74 datasets found
  1. census-bureau-international

    • kaggle.com
    zip
    Updated May 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). census-bureau-international [Dataset]. https://www.kaggle.com/datasets/bigquery/census-bureau-international
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 6, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Context

    The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.

    Sample Query 1

    What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!

    standardSQL

    SELECT age.country_name, age.life_expectancy, size.country_area FROM ( SELECT country_name, life_expectancy FROM bigquery-public-data.census_bureau_international.mortality_life_expectancy WHERE year = 2016) age INNER JOIN ( SELECT country_name, country_area FROM bigquery-public-data.census_bureau_international.country_names_area where country_area > 25000) size ON age.country_name = size.country_name ORDER BY 2 DESC /* Limit removed for Data Studio Visualization */ LIMIT 10

    Sample Query 2

    Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.

    standardSQL

    SELECT age.country_name, SUM(age.population) AS under_25, pop.midyear_population AS total, ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25 FROM ( SELECT country_name, population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population_agespecific WHERE year =2017 AND age < 25) age INNER JOIN ( SELECT midyear_population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population WHERE year = 2017) pop ON age.country_code = pop.country_code GROUP BY 1, 3 ORDER BY 4 DESC /* Remove limit for visualization*/ LIMIT 10

    Sample Query 3

    The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.

    SELECT growth.country_name, growth.net_migration, CAST(area.country_area AS INT64) AS country_area FROM ( SELECT country_name, net_migration, country_code FROM bigquery-public-data.census_bureau_international.birth_death_growth_rates WHERE year = 2017) growth INNER JOIN ( SELECT country_area, country_code FROM bigquery-public-data.census_bureau_international.country_names_area

    Update frequency

    Historic (none)

    Dataset source

    United States Census Bureau

    Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data

  2. COVID-19 Trends in Each Country

    • coronavirus-disasterresponse.hub.arcgis.com
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  3. T

    Global population survey data set (1950-2018)

    • data.tpdc.ac.cn
    zip
    Updated Sep 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wen DONG (2020). Global population survey data set (1950-2018) [Dataset]. https://data.tpdc.ac.cn/en/data/ece5509f-2a2c-4a11-976e-8d939a419a6c
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 3, 2020
    Dataset provided by
    TPDC
    Authors
    Wen DONG
    Area covered
    Description

    "Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.This dataset includes demographic data of 22 countries from 1960 to 2018, including Sri Lanka, Bangladesh, Pakistan, India, Maldives, etc. Data fields include: country, year, population ratio, male ratio, female ratio, population density (km). Source: ( 1 ) United Nations Population Division. World Population Prospects: 2019 Revision. ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations Statistical Division. Population and Vital Statistics Reprot ( various years ), ( 5 ) U.S. Census Bureau: International Database, and ( 6 ) Secretariat of the Pacific Community: Statistics and Demography Programme. Periodicity: Annual Statistical Concept and Methodology: Population estimates are usually based on national population censuses. Estimates for the years before and after the census are interpolations or extrapolations based on demographic models. Errors and undercounting occur even in high-income countries. In developing countries errors may be substantial because of limits in the transport, communications, and other resources required to conduct and analyze a full census. The quality and reliability of official demographic data are also affected by public trust in the government, government commitment to full and accurate enumeration, confidentiality and protection against misuse of census data, and census agencies' independence from political influence. Moreover, comparability of population indicators is limited by differences in the concepts, definitions, collection procedures, and estimation methods used by national statistical agencies and other organizations that collect the data. The currentness of a census and the availability of complementary data from surveys or registration systems are objective ways to judge demographic data quality. Some European countries' registration systems offer complete information on population in the absence of a census. The United Nations Statistics Division monitors the completeness of vital registration systems. Some developing countries have made progress over the last 60 years, but others still have deficiencies in civil registration systems. International migration is the only other factor besides birth and death rates that directly determines a country's population growth. Estimating migration is difficult. At any time many people are located outside their home country as tourists, workers, or refugees or for other reasons. Standards for the duration and purpose of international moves that qualify as migration vary, and estimates require information on flows into and out of countries that is difficult to collect. Population projections, starting from a base year are projected forward using assumptions of mortality, fertility, and migration by age and sex through 2050, based on the UN Population Division's World Population Prospects database medium variant."

  4. d

    Data from: Latin American and Caribbean population database

    • search.dataone.org
    Updated Jan 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hyman, Glenn Graham; Castaño, Silvia-Elena; López, Rosalba; Cuero, Alexander; Nagles, Carlos; Barona Adarve, Elizabeth; Perez, Liliana; Jones, Peter (2024). Latin American and Caribbean population database [Dataset]. http://doi.org/10.7910/DVN/AF4KGI
    Explore at:
    Dataset updated
    Jan 25, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Hyman, Glenn Graham; Castaño, Silvia-Elena; López, Rosalba; Cuero, Alexander; Nagles, Carlos; Barona Adarve, Elizabeth; Perez, Liliana; Jones, Peter
    Time period covered
    Jan 1, 1960 - Jan 1, 2000
    Area covered
    Latin America, Caribbean
    Description

    The population of Latin America and the Caribbean increased from 175 million in 1950 to 515 million in 2000. Where did this growth occur? What is the magnitude of change in different places? How can we visualize the geographic dimensions of population change in Latin America and the Caribbean? We compiled census and other public domain information to analyze both temporal and geographic changes in population in the region. Our database includes population totals for over 18,300 administrative districts within Latin America and the Caribbean. Tabular census data was linked to an administrative division map of the region and handled in a geographic information system. We transformed vector population maps to raster surfaces to make the digital maps comparable with other commonly available geographic information. Validation and error-checking analyses were carried out to compare the database with other sources of population information. The digital population maps created in this project have been put in the public domain and can be downloaded from our website. The Latin America and Caribbean map is part of a larger multi-institutional effort to map population in developing countries. This is the third version of the Latin American and Caribbean population database and it contains new data from the 2000 round of censuses and new and improved accessibility surfaces for creating the raster maps.

