study.
Sample survey data [ssd]
Migration data for South Africa are available for 2007 only at the level of local governments or municipalities from the 2007 Census; for smaller areas called "sub places" (SPs) only as recently as the 2001 census, and for the desired EAs only back so far as the Census of 1996. In sum, there was no single source that provided recent data on the five types of migrants of principal interest at the level of the Enumeration Area, which was the area for which data were needed to draw the sample since it was going to be necessary to identify migrant and non-migrant households in the sample areas in order to oversample those with migrants for interview.
In an attempt to overcome the data limitations referred to above, it was necessary to adopt a novel approach to the design of the sample for the World Bank's household migration survey in South Africa, to identify EAs with a high probability of finding immigrants and those with a low probability. This required the combined use of the three sources of data described above. The starting point was the CS 2007 survey, which provided data on migration at a local government level, classifying each local government cluster in terms of migration level, taking into account the types of migrants identified. The researchers then spatially zoomed in from these clusters to the so-called sub-places (SPs) from the 2001 Census to classifying SP clusters by migration level. Finally, the 1996 Census data were used to zoom in even further down to the EA level, using the 1996 census data on migration levels of various typed, to identify the final level of clusters for the survey, namely the spatially small EAs (each typically containing about 200 households, and hence amenable to the listing operation in the field).
A higher score or weight was attached to the 2007 Community Survey municipality-level (MN) data than to the Census 2001 sub-place (SP) data, which in turn was given a greater weight than the 1996 enumerator area (EA) data. The latter was derived exclusively from the Census 1996 EA data, but has then been reallocated to the 2001 EAs proportional to geographical size. Although these weights are purely arbitrary since it was composed from different sources, they give an indication of the relevant importance attached to the different migrant categories. These weighted migrant proportions (secondary strata), therefore constituted the second level of clusters for sampling purposes.
In addition, a system of weighting or scoring the different persons by migrant type was applied to ensure that the likelihood of finding migrants would be optimised. As part of this procedure, recent migrants (who had migrated in the preceding five years) received a higher score than lifetime migrants (who had not migrated during the preceding five years). Similarly, a higher score was attached to international immigrants (both recent and lifetime, who had come to SA from abroad) than to internal migrants (who had only moved within SA's borders). A greater weight also applied to inter-provincial (internal) than to intra-provincial migrants (who only moved within the same South African province).
How the three data sources were combined to provide overall scores for EA can be briefly described. First, in each of the two provinces, all local government units were given migration scores according to the numbers or relative proportions of the population classified in the various categories of migrants (with non-migrants given a score of 1.0. Migrants were assigned higher scores according to their priority, with international migrants given higher scores than internal migrants and recent migrants higher scores than lifetime migrants. Then within the local governments, sub-places were assigned scores assigned on the basis of inter vs. intra-provincial migrants using the 2001 census data. Each SP area in a local government was thus assigned a value which was the product of its local government score (the same for all SPs in the local government) and its own SP score. The third and final stage was to develop relative migration scores for all the EAs from the 1996 census by similarly weighting the proportions of migrants (and non-migrants, assigned always 1.0) of each type. The the final migration score for an EA is the product of its own EA score from 1996, the SP score of which it is a part (assigned to all the EAs within the SP), and the local government score from the 2007 survey.
Based on all the above principles the set of weights or scores was developed.
In sum, we multiplied the proportion of populations of each migrant type, or their incidence, by the appropriate final corresponding EA scores for persons of each type in the EA (based on multiplying the three weights together), to obtain the overall score for each EA. This takes into account the distribution of persons in the EA according to migration status in 1996, the SP score of the EA in 2001, and the local government score (in which the EA is located) from 2007. Finally, all EAs in each province were then classified into quartiles, prior to sampling from the quartiles.
From the EAs so classified, the sampling took the form of selecting EAs, i.e., primary sampling units (PSUs, which in this case are also Ultimate Sampling Units, since this is a single stage sample), according to their classification into quartiles. The proportions selected from each quartile are based on the range of EA-level scores which are assumed to reflect weighted probabilities of finding desired migrants in each EA. To enhance the likelihood of finding migrants, much higher proportions of EAs were selected into the sample from the quartiles with the higher scores compared to the lower scores (disproportionate sampling). The decision on the most appropriate categorisations was informed by the observed migration levels in the two provinces of the study area during 2007, 2001 and 1996, analysed at the lowest spatial level for which migration data was available in each case.
