Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Honolulu County population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Honolulu County across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Honolulu County was 989,408, a 0.54% decrease year-by-year from 2022. Previously, in 2022, Honolulu County population was 994,828, a decline of 0.93% compared to a population of 1 million in 2021. Over the last 20 plus years, between 2000 and 2023, population of Honolulu County increased by 113,624. In this period, the peak population was 1.01 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Honolulu County Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Delaware population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Delaware across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Delaware was 1.03 million, a 1.22% increase year-by-year from 2022. Previously, in 2022, Delaware population was 1.02 million, an increase of 1.45% compared to a population of 1 million in 2021. Over the last 20 plus years, between 2000 and 2023, population of Delaware increased by 245,473. In this period, the peak population was 1.03 million in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Delaware Population by Year. You can refer the same here
Gallup Worldwide Research continually surveys residents in more than 150 countries, representing more than 98% of the world's adult population, using randomly selected, nationally representative samples. Gallup typically surveys 1,000 individuals in each country, using a standard set of core questions that has been translated into the major languages of the respective country. In some regions, supplemental questions are asked in addition to core questions. Face-to-face interviews are approximately 1 hour, while telephone interviews are about 30 minutes. In many countries, the survey is conducted once per year, and fieldwork is generally completed in two to four weeks. The Country Dataset Details spreadsheet displays each country's sample size, month/year of the data collection, mode of interviewing, languages employed, design effect, margin of error, and details about sample coverage.
Gallup is entirely responsible for the management, design, and control of Gallup Worldwide Research. For the past 70 years, Gallup has been committed to the principle that accurately collecting and disseminating the opinions and aspirations of people around the globe is vital to understanding our world. Gallup's mission is to provide information in an objective, reliable, and scientifically grounded manner. Gallup is not associated with any political orientation, party, or advocacy group and does not accept partisan entities as clients. Any individual, institution, or governmental agency may access the Gallup Worldwide Research regardless of nationality. The identities of clients and all surveyed respondents will remain confidential.
Sample survey data [ssd]
SAMPLING AND DATA COLLECTION METHODOLOGY With some exceptions, all samples are probability based and nationally representative of the resident population aged 15 and older. The coverage area is the entire country including rural areas, and the sampling frame represents the entire civilian, non-institutionalized, aged 15 and older population of the entire country. Exceptions include areas where the safety of interviewing staff is threatened, scarcely populated islands in some countries, and areas that interviewers can reach only by foot, animal, or small boat.
Telephone surveys are used in countries where telephone coverage represents at least 80% of the population or is the customary survey methodology (see the Country Dataset Details for detailed information for each country). In Central and Eastern Europe, as well as in the developing world, including much of Latin America, the former Soviet Union countries, nearly all of Asia, the Middle East, and Africa, an area frame design is used for face-to-face interviewing.
The typical Gallup Worldwide Research survey includes at least 1,000 surveys of individuals. In some countries, oversamples are collected in major cities or areas of special interest. Additionally, in some large countries, such as China and Russia, sample sizes of at least 2,000 are collected. Although rare, in some instances the sample size is between 500 and 1,000. See the Country Dataset Details for detailed information for each country.
FACE-TO-FACE SURVEY DESIGN
FIRST STAGE In countries where face-to-face surveys are conducted, the first stage of sampling is the identification of 100 to 135 ultimate clusters (Sampling Units), consisting of clusters of households. Sampling units are stratified by population size and or geography and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size, otherwise simple random sampling is used. Samples are drawn independent of any samples drawn for surveys conducted in previous years.
There are two methods for sample stratification:
METHOD 1: The sample is stratified into 100 to 125 ultimate clusters drawn proportional to the national population, using the following strata: 1) Areas with population of at least 1 million 2) Areas 500,000-999,999 3) Areas 100,000-499,999 4) Areas 50,000-99,999 5) Areas 10,000-49,999 6) Areas with less than 10,000
The strata could include additional stratum to reflect populations that exceed 1 million as well as areas with populations less than 10,000. Worldwide Research Methodology and Codebook Copyright © 2008-2012 Gallup, Inc. All rights reserved. 8
METHOD 2:
A multi-stage design is used. The country is first stratified by large geographic units, and then by smaller units within geography. A minimum of 33 Primary Sampling Units (PSUs), which are first stage sampling units, are selected. The sample design results in 100 to 125 ultimate clusters.