  5. r

    Restructuring Large Housing Estates in European Cities: Good Practices and...

    • researchdata.edu.au
    Updated Nov 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sjoerd de vos; sako musterd; ronald van kempen; Karien Dekker; 0000-0001-7361-591x (2020). Restructuring Large Housing Estates in European Cities: Good Practices and New Visions for Sustainable Neighbourhoods and Cities - data from 31 large housing estates in 10 European countries (2004) [Dataset]. http://doi.org/10.6084/M9.FIGSHARE.5436283.V1
    Explore at:
    Dataset updated
    Nov 4, 2020
    Dataset provided by
    RMIT University, Australia
    Authors
    sjoerd de vos; sako musterd; ronald van kempen; Karien Dekker; 0000-0001-7361-591x
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    The empirical dataset is derived from a survey carried out on 25 estates in 14 cities in nine different European countries: France (Lyon), Germany (Berlin), Hungary (Budapest and Nyiregyha´za), Italy (Milan), the Netherlands (Amsterdam and Utrecht), Poland (Warsaw), Slovenia (Ljubljana and Koper), Spain (Barcelona and Madrid), and Sweden (Jo¨nko¨ping and Stockholm). The survey was part of the EU RESTATE project (Musterd & Van Kempen, 2005). A similar survey was constructed for all 25 estates.

    The survey was carried out between February and June 2004. In each case, a random sample was drawn, usually from the whole estate. For some estates, address lists were used as the basis for the sample; in other cases, the researchers first had to take a complete inventory of addresses themselves (for some deviations from this general trend and for an overview of response rates, see Musterd & Van Kempen, 2005). In most cities, survey teams were hired to carry out the survey. They worked under the supervision of the RESTATE partners. Briefings were organised to instruct the survey teams. In some cases (for example, in Amsterdam and Utrecht), interviewers were recruited from specific ethnic groups in order to increase the response rate among, for example, the Turkish and Moroccan residents on the estates. In other cases, family members translated questions during a face-to-face interview. The interviewers with an immigrant background were hired in those estates where this made sense. In some estates it was not necessary to do this because the number of immigrants was (close to) zero (as in most cases in CE Europe).

    The questionnaire could be completed by the respondents themselves, but also by the interviewers in a face-to-face interview.

    Data and Representativeness

    The data file contains 4756 respondents. Nearly all respondents indicated their satisfaction with the dwelling and the estate. Originally, the data file also contained cases from the UK.

    However, UK respondents were excluded from the analyses because of doubts about the reliability of the answers to the ethnic minority questions. This left 25 estates in nine countries. In general, older people and original populations are somewhat over-represented, while younger people and immigrant populations are relatively under-represented, despite the fact that in estates with a large minority population surveyors were also employed from minority ethnic groups. For younger people, this discrepancy probably derives from the extent of their activities outside the home, making them more difficult to reach. The under-representation of the immigrant population is presumably related to language and cultural differences. For more detailed information on the representation of population in each case, reference is made to the reports of the researchers in the different countries which can be downloaded from the programme website. All country reports indicate that despite these over- and under-representations, the survey results are valuable for the analyses of their own individual situation.

    This dataset is the result of a team effort lead by Professor Ronald van Kempen, Utrecht University with funding from the EU Fifth Framework.

  6. e

    Infrastructure protection and population response to infrastructure failure...

    • b2find.eudat.eu
    Updated Oct 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Infrastructure protection and population response to infrastructure failure - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/d1598835-ac58-5c07-bc61-05c5aef1bedd
    Explore at:
    Dataset updated
    Oct 20, 2023
    Description

    This comparative project (UK, Japan, Germany, US & New Zealand) examined how governments prepare citizens for collapse in the Critical National Infrastructure (CNI); how they model collapse and population response; case studies of CNI collapse (with particular reference to health and education) and the globalisation of CNI policy. It was funded by the Economic and Social Research Council under grant reference ES/K000233/1. It considered:- 1. How is the critical infrastructure defined and operationalised in different national contexts? How is population response defined, modelled and refined in the light of crisis? 2. What are the most important comparative differences between countries with regard to differences in mass population response to critical infrastructure collapse? 3. To what degree are factors such as differences in national levels of trust, degrees of educational or income inequality, social capital or welfare system differences particularly in the education and health systems significant in understanding differential population response to critical infrastructure collapse? 4. How can a comparative understanding of mass population response to critical infrastructure collapse help us to prepare for future crisis? Research design and methodology Methodologically the study was focused on national systems in developed countries. The focus was on different 'welfare regimes' being broadly liberal market economies (the UK, US and New Zealand) and broadly centralised market economies (Germany and Japan). The data arising from the project was of various types including interviews, focus groups, archival data and documentary evidence. The 'National Infrastructure' is seldom out of the news. Although the infrastructure is not always easy to define it includes things such as utilities (water, energy, gas), transportation systems and communications. We often hear about real or perceived threats to the infrastructure. In this research we will construct 'timelines' of infrastructure protection policy and mass population response to see exactly how and why policy changes in countries over time. We will select a range of countries to represent different political and social factors (US, UK, New Zealand, Japan and Germany). The analysis of these timelines will suggest why national infrastructure policy changes over time. We will then test our results using case studies of actual disasters and expert groups of policy makers across countries. Ultimately this will help us to understand national infrastructure protection changes over time, what drives such changes and the different ways in which countries prepare themselves for infrastructure threats. In addition, through a series of 'leadership activities' the research will bring together researchers in different academic disciplines and people from the public, private and third sectors. The methodology used was to enable an understanding of how countries had developed strategies of mass population response to critical infrastructure failure. The methods were:- 1. Archival research using data in country archives from 1945 to the present day on population response (planned and actual to disasters) 2. Focus groups and interviews with selected experts to enable us to further understand the data in (1). 3. Case studies of actual infrastructure failures - summary notes were prepared from documentary evidence on disasters.