Because of the differences in their characteristics it was decided that the provinces of Gauteng and Limpopo should each be regarded as an explicit stratum for sampling purposes. These two provinces therefore represented the primary explicit strata. It was decided to select an equal number of EAs from these two primary strata.
The migration-level categories referred to above were treated as secondary explicit strata to ensure optimal coverage of each in the sample. The distribution of migration levels was then used to draw EAs in such a way that greater preference could be given to areas with higher proportions of migrants in general, but especially immigrants (note the relative scores assigned to each type of person above). The proportion of EAs selected into the sample from the quartiles draws upon the relative mean weighted migrant scores (referred to as proportions) found below the table, but this is a coincidence and not necessary, as any disproportionate sampling of EAs from the quartiles could be done, since it would be rectified in the weighting at the end for the analysis.
The resultant proportions of migrants then led to the following proportional allocation of sampled EAs (Quartile 1: 5 per cent (instead of 25% as in an equal distribution), Quartile 2: 15 per cent (instead
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Global matrices of bilateral migrant stocks spanning the period 1960-2000, disaggregated by gender and based primarily on the foreign-born concept are presented. Over one thousand census and population register records are combined to construct decennial matrices corresponding to the last five completed census rounds.For the first time, a comprehensive picture of bilateral global migration over the last half of the twentieth century emerges. The data reveal that the global migrant stock increased from 92 to 165 million between 1960 and 2000. South-North migration is the fastest growing component of international migration in both absolute and relative terms. The United States remains the most important migrant destination in the world, home to one fifth of the world™s migrants and the top destination for migrants from no less than sixty sending countries. Migration to Western Europe remains largely from elsewhere in Europe. The oil-rich Persian Gulf countries emerge as important destinations for migrants from the Middle East, North Africa and South and South-East Asia. Finally, although the global migrant stock is still predominantly male, the proportion of women increased noticeably between 1960 and 2000.
Canada’s appeal as an immigration destination has been increasing over the past two decades, with a total of 464,265 people immigrating to the country in 2024. This figure is an increase from 2000-2001, when approximately 252,527 immigrants came to Canada. Immigration to the Great White North Between July 1, 2022 and June 30, 2023, there were an estimated 199,297 immigrants to Ontario, making it the most popular immigration destination out of any province. While the number of immigrants has been increasing over the years, in 2024 over half of surveyed Canadians believed that there were too many immigrants in the country. However, in 2017, the Canadian government announced its aim to significantly increase the number of permanent residents to Canada in order to combat an aging workforce and the decline of working-age adults. Profiles of immigrants to Canada The gender of immigrants to Canada in 2023 was just about an even split, with 234,279 male immigrants and 234,538 female immigrants. In addition, most foreign-born individuals in Canada came from India, followed by China and the Philippines. The United States was the fifth most common origin country for foreign-born residents in Canada.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 32 series, with data for years 1956 - 1976 (not all combinations necessarily have data for all years), and was last released on 2012-02-16. This table contains data described by the following dimensions (Not all combinations are available): Unit of measure (1 items: Persons ...) Geography (32 items: Outside Canada; Great Britain; France; Europe ...).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
People who have been granted permanent resident status in Canada. Please note that in these datasets, the figures have been suppressed or rounded to prevent the identification of individuals when the datasets are compiled and compared with other publicly available statistics. Values between 0 and 5 are shown as “--“ and all other values are rounded to the nearest multiple of 5. This may result to the sum of the figures not equating to the totals indicated.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany Immigration: Asia data was reported at 376,968.000 Person in 2023. This records an increase from the previous number of 331,110.000 Person for 2022. Germany Immigration: Asia data is updated yearly, averaging 99,635.000 Person from Dec 1964 (Median) to 2023, with 60 observations. The data reached an all-time high of 687,848.000 Person in 2015 and a record low of 12,779.000 Person in 1968. Germany Immigration: Asia data remains active status in CEIC and is reported by Statistisches Bundesamt. The data is categorized under Global Database’s Germany – Table DE.G005: Migration.
Data on countries of citizenship by immigrant status and period of immigration, by admission category and applicant type, age and gender for the population in private households in Canada, provinces and territories, census metropolitan areas, census agglomerations and parts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The study of the patterns and evolution of international migration often requires high-frequency data on migration flows on a global scale. However, the presently existing databases force a researcher to choose between the frequency of the data and its geographical scale. Yearly data exist but only for a small subset of countries, while most others are only covered every 5 to 10 years. To fill in the gaps in the coverage, the vast majority of databases use some imputation method. Gaps in the stock of migrants are often filled by combining information on migrants based on their country of birth with data based on nationality or using ‘model’ countries and propensity methods. Gaps in the data on the flow of migrants, on the other hand, are often filled by taking the difference in the stock, which the ’demographic accounting’ methods then adjust for demographic evolutions.