SECOND STAGE
Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day, and where possible, on different days. If an interviewer cannot obtain an interview at the initial sampled household, he or she uses a simple substitution method. Refer to Appendix C for a more in-depth description of random route procedures.
THIRD STAGE
Respondents are randomly selected within the selected households. Interviewers list all eligible household members and their ages or birthdays. The respondent is selected by means of the Kish grid (refer to Appendix C) in countries where face-to-face interviewing is used. The interview does not inform the person who answers the door of the selection criteria until after the respondent has been identified. In a few Middle East and Asian countries where cultural restrictions dictate gender matching, respondents are randomly selected using the Kish grid from among all eligible adults of the matching gender.
TELEPHONE SURVEY DESIGN
In countries where telephone interviewing is employed, random-digit-dial (RDD) or a nationally representative list of phone numbers is used. In select countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to reach a person in each household, spread over different days and times of day. Appointments for callbacks that fall within the survey data collection period are made.
PANEL SURVEY DESIGN
Prior to 2009, United States data were collected using The Gallup Panel. The Gallup Panel is a probability-based, nationally representative panel, for which all members are recruited via random-digit-dial methodology and is only used in the United States. Participants who elect to join the panel are committing to the completion of two to three surveys per month, with the typical survey lasting 10 to 15 minutes. The Gallup Worldwide Research panel survey is conducted over the telephone and takes approximately 30 minutes. No incentives are given to panel participants. Worldwide Research Methodology and Codebook Copyright © 2008-2012 Gallup, Inc. All rights reserved. 9
QUESTION DESIGN
Many of the Worldwide Research questions are items that Gallup has used for years. When developing additional questions, Gallup employed its worldwide network of research and political scientists1 to better understand key issues with regard to question development and construction and data gathering. Hundreds of items were developed, tested, piloted, and finalized. The best questions were retained for the core questionnaire and organized into indexes. Most items have a simple dichotomous ("yes or no") response set to minimize contamination of data because of cultural differences in response styles and to facilitate cross-cultural comparisons.
The Gallup Worldwide Research measures key indicators such as Law and Order, Food and Shelter, Job Creation, Migration, Financial Wellbeing, Personal Health, Civic Engagement, and Evaluative Wellbeing and demonstrates their correlations with world development indicators such as GDP and Brain Gain. These indicators assist leaders in understanding the broad context of national interests and establishing organization-specific correlations between leading indexes and lagging economic outcomes.
Gallup organizes its core group of indicators into the Gallup World Path. The Path is an organizational conceptualization of the seven indexes and is not to be construed as a causal model. The individual indexes have many properties of a strong theoretical framework. A more in-depth description of the questions and Gallup indexes is included in the indexes section of this document. In addition to World Path indexes, Gallup Worldwide Research questions also measure opinions about national institutions, corruption, youth development, community basics, diversity, optimism, communications, religiosity, and numerous other topics. For many regions of the world, additional questions that are specific to that region or country are included in surveys. Region-specific questions have been developed for predominantly Muslim nations, former Soviet Union countries, the Balkans, sub-Saharan Africa, Latin America, China and India, South Asia, and Israel and the Palestinian Territories.
The questionnaire is translated into the major conversational languages of each country. The translation process starts with an English, French, or Spanish version, depending on the region. One of two translation methods may be used.
METHOD 1: Two independent translations are completed. An independent third party, with some knowledge of survey research methods, adjudicates the differences. A professional translator translates the final version back into the source language.