  7. World Lakes

    • kaggle.com
    Updated Dec 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mehrdad (2022). World Lakes [Dataset]. http://doi.org/10.34740/kaggle/dsv/4653679
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 4, 2022
    Dataset provided by
    Kaggle
    Authors
    mehrdad
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Property Description

    Hylak_id Unique lake identifier. Values range from 1 to 1,427,688.

    **Lake_name ** Name of lake or reservoir. This field is currently only populated for lakes with an area of at least 500 km2; for large reservoirs where a name was available in the GRanD database; and for smaller lakes where a name was available in the GLWD database.

    Country Country that the lake (or reservoir) is located in. International or transboundary lakes are assigned to the country in which its corresponding lake pour point is located and may be arbitrary for pour points that fall on country boundaries.

    Continent Continent that the lake (or reservoir) is located in. Geographic continent: Africa, Asia, Europe, North America, South America, or Oceania (Australia and Pacific Islands)

    Poly_src The name of datasets that were used in the column. Source of original lake polygon: CanVec; SWBD; MODIS; NHD; ECRINS; GLWD; GRanD; or Other More information on these data sources can be found in Table 1.

    Lake_type Indicator for lake type: 1: Lake 2: Reservoir 3: Lake control (i.e. natural lake with regulation structure) Note that the default value for all water bodies is 1, and only those water bodies explicitly identified as other types (mostly based on information from the GRanD database) have other values; hence the type ‘Lake’ also includes all unidentified smaller human-made reservoirs and regulated lakes.

    Grand_id ID of the corresponding reservoir in the GRanD database, or value 0 for no corresponding GRanD record. This field can be used to join additional attributes from the GRanD database.

    Lake_area Lake surface area (i.e. polygon area), in square kilometers.

    Shore_len Length of shoreline (i.e. polygon outline), in kilometers.

    Shore_dev Shoreline development, measured as the ratio between shoreline length and the circumference of a circle with the same area. A lake with the shape of a perfect circle has a shoreline development of 1, while higher values indicate increasing shoreline complexity.

    Vol_total Total lake or reservoir volume, in million cubic meters (1 mcm = 0.001 km3). For most polygons, this value represents the total lake volume as estimated using the geostatistical modeling approach by Messager et al. (2016). However, where either a reported lake volume (for lakes ≥ 500 km2) or a reported reservoir volume (from GRanD database) existed, the total volume represents this reported value. In cases of regulated lakes, the total volume represents the larger value between reported reservoir and modeled or reported lake volume. Column ‘Vol_src’ provides additional information regarding these distinctions.

    Vol_res Reported reservoir volume, or storage volume of added lake regulation, in million cubic meters (1 mcm = 0.001 km3). 0: no reservoir volume

    Vol_src 1: ‘Vol_total’ is the reported total lake volume from literature 2: ‘Vol_total’ is the reported total reservoir volume from GRanD or literature 3: ‘Vol_total’ is the estimated total lake volume using the geostatistical modeling approach by Messager et al. (2016)

    Depth_avg Average lake depth, in meters. Average lake depth is defined as the ratio between total lake volume (‘Vol_total’) and lake area (‘Lake_area’).

    Dis_avg Average long-term discharge flowing through the lake, in cubic meters per second. This value is derived from modeled runoff and discharge estimates provided by the global hydrological model WaterGAP, downscaled to the 15 arc-second resolution of HydroSHEDS (see section 2.2 for more details) and is extracted at the location of the lake pour point. Note that these model estimates contain considerable uncertainty, in particular for very low flows. -9999: no data as lake pour point is not on HydroSHEDS landmask

    Res_time Average residence time of the lake water, in days. The average residence time is calculated as the ratio between total lake volume (‘Vol_total’) and average long-term discharge (‘Dis_avg’). Values below 0.1 are rounded up to 0.1 as shorter residence times seem implausible (and likely indicate model errors). -1: cannot be calculated as ‘Dis_avg’ is 0 -9999: no data as lake pour point is not on HydroSHEDS landmask

    Elevation Elevation of lake surface, in meters above sea level. This value was primarily derived from the EarthEnv-DEM90 digital elevation model at 90 m pixel resolution by calculating the majority pixel elevation found within the lake boundaries. To remove some artefacts inherent in this DEM for northern latitudes, all lake values that showed negative elevation for the area north of 60°N were substituted with results using the coarser GTOPO30 DEM of USGS at 1 km pixel resolution, which ensures land surfaces ≥0 in this region. Note that due to the remaining uncertainties in the EarthEnv-DEM90 some small negative values occur along the global oce...

