https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms
COVID-19 vaccination rates slowed in many countries during the second half of 2021, along with the emergence of vocal opposition, particularly to mandated vaccinations. Who are those resisting vaccination? Under what conditions do they change their minds? Our 3-wave representative panel survey from Germany allows us to estimate the dynamics of vaccine opposition, providing the following answers. Without mandates it may be difficult to reach and to sustain the near universal level of repeated vaccinations apparently required to contain the Delta, Omicron and likely subsequent variants. But mandates substantially increase opposition to vaccination. We find that few were opposed to voluntary vaccination in all three waves of the survey. They are just 3.3 percent of our panel, a number that we demonstrate is unlikely to be the result of response error. In contrast, the fraction consistently opposed to enforced vaccinations is 16.5 percent. Under both policies, those consistently opposed and those switching from opposition to supporting vaccination are socio-demographically virtually indistinguishable from other Germans. Thus, the mechanisms accounting for the dynamics of vaccine attitudes may apply generally across societal groups. What differentiates them from others are their beliefs about vaccination effectiveness, trust in public institutions, and whether they perceive enforced vaccination as a restriction on their freedom. We find that changing these beliefs is both possible and necessary to increase vaccine willingness, even in the case of mandates. An inference is that well-designed policies of persuasion and enforcement will be complementary, not alternatives.
This data set provides the data and Stata code used for the article. A detailed description of the variables is available from the corresponding publication. Please cite our paper if you use the data.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset seeks to provide insights into what has changed due to policies aimed at combating COVID-19 and evaluate the changes in community activities and its relation to reduced confirmed cases of COVID-19. The reports chart movement trends, compared to an expected baseline, over time (from 2020/02/15 to 2020/02/05) by geography (across 133 countries), as well as some other stats about the country that might help explain the evolution of the disease.
Bing COVID-19 data. Available at: https://github.com/microsoft/Bing-COVID-19-Data COVID-19 Community Mobility Report. Available at: https://www.google.com/covid19/mobility/ COVID-19: Government Response Stringency Index. Available at: https://ourworldindata.org/grapher/covid-stringency-index Coronavirus (COVID-19) Testing. Available at: https://github.com/owid/covid-19-data/blob/master/public/data/testing/covid-testing-all-observations.csv Coronavirus (COVID-19) Vaccination. Available at: https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccinations/vaccinations.csv List of countries and dependencies by population. Available at: https://www.kaggle.com/tanuprabhu/population-by-country-2020 List of countries and dependencies by population density. Available at: https://www.kaggle.com/tanuprabhu/population-by-country-2020 List of countries by Human Development Index. Available at: http://hdr.undp.org/en/data Measuring Overall Health System Performance. Available at: https://www.who.int/healthinfo/paper30.pdf?ua=1 List of countries by GDP (PPP) per capita. Available at: https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD List of countries by age structure (65+). Available at: https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS
Prepared by Lan Thuong Nguyen, a PhD. Candidate from the International Doctoral Program in Asia-Pacific Studies (IDAS) at National Chengchi University (NCCU), at the Center for Asia-Pacific Resilience and Innovation (CAPRi).
Lan Thuong Nguyen is a co-author of this project alongside an American researcher, Dr. Yen Pottinger, who has clearly defined responsibilities. Her role is sourcing and analyzing documents related to public health policies during the COVID-19 pandemic, vaccination promotion programs, communication strategies against COVID-19, and research articles and reports on vaccine acceptance rates among the Vietnamese population. Additionally, she examines public sentiment regarding the government's COVID-19 strategies and other relevant information. As a result, she searched, curated, and compiled the datasets and stored them in the depositar. She is also responsible for overseeing the storage, management, and, if necessary, customization of these data. The management process does not require additional resources or incur storage or data preparation costs. The datasets will be shared via the repository, with access requests managed by Lan Thuong Nguyen. No personal data is included in the datasets.