METHOD 2: A translator
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Earlier this year, Dr. Hoffman and Dr. Fafard published a book chapter on the efficacy and legality of border closures enacted by governments in response to changing COVID-19 conditions. The authors concluded border closures are at best, regarded as powerful symbolic acts taken by governments to show they are acting forcefully, even if the actions lack an epidemiological impact and breach international law. This COVID-19 travel restriction project was developed out of a necessity and desire to further examine the empirical implications of border closures. The current dataset contains bilateral travel restriction information on the status of 179 countries between 1 January 2020 and 8 June 2020. The data was extracted from the ‘international controls’ column from the Oxford COVID-19 Government Response Tracker (OxCGRT). The data in the ‘international controls’ column outlined a country’s change in border control status, as a response to COVID-19 conditions. Accompanying source links were further verified through random selection and comparison with external news sources. Greater weight is given to official national government sources, then to provincial and municipal news-affiliated agencies. The database is presented in matrix form for each country-pair and date. Subsequently, each cell is represented by datum Xdmn and indicates the border closure status on date d by country m on country n. The coding is as follows: no border closure (code = 0), targeted border closure (= 1), and a total border closure (= 99). The dataset provides further details in the ‘notes’ column if the type of closure is a modified form of a targeted closure, either as a land or port closure, flight or visa suspension, or a re-opening of borders to select countries. Visa suspensions and closure of land borders were coded separately as de facto border closures and analyzed as targeted border closures in quantitative analyses. The file titled ‘BTR Supplementary Information’ covers a multitude of supplemental details to the database. The various tabs cover the following: 1) Codebook: variable name, format, source links, and description; 2) Sources, Access dates: dates of access for the individual source links with additional notes; 3) Country groups: breakdown of EEA, EU, SADC, Schengen groups with source links; 4) Newly added sources: for missing countries with a population greater than 1 million (meeting the inclusion criteria), relevant news sources were added for analysis; 5) Corrections: external news sources correcting for errors in the coding of international controls retrieved from the OxCGRT dataset. At the time of our study inception, there was no existing dataset which recorded the bilateral decisions of travel restrictions between countries. We hope this dataset will be useful in the study of the impact of border closures in the COVID-19 pandemic and widen the capabilities of studying border closures on a global scale, due to its interconnected nature and impact, rather than being limited in analysis to a single country or region only. Statement of contributions: Data entry and verification was performed mainly by GL, with assistance from MJP and RN. MP and IW provided further data verification on the nine countries purposively selected for the exploratory analysis of political decision-making.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Westchester County population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Westchester County across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Westchester County was 990,817, a 0.09% decrease year-by-year from 2022. Previously, in 2022, Westchester County population was 991,736, a decline of 0.81% compared to a population of 999,856 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Westchester County increased by 65,268. In this period, the peak population was 1 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Westchester County Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of California across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of California was 38.97 million, a 0.19% decrease year-by-year from 2022. Previously, in 2022, California population was 39.04 million, a decline of 0.27% compared to a population of 39.15 million in 2021. Over the last 20 plus years, between 2000 and 2023, population of California increased by 4.97 million. In this period, the peak population was 39.5 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California Population by Year. You can refer the same here
The Global Consumption Database (GCD) contains information on consumption patterns at the national level, by urban/rural area, and by income level (4 categories: lowest, low, middle, higher with thresholds based on a global income distribution), for 92 low and middle-income countries, as of 2010. The data were extracted from national household surveys. The consumption is presented by category of products and services of the International Comparison Program (ICP) 2005, which mostly corresponds to COICOP. For three countries, sub-national data are also available (Brazil, India, and South Africa). Data on population estimates are also included.