  8. I

    Ivory Coast CI: Refugee Population: by Country or Territory of Origin

    • ceicdata.com
    Updated Mar 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Ivory Coast CI: Refugee Population: by Country or Territory of Origin [Dataset]. https://www.ceicdata.com/en/ivory-coast/population-and-urbanization-statistics/ci-refugee-population-by-country-or-territory-of-origin
    Explore at:
    Dataset updated
    Mar 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Côte d'Ivoire
    Variables measured
    Population
    Description

    Ivory Coast CI: Refugee Population: by Country or Territory of Origin data was reported at 39,939.000 Person in 2017. This records a decrease from the previous number of 46,813.000 Person for 2016. Ivory Coast CI: Refugee Population: by Country or Territory of Origin data is updated yearly, averaging 22,229.500 Person from Dec 1990 (Median) to 2017, with 28 observations. The data reached an all-time high of 154,824.000 Person in 2011 and a record low of 2.000 Person in 1990. Ivory Coast CI: Refugee Population: by Country or Territory of Origin data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ivory Coast – Table CI.World Bank.WDI: Population and Urbanization Statistics. Refugees are people who are recognized as refugees under the 1951 Convention Relating to the Status of Refugees or its 1967 Protocol, the 1969 Organization of African Unity Convention Governing the Specific Aspects of Refugee Problems in Africa, people recognized as refugees in accordance with the UNHCR statute, people granted refugee-like humanitarian status, and people provided temporary protection. Asylum seekers--people who have applied for asylum or refugee status and who have not yet received a decision or who are registered as asylum seekers--are excluded. Palestinian refugees are people (and their descendants) whose residence was Palestine between June 1946 and May 1948 and who lost their homes and means of livelihood as a result of the 1948 Arab-Israeli conflict. Country of origin generally refers to the nationality or country of citizenship of a claimant.; ; United Nations High Commissioner for Refugees (UNHCR), Statistics Database, Statistical Yearbook and data files, complemented by statistics on Palestinian refugees under the mandate of the UNRWA as published on its website. Data from UNHCR are available online at: www.unhcr.org/en-us/figures-at-a-glance.html.; Sum;

  9. F

    Finland FI: Refugee Population: by Country or Territory of Origin

    • ceicdata.com
    Updated Apr 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). Finland FI: Refugee Population: by Country or Territory of Origin [Dataset]. https://www.ceicdata.com/en/finland/population-and-urbanization-statistics/fi-refugee-population-by-country-or-territory-of-origin
    Explore at:
    Dataset updated
    Apr 15, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2004 - Dec 1, 2015
    Area covered
    Finland
    Variables measured
    Population
    Description

    Finland FI: Refugee Population: by Country or Territory of Origin data was reported at 8.000 Person in 2015. This records an increase from the previous number of 7.000 Person for 2014. Finland FI: Refugee Population: by Country or Territory of Origin data is updated yearly, averaging 6.000 Person from Dec 1995 (Median) to 2015, with 21 observations. The data reached an all-time high of 9.000 Person in 2002 and a record low of 1.000 Person in 1996. Finland FI: Refugee Population: by Country or Territory of Origin data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Finland – Table FI.World Bank: Population and Urbanization Statistics. Refugees are people who are recognized as refugees under the 1951 Convention Relating to the Status of Refugees or its 1967 Protocol, the 1969 Organization of African Unity Convention Governing the Specific Aspects of Refugee Problems in Africa, people recognized as refugees in accordance with the UNHCR statute, people granted refugee-like humanitarian status, and people provided temporary protection. Asylum seekers--people who have applied for asylum or refugee status and who have not yet received a decision or who are registered as asylum seekers--are excluded. Palestinian refugees are people (and their descendants) whose residence was Palestine between June 1946 and May 1948 and who lost their homes and means of livelihood as a result of the 1948 Arab-Israeli conflict. Country of origin generally refers to the nationality or country of citizenship of a claimant.; ; United Nations High Commissioner for Refugees (UNHCR), Statistics Database, Statistical Yearbook and data files, complemented by statistics on Palestinian refugees under the mandate of the UNRWA as published on its website. Data from UNHCR are available online at: www.unhcr.org/en-us/figures-at-a-glance.html.; Sum;

  10. g

    World Bank, Trends in Average Applied Tariff Rates in Developing and...

    • geocommons.com
    Updated Apr 29, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). World Bank, Trends in Average Applied Tariff Rates in Developing and Industrial Countries, Global, 1981-2005 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Apr 29, 2008
    Dataset provided by
    The World Bank
    data
    Description

    This dataset tracks the average applied tariff rates in both industrial and developing countries. Data is averaged for the years 1981-2005. Figures for 2005 have been estimated. Notes: All tariff rates are based on unweighted averages for all goods in ad valorem rates, or applied rates, or MFN rates whichever data is available in a longer period. Tariff data is primarily based on UNCTAD TRAINS database and then used WTO IDB data for gap filling if possible. Data in 1980s is taken from other source.** Tariff data in these countries came from IMF Global Monitoring Tariff file in 2004 which might include other duties or charges. Country codes are based on the classifications by income in WDI 2006, where 1 = low income, 2 = middle income, 3 = high incone non-OECDs, and 4 = high income OECD countries. Sources: UNCTAD TRAINS database (through WITS); WTO IDB database (through WITS); WTO IDB CD ROMs, various years and Trade Policy Review -- Country Reports in various issues, 1990-2005; UNCTAD Handbook of Trade Control Measures of Developing Countries -- Supplement 1987 and Directory of Import Regimes 1994; World Bank Trade Policy Reform in Developing Countries since 1985, WB Discussion Paper #267, 1994 and World Development Indicators, 1998-2006; The Uruguay Round: Statistics on Tariffs Concessions Given and Received, 1996; OECD Indicators of Tariff and Non-Tariff Trade Barriers, 1996 and 2000; and IMF Global Monitoring Tariff data file 2004. Data source: http://go.worldbank.org/LGOXFTV550 Access Date: October 17, 2007