The project titled "Misinformation, Disinformation, and Vaccine Hesitancy in Vietnam" forms part of a broader series of studies analyzing vaccine hesitancy across various countries in the Asia-Pacific region. This research examines both the historical context and the impact of the COVID-19 pandemic, with a particular focus on the influence of misinformation and disinformation on governmental and civil society efforts to promote vaccination. It belongs to the Center for Asia-Pacific Resilience and Innovation (CAPRi). The project has been completed and posted on the Center for Asia-Pacific Resilience and Innovation (CAPRi) website.
In this case, the project aims to analyze the factors contributing to vaccine hesitancy in Vietnam, with a particular focus on the influence of misinformation and disinformation. It will examine the historical context, the role of digital and social media, and the effectiveness of governmental and public health responses in addressing these challenges during the COVID-19 pandemic. The project contains metadata on the Vietnamese vaccination program and focuses on the country's public health policy, communication strategies, and vaccination experiences.
The dataset below is part of this project. It introduces the COVID-19 prevention policies, provides an overview of the current status, and compiles academic research on vaccine acceptance, the prevalence of misinformation, and how governments are addressing these issues.
Files must be downloaded to use the entire dataset (depositar only provides limited data previews). This dataset comprises one ZIP file, one XLSX spreadsheet, and one PDF file. The ZIP files contain academic research and documents on experiences propagating COVID-19 vaccination in Vietnamese and English. They are collected for reference in this project, and each article/ research paper/ report is attached with links in this ZIP file. The XLSX spreadsheet is a collection of public health policies applicable to the country made by the author to understand how the Vietnamese government prevented, combated, and governed the anti-COVID-19 campaign. It is used for reference purposes. The PDF file is a literature review written by the author with detailed citations and references. It is conducted based on the requirements of the project manager to have an overview of Vietnam's public health policy.
In its present state, the dataset is presented primarily in Vietnamese and English.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset comprises a witness seminar transcript exploring the effectiveness of AI-based distribution planning and scheduling systems in ensuring equitable vaccine distribution in Low- and Middle-Income Countries (LMICs). The dataset includes discussions from multiple expert participants, including public health professionals, AI researchers, medical practitioners, and ethicists, who shared their perspectives based on their experiences during the COVID-19 vaccine rollout. The research questions focused on identifying systemic inequities in vaccine distribution, the role of AI in scheduling and outreach, and ethical considerations regarding data privacy, bias, and accessibility. Participants discussed how digital platforms such as India’s CoWIN app improved vaccine tracking and administration but also highlighted key challenges, such as limited smartphone access, digital illiteracy, and exclusion of marginalized groups (e.g., transgender individuals, persons with disabilities, and rural communities). Experts noted that AI-based systems require a hybrid approach, combining technological solutions with ground-level outreach by community health workers to ensure equity. The thematic analysis of the transcript reveals recurring themes such as AI's role in optimizing vaccine delivery, ethical concerns regarding data privacy, digital literacy barriers, and challenges in reaching underserved populations. Participants emphasized that while AI can enhance efficiency and tracking, it also risks reinforcing existing inequities if data biases and structural healthcare disparities are not addressed. Discussions further examined the importance of community engagement, transparency, and policy interventions in refining AI-driven vaccine distribution models. This dataset provides rich qualitative insights into the intersection of technology, ethics, and health equity, offering valuable guidance for policymakers, researchers, and global health organizations aiming to improve AI-driven public health interventions in LMICs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary of vaccine comparisons & delivery scenarios.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The WHO coronavirus (COVID-19) dashboard presents official daily counts of COVID-19 cases, deaths and vaccine utilization reported by countries, territories and areas. Through this dashboard, we aim to provide a frequently updated data visualization, data dissemination and data exploration resource, while linking users to other useful and informative resources.
Caution must be taken when interpreting all data presented, and differences between information products published by WHO, national public health authorities, and other sources using different inclusion criteria and different data cut-off times are to be expected. While steps are taken to ensure accuracy and reliability, all data are subject to continuous verification and change. All counts are subject to variations in case detection, definitions, laboratory testing, vaccination strategy, and reporting strategies.
