2 datasets found
  1. A

    ‘Drug Consumptions (UCI)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Drug Consumptions (UCI)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-drug-consumptions-uci-58a9/20dcfc96/?iid=052-359&v=presentation
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Drug Consumptions (UCI)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/obeykhadija/drug-consumptions-uci on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Data Set Information:

    Database contains records for 1885 respondents. For each respondent 12 attributes are known: Personality measurements which include NEO-FFI-R (neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness), BIS-11 (impulsivity), and ImpSS (sensation seeking), level of education, age, gender, country of residence and ethnicity. All input attributes are originally categorical and are quantified. After quantification values of all input features can be considered as real-valued. In addition, participants were questioned concerning their use of 18 legal and illegal drugs (alcohol, amphetamines, amyl nitrite, benzodiazepine, cannabis, chocolate, cocaine, caffeine, crack, ecstasy, heroin, ketamine, legal highs, LSD, methadone, mushrooms, nicotine and volatile substance abuse and one fictitious drug (Semeron) which was introduced to identify over-claimers. For each drug they have to select one of the answers: never used the drug, used it over a decade ago, or in the last decade, year, month, week, or day.

    Detailed description of database and process of data quantification are presented in E. Fehrman, A. K. Muhammad, E. M. Mirkes, V. Egan and A. N. Gorban, "The Five Factor Model of personality and evaluation of drug consumption risk.," arXiv [Web Link], 2015 Paper above solve binary classification problem for all drugs. For most of drugs sensitivity and specificity are greater than 75%

    Since all of the features have been quantified into real values please refer to the link to the original dataset to get more clarity on categorical variables. For example, for EScore (extraversion) 9 people scored 55 which corresponds to a quantified (real) value of in the dataset 2.57309. I have also converted some variables back into their categorical values which are included in the drug_consumption.csv file Original Dataset

    Content

    Feature Attributes for Quantified Data: 1. ID: is a number of records in an original database. Cannot be related to the participant. It can be used for reference only. 2. Age (Real) is the age of participant 3. Gender: Male or Female 4. Education: level of education of participant 5. Country: country of origin of the participant 6. Ethnicity: ethnicity of participant 7. Nscore (Real) is NEO-FFI-R Neuroticism 8. Escore (Real) is NEO-FFI-R Extraversion 9. Oscore (Real) is NEO-FFI-R Openness to experience. 10. Ascore (Real) is NEO-FFI-R Agreeableness. 11. Cscore (Real) is NEO-FFI-R Conscientiousness. 12. Impulsive (Real) is impulsiveness measured by BIS-11 13. SS (Real) is sensation seeing measured by ImpSS 14. Alcohol: alcohol consumption 15. Amphet: amphetamines consumption 16. Amyl: nitrite consumption 17. Benzos: benzodiazepine consumption 18. Caff: caffeine consumption 19. Cannabis: marijuana consumption 20. Choc: chocolate consumption 21. Coke: cocaine consumption 22. Crack: crack cocaine consumption 23. Ecstasy: ecstasy consumption 24. Heroin: heroin consumption 25. Ketamine: ketamine consumption 26. Legalh: legal highs consumption 27. LSD: LSD consumption 28. Meth: methadone consumption 29. Mushroom: magic mushroom consumption 30. Nicotine: nicotine consumption 31. Semer: class of fictitious drug Semeron consumption (i.e. control) 32. VSA: class of volatile substance abuse consumption

    Rating's for Drug Use: - CL0 Never Used - CL1 Used over a Decade Ago - CL2 Used in Last Decade - CL3 Used in Last Year 59 - CL4 Used in Last Month - CL5 Used in Last Week - CL6 Used in Last Day

    Acknowledgements

    1. Elaine Fehrman, Men's Personality Disorder and National Women's Directorate, Rampton Hospital, Retford, Nottinghamshire, DN22 0PD, UK, Elaine.Fehrman@nottshc.nhs.uk

    2. Vincent Egan, Department of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, NG8 1BB, UK, Vincent.Egan@nottingham.ac.uk

    3. Evgeny M. Mirkes Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK, em322@le.ac.uk

    Inspiration

    Problem which can be solved: - Seven class classifications for each drug separately. - Problem can be transformed to binary classification by union of part of classes into one new class. For example, "Never Used", "Used over a Decade Ago" form class "Non-user" and all other classes form class "User". - The best binarization of classes for each attribute. - Evaluation of risk to be drug consumer for each drug.

    --- Original source retains full ownership of the source dataset ---

  2. RDD2022 - The multi-national Road Damage Dataset released through CRDDC'2022...

    • figshare.com
    bin
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    RDD2022 - The multi-national Road Damage Dataset released through CRDDC'2022 [Dataset]. https://figshare.com/articles/dataset/RDD2022_-_The_multi-national_Road_Damage_Dataset_released_through_CRDDC_2022/21431547
    Explore at:
    binAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Deeksha Arya; Hiroya Maeda; Yoshihide Sekimoto; Hiroshi Omata; Sanjay Kumar Ghosh; Durga Toshniwal; Madhavendra Sharma; Van Vung Pham; Jingtao Zhong; Muneer Al-Hammadi; Mamoona Birkhez Shami; Du Nguyen; Hanglin Cheng; Jing Zhang; Alex Klein-Paste; Helge Mork; Frank Lindseth; Toshikazu Seto; Alexander Mraz; Takehiro Kashiyama
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    The Road Damage Dataset, RDD2022, is released as a part of the Crowdsensing-based Road Damage Detection Challenge (CRDDC'2022), an IEEE BigData Cup. It comprises 47,420 road images from six countries, Japan, India, the Czech Republic, Norway, the United States, and China. The images have been annotated with more than 55,000 instances of road damage. Four types of road damage, namely longitudinal cracks, transverse cracks, alligator cracks, and potholes, are captured in the dataset.