  11. v

    Data from: Quality end-of-life care: A global perspective

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institutes of Health (2025). Quality end-of-life care: A global perspective [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/quality-end-of-life-care-a-global-perspective
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    National Institutes of Health
    Description

    Background Quality end-of-life care has emerged as an important concept in industrialized countries. Discussion We argue quality end-of-life care should be seen as a global public health and health systems problem. It is a global problem because 85 % of the 56 million deaths worldwide that occur annually are in developing countries. It is a public health problem because of the number of people it affects, directly and indirectly, in terms of the well being of loved ones, and the large-scale, population based nature of some possible interventions. It is a health systems problem because one of its main features is the need for better information on quality end-of-life care. We examine the context of end-of-life care, including the epidemiology of death and cross-cultural considerations. Although there are examples of success, we could not identify systematic data on capacity for delivering quality end-of-life care in developing countries. We also address a possible objection to improving end-of-life care in developing countries; many deaths are preventable and reduction of avoidable deaths should be the focus of attention. Conclusions We make three recommendations: (1) reinforce the recasting of quality end-of-life care as a global public health and health systems problem; (2) strengthen capacity to deliver quality end-of-life care; and (3) develop improved strategies to acquire information about the quality of end-of-life care.

  12. e

    Caribbean LME - Belize, Costa Rica, Cuba, Dominican Republic, Honduras,...

    • b2find.eudat.eu
    Updated Oct 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Caribbean LME - Belize, Costa Rica, Cuba, Dominican Republic, Honduras, Mexico, Panama - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/5ccd3126-ea05-5334-be59-f960d170bfd3
    Explore at:
    Dataset updated
    Oct 21, 2023
    Area covered
    Cuba, Belize, Costa Rica, Panama, Dominican Republic, Mexico, Honduras, Caribbean
    Description