This database aims to fill this gap by providing a global, yearly, bilateral database on the stock of migrants according to their country of birth. This database contains close to 2.9 million observations on over 56,000 country pairs from 1960 to 2022, a tenfold increase relative to the second-largest database. In addition, it also produces an estimate of the net flow of migrants. For a subset of countries –over 8,000 country pairs and half a million observations– we also have lower-bound estimates of the gross in- and outflow.
This database was constructed using a novel approach to estimating the most likely values of missing migration stocks and flows. Specifically, we use a Bayesian state-space model to combine the information from multiple datasets on both stocks and flows into a single estimate. Like the demographic accounting technique, the state-space model is built on the demographic relationship between migrant stocks, flows, births and deaths. The most crucial difference is that the state-space model combines the information from multiple databases, including those covering migrant stocks, net flows, and gross flows.
More details on the construction can currently be found in the UNU-CRIS working paper: Standaert, Samuel and Rayp, Glenn (2022) "Where Did They Come From, Where Did They Go? Bridging the Gaps in Migration Data" UNU-CRIS working paper 22.04. Bruges.
https://cris.unu.edu/where-did-they-come-where-did-they-go-bridging-gaps-migration-data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Multi-aspect Integrated Migration Indicators (MIMI) dataset is the result of the process of gathering, embedding and combining traditional migration datasets, mostly from sources like Eurostat and UNSD Demographic Statistics Database, and alternative types of data, which consists in multidisciplinary features and measures not typically employed in migration studies, such as the Facebook Social Connectedness Index (SCI). Its purpose is to exploit these novel types of data for: nowcasting migration flows and stocks, studying integration of multiple sources and knowledge, and investigating migration drivers.
The MIMI dataset is designed to have a unique pair of countries for each row. Each record contains country-to-country information about: migrations flows and stock their share, their strength of Facebook connectedness and other features, such as corresponding populations, GDP, coordinates, NET migration, and many others.
Methodology.
After having collected bilateral flows records about international human mobility by citizenship, residence and country of birth (available for both sexes and, in some cases, for different age groups), they have been merged together in order to obtain a unique dataset in which each ordered couple (country-of-origin, country-of-destination) appears once. To avoid duplicate couples, flow records have been selected by following this priority: first migration by citizenship, then migration by residence and lastly by country of birth.
The integration process started by choosing, collecting and meaningfully including many other indicators that could be helpful for the dataset final purpose mentioned above.
Non-bidirectional migration measures for each country: total number of immigrants and emigrants for each year, NET migration and NET migration rate in a five-year range.
Other multidisciplinary indicators (cultural, social, anthropological, demographical, historical features) related to each country: religion (single one or list), yearly GDP at PPP, spoken language (or list of languages), yearly population stocks (and population densities if available), number of Facebook users, percentage of Facebook users, cultural indicators (PDI, IDV, MAS, UAI, LTO). Also the following feature have been included for each pair of countries: Facebook Social Connectedness Index.
Once traditional and non-traditional knowledge is gathered and integrated, we move to the pre-processing phase where we manage the data cleaning, preparation and transformation. Here our dataset was subjected to various computational standard processes and additionally reshaped in the final structure established by our design choices.
The data quality assessment phase was one of the longest and most delicate, since many values were missing and this could have had a negative impact on the quality of the desired resulting knowledge. They have been integrated from additional sources such as The World Bank, World Population Review, Statista, DataHub, Wikipedia and in some cases extracted from Python libraries such as PyPopulation, CountryInfo and PyCountry.
The final dataset has the structure of a huge matrix having countries couples as index (uniquely identified by coupling their ISO 3166-1 alpha-2 codes): it comprises 28725 entries and 485 columns.
At a time when many states are increasing restrictions on immigration, others are using formal agreements on international economic migration to open their borders. The use of international agreements on migration presents a puzzle, as most states can open their borders to migrants unilaterally. I argue that, when states cannot generate large enough flows of migrants or the right type of migrants to fill open positions in the labor market, they turn to the sending state to help them. States that need migrants can negotiate a bilateral labor agreement with a sending state, which then acts as a recruiter, helping to channel labor to the receiving state. This article details the conditions under which immigrant-receiving countries use these treaties and tests the implications of the argument on a new dataset on migration treaties.
http://www.impic-project.eu/legal-notice/http://www.impic-project.eu/legal-notice/
Over the last two decades both immigration politics and research on immigration issues have become very important. So far, there is however no dataset that would allow researchers to systematically investigate immigration policies across a large sample of countries. The aim of the Immigration Policies in Comparison (IMPIC) project is therefore to provide a set of sophisticated quantitative indices to measure immigration policies in all OECD countries and for the time period 1980-2010. By means of this new dataset the causes and effects of immigration policies will be studied more systematically.