    Usage

    The annotated dataset is envisioned for developing deep learning-based methods to detect and classify road damage automatically. The municipalities and road agencies may utilize the RDD2022 dataset, and the models trained using RDD2022 for low-cost automatic monitoring of road conditions. Further, computer vision and machine learning researchers may use the dataset to benchmark the performance of different algorithms for other image-based applications of the same type (classification, object detection, etc.).

    For further details, please refer to the CRDDC'2022 resources.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Drug Consumptions (UCI)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-drug-consumptions-uci-58a9/20dcfc96/?iid=052-359&v=presentation

‘Drug Consumptions (UCI)’ analyzed by Analyst-2

Explore at:
Dataset updated
Jan 28, 2022
Dataset authored and provided by
Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Analysis of ‘Drug Consumptions (UCI)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/obeykhadija/drug-consumptions-uci on 28 January 2022.

--- Dataset description provided by original source is as follows ---

Context

Data Set Information:

Database contains records for 1885 respondents. For each respondent 12 attributes are known: Personality measurements which include NEO-FFI-R (neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness), BIS-11 (impulsivity), and ImpSS (sensation seeking), level of education, age, gender, country of residence and ethnicity. All input attributes are originally categorical and are quantified. After quantification values of all input features can be considered as real-valued. In addition, participants were questioned concerning their use of 18 legal and illegal drugs (alcohol, amphetamines, amyl nitrite, benzodiazepine, cannabis, chocolate, cocaine, caffeine, crack, ecstasy, heroin, ketamine, legal highs, LSD, methadone, mushrooms, nicotine and volatile substance abuse and one fictitious drug (Semeron) which was introduced to identify over-claimers. For each drug they have to select one of the answers: never used the drug, used it over a decade ago, or in the last decade, year, month, week, or day.

Detailed description of database and process of data quantification are presented in E. Fehrman, A. K. Muhammad, E. M. Mirkes, V. Egan and A. N. Gorban, "The Five Factor Model of personality and evaluation of drug consumption risk.," arXiv [Web Link], 2015 Paper above solve binary classification problem for all drugs. For most of drugs sensitivity and specificity are greater than 75%

Since all of the features have been quantified into real values please refer to the link to the original dataset to get more clarity on categorical variables. For example, for EScore (extraversion) 9 people scored 55 which corresponds to a quantified (real) value of in the dataset 2.57309. I have also converted some variables back into their categorical values which are included in the drug_consumption.csv file Original Dataset

Content

Feature Attributes for Quantified Data: 1. ID: is a number of records in an original database. Cannot be related to the participant. It can be used for reference only. 2. Age (Real) is the age of participant 3. Gender: Male or Female 4. Education: level of education of participant 5. Country: country of origin of the participant 6. Ethnicity: ethnicity of participant 7. Nscore (Real) is NEO-FFI-R Neuroticism 8. Escore (Real) is NEO-FFI-R Extraversion 9. Oscore (Real) is NEO-FFI-R Openness to experience. 10. Ascore (Real) is NEO-FFI-R Agreeableness. 11. Cscore (Real) is NEO-FFI-R Conscientiousness. 12. Impulsive (Real) is impulsiveness measured by BIS-11 13. SS (Real) is sensation seeing measured by ImpSS 14. Alcohol: alcohol consumption 15. Amphet: amphetamines consumption 16. Amyl: nitrite consumption 17. Benzos: benzodiazepine consumption 18. Caff: caffeine consumption 19. Cannabis: marijuana consumption 20. Choc: chocolate consumption 21. Coke: cocaine consumption 22. Crack: crack cocaine consumption 23. Ecstasy: ecstasy consumption 24. Heroin: heroin consumption 25. Ketamine: ketamine consumption 26. Legalh: legal highs consumption 27. LSD: LSD consumption 28. Meth: methadone consumption 29. Mushroom: magic mushroom consumption 30. Nicotine: nicotine consumption 31. Semer: class of fictitious drug Semeron consumption (i.e. control) 32. VSA: class of volatile substance abuse consumption

Rating's for Drug Use: - CL0 Never Used - CL1 Used over a Decade Ago - CL2 Used in Last Decade - CL3 Used in Last Year 59 - CL4 Used in Last Month - CL5 Used in Last Week - CL6 Used in Last Day

Acknowledgements

  1. Elaine Fehrman, Men's Personality Disorder and National Women's Directorate, Rampton Hospital, Retford, Nottinghamshire, DN22 0PD, UK, Elaine.Fehrman@nottshc.nhs.uk

  2. Vincent Egan, Department of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, NG8 1BB, UK, Vincent.Egan@nottingham.ac.uk

  3. Evgeny M. Mirkes Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK, em322@le.ac.uk

Inspiration

Problem which can be solved: - Seven class classifications for each drug separately. - Problem can be transformed to binary classification by union of part of classes into one new class. For example, "Never Used", "Used over a Decade Ago" form class "Non-user" and all other classes form class "User". - The best binarization of classes for each attribute. - Evaluation of risk to be drug consumer for each drug.

--- Original source retains full ownership of the source dataset ---

Search
Clear search
Close search
Google apps
Main menu