    The boundaries of the CLME Project encompass the Caribbean Sea LME and the North Brazil Shelf LME and include 26 countries and 19 dependent territories of France, the Netherlands, United Kingdom and United States. These countries range from among the largest (e.g. Brazil, USA) to among the smallest (e.g. Barbados, St. Kitts and Nevis), and from the most developed to the least developed. Consequently, there is an extremely wide range in their capacities for living marine resource management. Throughout the region, the majority of the population inhabits the coastal zone, and there is a very high dependence on marine resources for livelihoods from fishing and tourism, particularly among the small island developing states (SIDS), of which there are 16. In addition 18 of the 19 dependent territories are SIDS. The region is characterized by a diversity of national and regional governance and institution arrangements, stemming primarily from the governance structures established by the countries that colonized the region. Physical and geographical characteristics The Caribbean Sea is a semi-enclosed ocean basin bounded by the Lesser Antilles to the east and southeast, the Greater Antilles (Cuba, Hispaniola, and Puerto Rico) to the north, and by Central America to the west and southwest. It is located within the tropics and covers 1,943,000 km2. The Wider Caribbean, which includes the Gulf of Mexico, the Caribbean Sea and the adjacent parts of the Atlantic Ocean encompasses an area of 2,515,900 km2 and is the second largest sea in the world. (Bjorn 1997, Sheppard 2000, IUCN 2003). It is noted for its many islands, including the Leeward and Windward Islands situated on its eastern boundary, Cuba, Hispaniola, Puerto Rico, Jamaica and the Cayman Islands. There is little seasonal variation in surface water temperatures. Temperatures range from 25.5 °C in the winter to 28 °C in the summer. The adjacent region of the North Brazil Shelf Large Marine Ecosystem is characterized by its tropical climate. It extends in the Atlantic Ocean from the boundary with the Caribbean Sea to the Paraiba River estuary in Brazil. The LME owes its unity to the North Brazil Current, which flows parallel to Brazil’s coast and is an extension of the South Equatorial Current coming from the East. The LME is characterized by a wide shelf, and features macrotides and upwellings along the shelf edge. It has moderately diverse food webs and high production due in part to the high levels of nutrients coming from the Amazon and Tocantins rivers, as well as from the smaller rivers of the Amapa and western Para coastal plains. The Caribbean Sea averages depths of 2,200 m, with the deepest part, known as the Cayman trench, plunging to 7,100 m. The drainage basin of the Wider Caribbean covers 7.5 million km2 and encompasses eight major river systems, from the Mississippi to the Orinoco (Hinrichsen 1998). The region is highly susceptible to natural disasters. Most of the islands and the Central American countries lie within the hurricane belt and are vulnerable to frequent damage from strong winds and storm surges. Recent major natural disasters include hurricanes Gilbert (1988) and Hugo (1989), the eruptions of the Soufriere Hills Volcano in Montserrat (1997) and the Piparo Mud Volcano in Trinidad (1997), as well as drought conditions in Cuba and Jamaica during 1997-98, attributed to the El Niño phenomenon. More recently Hurricane Georges devastated large areas, as did Hurricanes Mitch and Ivan (2004). In the case of Ivan, damages were extensive to both natural and infrastructural assets, with estimates reported by Grenada of US$815 million, the Cayman Islands US$1.85 billion, Jamaica US$360 million and Cuba US$1.2 billion. Although the intense category 5 hurricanes Katrina and Rita did not make landfall in the Caribbean, in 2005, Hurricane Wilma devastated the Yucatan peninsula and has the distinction of being the most intense hurricane on record in the Atlantic. Ecological status The marine and coastal systems of the region support a complex interaction of distinct ecosystems, with an enormous biodiversity, and are among the most productive in the world. As mentioned above, several of the world's largest and most productive estuaries (Amazon and Orinoco) are found in the region. The coast of Belize has the second largest barrier reef in the world extending some 250 kilometers and covering approximately 22,800 km2. The region's coastal zone is significant, encompassing entire countries for many of the island nations. Fish and Fisheries A wide range of fisheries activities (industrial, artisanal and recreational) coexist in the CLME Project area. Overall landings from the main fisheries rose from around 177,000 tonnes in 1975 to a peak of 1,000,000 tonnes in 1995 before declining to around 800,000 tonnes in 2005. The total landings from all fisheries shows the decline over the last decade. In the reef fish fisheries, declines in overall landings are rarely observed; instead, there are shifts in species composition. For instance a decline in the percentage of snapper and grouper in the catch, the larger, long-lived predators, is an indication of over exploitation; although not in the Caribbean Large Marine Ecosystem, this pattern was evident in Bermuda between 1969 and 1975 where the percentage of snappers and groupers declined from 67% to 38% and also on the north coast of Jamaica between 1981 and 1990 where the 11 decline was from 26% to 12%. According to an FAO assessment, some 35% of the region's stocks are overexploited. The fisheries of the Caribbean Region are based upon a diverse array of resources. The fisheries of greatest importance are for offshore pelagics, reef fishes, lobster, conch, shrimps, continental shelf demersal fishes, deep slope and bank fishes and coastal pelagics. There is a variety of less important fisheries such as for marine mammals, sea turtles, sea urchins, and seaweeds. The management and governance of these fisheries varies greatly and is fragmented with incomplete or absent frameworks at the sub-regional and regional levels and weak vertical and horizontal linkages. The fishery types vary widely in exploitation; vessel and gear used, and approach to their development and management. However, most coastal resources are considered to be overexploited and there is increasing evidence that pelagic predator biomass has been severely depleted (FAO 1998, Mahon 2002, Myers and Worm 2003). Recreational fishing, an important but undocumented contributor to tourism economies, is an important link between shared resource management and tourism, as the preferred species are mainly predatory migratory pelagics (e.g. billfishes, wahoo, and dolphinfish). This aspect of shared resource management has received minimal attention in most Caribbean countries (Mahon and McConney 2004). Pollution and Ecosystem Health Pollution, mainly from land-based sources, and degradation of nearshore habitats are among the major threats to the region’s living marine resources. The CLME is showing signs of environmental stress, particularly in the shallow waters of coral reef systems and in semi-enclosed bays. Coastal water quality has been declining throughout the region, due to a number of factors including rapid population growth in coastal areas, poor land-use practices and increasing discharges of untreated municipal and industrial waste and agricultural pesticides and fertilizers. Throughout the region, pollution by a range of substances and sources including sewage, nutrients, sediments, petroleum hydrocarbons and heavy metals is of increasing concern. The GIWA studies identified a number of pollution hotspots in the region, mainly around the coastal cities. Pollution has significant transboundary implications, as a result of the high potential for transport across EEZs in wind and ocean currents. Not only could this cause degradation of living marine resources in places far from the source, but it could also pose a threat to human and animal health by the introduction of pathogens. Pollution has been implicated in the increasing episodes of fish kills in the region, although this is not conclusive. Socio-economic situation The physical expanse of the region's coastal zone is significant, encompassing the entire land mass for many of the islands. Additionally, for countries such as the island nations of the Caribbean, Panama and Costa Rica, marine territory represents more than 50% of the total area under national sovereignty. In general, the region’s coastal zone is where the majority of it human population live and where most economic activities also take place. In 2001, the population of the Caribbean Sea region (not including the United States) was around 102 million, of which it is estimated that 59% is in Colombia and Venezuela, 27% is in Cuba and Hispaniola, 10% is in Central America and Mexico, and 3% is in the Small Islands. Taking into account the population growth rate for each country in the Caribbean Sea region, it is expected that the number of inhabitants would be close to 123 million in 2020. When the population for Guyana, Suriname, French Guiana, and the regions of Brazil and Florida that comprise the CLME Project are included, this number is expected to increase to approximately 130 million. Almost all the countries in the region are among the world’s premier tourism destinations, providing an important source of income for their economies. The population in the Caribbean Sea region swells during the tourist season by the influx of millions of tourists, mostly in beach destinations. In 2004, for example, the Mexican state of Quintana Roo received 10.8 million tourists with over 35% of those arriving by cruise ships. There is a high dependence on living marine resources for food, employment and income from fishing and tourism, particularly among the SIDS. Although its contribution to GDP is relatively low, marine

  13. S

    Sweden SE: Refugee Population: by Country or Territory of Origin

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Sweden SE: Refugee Population: by Country or Territory of Origin [Dataset]. https://www.ceicdata.com/en/sweden/population-and-urbanization-statistics/se-refugee-population-by-country-or-territory-of-origin
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Sweden
    Variables measured
    Population
    Description