Marc Helbling, Liv Bjerre, Friederike Römer and Malisa Zobel (2017): “Measuring Immigration Policies: The IMPIC Database”, European Political Science16(1): 79-98. Link.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Zenodo repository contains all migration flow estimates associated with the paper "Deep learning four decades of human migration." Evaluation code, training data, trained neural networks, and smaller flow datasets are available in the main GitHub repository, which also provides detailed instructions on data sourcing. Due to file size limits, the larger datasets are archived here.
Data is available in both NetCDF (.nc
) and CSV (.csv
) formats. The NetCDF format is more compact and pre-indexed, making it suitable for large files. In Python, datasets can be opened as xarray.Dataset
objects, enabling coordinate-based data selection.
Each dataset uses the following coordinate conventions:
The following data files are provided:
T
summed over Birth ISO). Dimensions: Year, Origin ISO, Destination ISOAdditionally, two CSV files are provided for convenience:
imm
: Total immigration flowsemi
: Total emigration flowsnet
: Net migrationimm_pop
: Total immigrant population (non-native-born)emi_pop
: Total emigrant population (living abroad)mig_prev
: Total origin-destination flowsmig_brth
: Total birth-destination flows, where Origin ISO
reflects place of birthEach dataset includes a mean
variable (mean estimate) and a std
variable (standard deviation of the estimate).
An ISO3 conversion table is also provided.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
UK residents by broad country of birth and citizenship groups, broken down by UK country, local authority, unitary authority, metropolitan and London boroughs, and counties. Estimates from the Annual Population Survey.
Series Name: Proportion of countries with migration policies to facilitate orderly safe regular and responsible migration and mobility of people by policy domain (percent)Series Code: SG_CPA_MIGRPRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 10.7.2: Number of countries with migration policies that facilitate orderly, safe, regular and responsible migration and mobility of peopleTarget 10.7: Facilitate orderly, safe, regular and responsible migration and mobility of people, including through the implementation of planned and well-managed migration policiesGoal 10: Reduce inequality within and among countriesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population in The Netherlands on 1 January by sex, age, marital status, generation and migration background.
CBS is in transition towards a new classification of the population by origin. Greater emphasis is now placed on where a person was born, aside from where that person’s parents were born. The term ‘migration background’ is no longer used in this regard. The main categories western/non-western are being replaced by categories based on continents and a few countries that share a specific migration history with the Netherlands. The new classification is being implemented gradually in tables and publications on population by origin.
Data available from 1996 to 2022.
Status of the figures: All figures in the table are final.
Changes per 13 January 2023: None, this table was discontinued.
When will new figures be published? No longer applicable. This table is succeeded by the table Population; sex, age, country of origin, country of birth, 1 January. See section 3.
List of the data tables as part of the Immigration System Statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.
If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.
The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
Please tell us what format you need. It will help us if you say what assistive technology you use.
Immigration system statistics, year ending March 2025
Immigration system statistics quarterly release
Immigration system statistics user guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives
https://assets.publishing.service.gov.uk/media/68258d71aa3556876875ec80/passenger-arrivals-summary-mar-2025-tables.xlsx">Passenger arrivals summary tables, year ending March 2025 (MS Excel Spreadsheet, 66.5 KB)
‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.
https://assets.publishing.service.gov.uk/media/681e406753add7d476d8187f/electronic-travel-authorisation-datasets-mar-2025.xlsx">Electronic travel authorisation detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 56.7 KB)
ETA_D01: Applications for electronic travel authorisations, by nationality
ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality
https://assets.publishing.service.gov.uk/media/68247953b296b83ad5262ed7/visas-summary-mar-2025-tables.xlsx">Entry clearance visas summary tables, year ending March 2025 (MS Excel Spreadsheet, 113 KB)
https://assets.publishing.service.gov.uk/media/682c4241010c5c28d1c7e820/entry-clearance-visa-outcomes-datasets-mar-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 29.1 MB)
Vis_D01: Entry clearance visa applications, by nationality and visa type
Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome
Additional dat