© World Health Organization 2020, All rights reserved.
WHO supports open access to the published output of its activities as a fundamental part of its mission and a public benefit to be encouraged wherever possible. Permission from WHO is not required for the use of the WHO coronavirus disease (COVID-19) dashboard material or data available for download. It is important to note that:
WHO publications cannot be used to promote or endorse products, services or any specific organization.
WHO logo cannot be used without written authorization from WHO.
WHO provides no warranty of any kind, either expressed or implied. In no event shall WHO be liable for damages arising from the use of WHO publications.
For further information, please visit WHO Copyright, Licencing and Permissions.
Citation: WHO COVID-19 Dashboard. Geneva: World Health Organization, 2020. Available online: https://covid19.who.int/
Daily cases start increasing suddenly just before the new year and there's a fear for the upcoming wave. Everybody starts to predict the peak cases in the 3rd wave and the date the peak will be reached. Assume you are in the 1st week of January 2022 and there's panic in the country, for the Omicron variant is said to be highly transmittable. Using your machine learning and deep learning skills, you have to create a model that predicts accurately the peak for the 3rd wave.
Abstract copyright UK Data Service and data collection copyright owner.
Background:
The Millennium Cohort Study (MCS) is a large-scale, multi-purpose longitudinal dataset providing information about babies born at the beginning of the 21st century, their progress through life, and the families who are bringing them up, for the four countries of the United Kingdom. The original objectives of the first MCS survey, as laid down in the proposal to the Economic and Social Research Council (ESRC) in March 2000, were:
Further information about the MCS can be found on the Centre for Longitudinal Studies web pages.
The content of MCS studies, including questions, topics and variables can be explored via the CLOSER Discovery website.
The first sweep (MCS1) interviewed both mothers and (where resident) fathers (or father-figures) of infants included in the sample when the babies were nine months old, and the second sweep (MCS2) was carried out with the same respondents when the children were three years of age. The third sweep (MCS3) was conducted in 2006, when the children were aged five years old, the fourth sweep (MCS4) in 2008, when they were seven years old, the fifth sweep (MCS5) in 2012-2013, when they were eleven years old, the sixth sweep (MCS6) in 2015, when they were fourteen years old, and the seventh sweep (MCS7) in 2018, when they were seventeen years old.Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Main preference drivers for oNGRV and LORVb'*'.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Multivariate logistic regression analysis of factors affecting decision of vaccinating children against COVID-19 (n = 500).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Factors affecting vaccination of children against COVID-19 (n = 500).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vaccination scenarios using the disease incidence calculator.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unit cost inputs by country income level.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms
COVID-19 vaccination rates slowed in many countries during the second half of 2021, along with the emergence of vocal opposition, particularly to mandated vaccinations. Who are those resisting vaccination? Under what conditions do they change their minds? Our 3-wave representative panel survey from Germany allows us to estimate the dynamics of vaccine opposition, providing the following answers. Without mandates it may be difficult to reach and to sustain the near universal level of repeated vaccinations apparently required to contain the Delta, Omicron and likely subsequent variants. But mandates substantially increase opposition to vaccination. We find that few were opposed to voluntary vaccination in all three waves of the survey. They are just 3.3 percent of our panel, a number that we demonstrate is unlikely to be the result of response error. In contrast, the fraction consistently opposed to enforced vaccinations is 16.5 percent. Under both policies, those consistently opposed and those switching from opposition to supporting vaccination are socio-demographically virtually indistinguishable from other Germans. Thus, the mechanisms accounting for the dynamics of vaccine attitudes may apply generally across societal groups. What differentiates them from others are their beliefs about vaccination effectiveness, trust in public institutions, and whether they perceive enforced vaccination as a restriction on their freedom. We find that changing these beliefs is both possible and necessary to increase vaccine willingness, even in the case of mandates. An inference is that well-designed policies of persuasion and enforcement will be complementary, not alternatives.
This data set provides the data and Stata code used for the article. A detailed description of the variables is available from the corresponding publication. Please cite our paper if you use the data.