    Sweden SE: Refugee Population: by Country or Territory of Origin data was reported at 14.000 Person in 2017. This records a decrease from the previous number of 15.000 Person for 2016. Sweden SE: Refugee Population: by Country or Territory of Origin data is updated yearly, averaging 19.500 Person from Dec 1994 (Median) to 2017, with 24 observations. The data reached an all-time high of 75.000 Person in 2005 and a record low of 5.000 Person in 2001. Sweden SE: Refugee Population: by Country or Territory of Origin data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Sweden – Table SE.World Bank.WDI: Population and Urbanization Statistics. Refugees are people who are recognized as refugees under the 1951 Convention Relating to the Status of Refugees or its 1967 Protocol, the 1969 Organization of African Unity Convention Governing the Specific Aspects of Refugee Problems in Africa, people recognized as refugees in accordance with the UNHCR statute, people granted refugee-like humanitarian status, and people provided temporary protection. Asylum seekers--people who have applied for asylum or refugee status and who have not yet received a decision or who are registered as asylum seekers--are excluded. Palestinian refugees are people (and their descendants) whose residence was Palestine between June 1946 and May 1948 and who lost their homes and means of livelihood as a result of the 1948 Arab-Israeli conflict. Country of origin generally refers to the nationality or country of citizenship of a claimant.; ; United Nations High Commissioner for Refugees (UNHCR), Statistics Database, Statistical Yearbook and data files, complemented by statistics on Palestinian refugees under the mandate of the UNRWA as published on its website. Data from UNHCR are available online at: www.unhcr.org/en-us/figures-at-a-glance.html.; Sum;

  14. o

    Air Pollution in World Cities 2000 - Dataset - Data Catalog Armenia

    • data.opendata.am
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Air Pollution in World Cities 2000 - Dataset - Data Catalog Armenia [Dataset]. https://data.opendata.am/dataset/dcwb0043584
    Explore at:
    Dataset updated
    Jul 7, 2023
    Description

    Polluted air is a major health hazard in developing countries. Improvements in pollution monitoring and statistical techniques during the last several decades have steadily enhanced the ability to measure the health effects of air pollution. Current methods can detect significant increases in the incidence of cardiopulmonary and respiratory diseases, coughing, bronchitis, and lung cancer, as well as premature deaths from these diseases resulting from elevated concentrations of ambient Particulate Matter (Holgate 1999). Scarce public resources have limited the monitoring of atmospheric particulate matter (PM) concentrations in developing countries, despite their large potential health effects. As a result, policymakers in many developing countries remain uncertain about the exposure of their residents to PM air pollution. The Global Model of Ambient Particulates (GMAPS) is an attempt to bridge this information gap through an econometrically estimated model for predicting PM levels in world cities (Pandey et al. forthcoming).The estimation model is based on the latest available monitored PM pollution data from the World Health Organization, supplemented by data from other reliable sources. The current model can be used to estimate PM levels in urban residential areas and non-residential pollution hotspots. The results of the model are used to project annual average ambient PM concentrations for residential and non-residential areas in 3,226 world cities with populations larger than 100,000, as well as national capitals. The study finds wide, systematic variations in ambient PM concentrations, both across world cities and over time. PM concentrations have risen at a slower rate than total emissions. Overall emission levels have been rising, especially for poorer countries, at nearly 6 percent per year. PM concentrations have not increased by as much, due to improvements in technology and structural shifts in the world economy. Additionally, within-country variations in PM levels can diverge greatly (by a factor of 5 in some cases), because of the direct and indirect effects of geo-climatic factors.The primary determinants of PM concentrations are the scale and composition of economic activity, population, the energy mix, the strength of local pollution regulation, and geographic and atmospheric conditions that affect pollutant dispersion in the atmosphere.

  15. g

    BTS, National Metropolitain Statistical Areas (MSA's), USA, 2007

    • geocommons.com
    Updated May 19, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). BTS, National Metropolitain Statistical Areas (MSA's), USA, 2007 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 19, 2008
    Dataset provided by
    data
    Bureau of Transportation Statistics National Transportation Atlas Database
    Description

    The United States MSA Boundaries data set contains the boundaries for metropolitan statistical areas in the United States. The data set contains information on location, identification, and size. The database includes metropolitan boundaries within all 50 states, the District of Columbia, and Puerto Rico. The general concept of a metropolitan area (MA) is one of a large population nucleus, together with adjacent communities that have a high degree of economic and social integration with that nucleus. Some MAs are defined around two or more nuclei. Each MA must contain either a place with a minimum population of 50,000 or a U.S. Census Bureau-defined urbanized area and a total MA population of at least 100,000 (75,000 in New England). An MA contains one or more central counties. An MA also may include one or more outlying counties that have close economic and social relationships with the central county. An outlying county must have a specified level of commuting to the central counties and also must meet certain standards regarding metropolitan character, such as population density, urban population, and population growth. In New England, MAs consist of groupings of cities and towns rather than whole counties. The territory, population, and housing units in MAs are referred to as "metropolitan." The metropolitan category is subdivided into "inside central city" and "outside central city." The territory, population, and housing units located outside territory designated "metropolitan" are referred to as "non-metropolitan." The metropolitan and non-metropolitan classification cuts across the other hierarchies; for example, generally there are both urban and rural territory within both metropolitan and non-metropolitan areas.

  16. g

    State of World Liberty Project, World Freedom Index, Worldwide by Country,...

    • geocommons.com
    Updated Apr 29, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). State of World Liberty Project, World Freedom Index, Worldwide by Country, 2006 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Apr 29, 2008
    Dataset provided by
    State of World Liberty Project
    data
    Description

    This is the World Freedom index, By the State of World Liberty Project. It ranks various countries by various forms of freedom and created an index to see which countries had the most freedom. USA finished 8th, with Estonia in 1st place and North Korea having the least freedom. Source URL: http://www.stateofworldliberty.org/report/rankings.html This Dataset has a ranking for the countries, just to be clear, when you map out the rankings of countries, the highest ranked countries will not be the brightest on the map. Estonia is Ranked #1, but the value of 1 is lower than the value assigned to North Korea (158). so just be aware of that. In short, for mapping, use the Scores not the Ranks.

  17. T

    GDP by Country in ASIA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 29, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP by Country in ASIA [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=asia
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    May 29, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Asia
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  18. g

    UNESCO, Research and Development Researchers by country, Global, 1996 - 2006...

    • geocommons.com
    Updated Apr 29, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNESCO (2008). UNESCO, Research and Development Researchers by country, Global, 1996 - 2006 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Apr 29, 2008
    Dataset provided by
    UNESCO
    data
    Description

    This dataset displays the number of Research and development researchers in their respective countries. This data is on an annual time line, and was formed by: UNESCO Institute for Statistics. http://www.uis.unesco.org, Core Theme: Science and Technology. Montreal. The United Nations Statistical Yearbook is an annual compilation of a wide range of international economic, social and environmental statistics on over 200 countries and areas of the world, compiled from sources including UN agencies and other international, national and specialized organizations. The 50th issue contains data available to the Statistics Division as of March 2006 and presents them in 76 tables on topics such as: agriculture; balance of payments; culture and communication; development assistance; education; energy; environment; finance; industrial production; international merchandise trade; international tourism; labor force; manufacturing; national accounts; nutrition; population; prices; research and development; transport; and wages. The number of years of data shown in the tables varies from one to ten, with the ten-year tables covering 1994 to 2003 or 1995 to 2004. Accompanying the tables are technical notes providing brief descriptions of major statistical concepts, definitions and classifications. For publication information please visit https://unp.un.org/details.aspx?entry=B06SYH&title=Statistical+Yearbook+2005 Data Availability: http://unstats.un.org/unsd Access Date: November 29, 2007

  19. Key population statistics.

    • figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lara Goscé; Gerard J. Abou Jaoude; David J. Kedziora; Clemens Benedikt; Azfar Hussain; Sarah Jarvis; Alena Skrahina; Dzmitry Klimuk; Henadz Hurevich; Feng Zhao; Nicole Fraser-Hurt; Nejma Cheikh; Marelize Gorgens; David J. Wilson; Romesh Abeysuriya; Rowan Martin-Hughes; Sherrie L. Kelly; Anna Roberts; Robyn M. Stuart; Tom Palmer; Jasmina Panovska-Griffiths; Cliff C. Kerr; David P. Wilson; Hassan Haghparast-Bidgoli; Jolene Skordis; Ibrahim Abubakar (2023). Key population statistics. [Dataset]. http://doi.org/10.1371/journal.pcbi.1009255.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Lara Goscé; Gerard J. Abou Jaoude; David J. Kedziora; Clemens Benedikt; Azfar Hussain; Sarah Jarvis; Alena Skrahina; Dzmitry Klimuk; Henadz Hurevich; Feng Zhao; Nicole Fraser-Hurt; Nejma Cheikh; Marelize Gorgens; David J. Wilson; Romesh Abeysuriya; Rowan Martin-Hughes; Sherrie L. Kelly; Anna Roberts; Robyn M. Stuart; Tom Palmer; Jasmina Panovska-Griffiths; Cliff C. Kerr; David P. Wilson; Hassan Haghparast-Bidgoli; Jolene Skordis; Ibrahim Abubakar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Key population statistics.

  20. g

    Agingstats.gov, 10% of the Population Age 65 and Older by Country, World,...

    • geocommons.com
    Updated May 6, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). Agingstats.gov, 10% of the Population Age 65 and Older by Country, World, 2006 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 6, 2008
    Dataset provided by
    Agingstats.gov
    data
    Description

    This dataset displays countries that had ten percent or more of their population age 65 and older. This data was collecte through agingstats.gov.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Google BigQuery (2020). census-bureau-international [Dataset]. https://www.kaggle.com/datasets/bigquery/census-bureau-international
Organization logo

census-bureau-international

World population estimates 1950 through 2050

Explore at:
zip(0 bytes)Available download formats
Dataset updated
May 6, 2020
Dataset provided by
BigQueryhttps://cloud.google.com/bigquery
Authors
Google BigQuery
Description

Context

The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.

Querying BigQuery tables

You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.

Sample Query 1

What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!

standardSQL

SELECT age.country_name, age.life_expectancy, size.country_area FROM ( SELECT country_name, life_expectancy FROM bigquery-public-data.census_bureau_international.mortality_life_expectancy WHERE year = 2016) age INNER JOIN ( SELECT country_name, country_area FROM bigquery-public-data.census_bureau_international.country_names_area where country_area > 25000) size ON age.country_name = size.country_name ORDER BY 2 DESC /* Limit removed for Data Studio Visualization */ LIMIT 10

Sample Query 2

Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.

standardSQL

SELECT age.country_name, SUM(age.population) AS under_25, pop.midyear_population AS total, ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25 FROM ( SELECT country_name, population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population_agespecific WHERE year =2017 AND age < 25) age INNER JOIN ( SELECT midyear_population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population WHERE year = 2017) pop ON age.country_code = pop.country_code GROUP BY 1, 3 ORDER BY 4 DESC /* Remove limit for visualization*/ LIMIT 10

Sample Query 3

The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.

SELECT growth.country_name, growth.net_migration, CAST(area.country_area AS INT64) AS country_area FROM ( SELECT country_name, net_migration, country_code FROM bigquery-public-data.census_bureau_international.birth_death_growth_rates WHERE year = 2017) growth INNER JOIN ( SELECT country_area, country_code FROM bigquery-public-data.census_bureau_international.country_names_area

Update frequency

Historic (none)

Dataset source

United States Census Bureau

Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data

Search
Clear search
Close search
Google apps
Main menu