The data file can be used for the production of the following tables (by urban/rural and income class/consumption segment):
- Sample Size by Country, Area and Consumption Segment (Number of Households)
- Population 2010 by Country, Area and Consumption Segment
- Population 2010 by Country, Area and Consumption Segment, as a Percentage of the National Population
- Population 2010 by Country, Area and Consumption Segment, as a Percentage of the Area Population
- Population 2010 by Country, Age Group, Sex and Consumption Segment
- Household Consumption 2010 by Country, Sector, Area and Consumption Segment in Local Currency (Million)
- Household Consumption 2010 by Country, Sector, Area and Consumption Segment in $PPP (Million)
- Household Consumption 2010 by Country, Sector, Area and Consumption Segment in US$ (Million)
- Household Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in Local Currency (Million)
- Household Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in $PPP (Million)
- Household Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in US$ (Million)
- Household Consumption 2010 by Country, Product/Service, Area and Consumption Segment in Local Currency (Million)
- Household Consumption 2010 by Country, Product/Service, Area and Consumption Segment in $PPP (Million)
- Household Consumption 2010 by Country, Product/Service, Area and Consumption Segment in US$ (Million)
- Per Capita Consumption 2010 by Country, Sector, Area and Consumption Segment in Local Currency
- Per Capita Consumption 2010 by Country, Sector, Area and Consumption Segment in US$
- Per Capita Consumption 2010 by Country, Sector, Area and Consumption Segment in $PPP
- Per Capita Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in Local Currency
- Per Capita Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in US$
- Per Capita Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in $PPP
- Per Capita Consumption 2010 by Country, Product or Service, Area and Consumption Segment in Local Currency
- Per Capita Consumption 2010 by Country, Product or Service, Area and Consumption Segment in US$
- Per Capita Consumption 2010 by Country, Product or Service, Area and Consumption Segment in $PPP
- Consumption Shares 2010 by Country, Sector, Area and Consumption Segment (Percent)
- Consumption Shares 2010 by Country, Category of Products/Services, Area and Consumption Segment (Percent)
- Consumption Shares 2010 by Country, Product/Service, Area and Consumption Segment (Percent)
- Percentage of Households who Reported Having Consumed the Product or Service by Country, Consumption Segment and Area (as of Survey Year)
For all countries, estimates are provided at the national level and at the urban/rural levels. For Brazil, India, and South Africa, data are also provided at the sub-national level (admin 1): - Brazil: ACR, Alagoas, Amapa, Amazonas, Bahia, Ceara, Distrito Federal, Espirito Santo, Goias, Maranhao, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Para, Paraiba, Parana, Pernambuco, Piaji, Rio de Janeiro, Rio Grande do Norte, Rio Grande do Sul, Rondonia, Roraima, Santa Catarina, Sao Paolo, Sergipe, Tocatins - India: Andaman and Nicobar Islands, Andhra Pradesh, Arinachal Pradesh, Assam, Bihar, Chandigarh, Chattisgarh, Dadra and Nagar Haveli, Daman and Diu, Delhi, Goa, Gujarat, Haryana, Himachal Pradesh, Jammu and Kashmir, Jharkhand, Karnataka, Kerala, Lakshadweep, Madya Pradesh, Maharastra, Manipur, Meghalaya, Mizoram, Nagaland, Orissa, Pondicherry, Punjab, Rajasthan, Sikkim, Tamil Nadu, Tripura, Uttar Pradesh, Uttaranchal, West Bengal - South Africa: Eastern Cape, Free State, Gauteng, Kwazulu Natal, Limpopo, Mpulamanga, Northern Cape, North West, Western Cape
Data derived from survey microdata
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Duval County population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Duval County across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Duval County was 1.03 million, a 1.36% increase year-by-year from 2022. Previously, in 2022, Duval County population was 1.02 million, an increase of 1.42% compared to a population of 1 million in 2021. Over the last 20 plus years, between 2000 and 2023, population of Duval County increased by 250,897. In this period, the peak population was 1.03 million in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Duval County Population by Year. You can refer the same here
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset contains Covid-19 data of African countries as on March 15, 2022
Link : https://www.worldometers.info/coronavirus/#countries
Link : https://www.kaggle.com/anandhuh/datasets
If you find it useful, please support by upvoting 👍
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
"COVID-19 mortality correlation with cloudiness, sunlight, latitude in European countries"
Dataset for article titled "COVID-19 mortality: positive correlation with cloudiness, sunlight and no correlation with latitude in Europe"
by SECIL OMER, ADRIAN IFTIME, VICTOR BURCEA
Corresponding author: A. Iftime, University of Medicine and Pharmacy "Carol Davila", Biophysics Department, 8 Blvd. Eroii Sanitari, 050474 Bucharest, Romania. Email address: adrian.iftime [at] umfcd.ro.
Preprint corresponding to this dataset: https://doi.org/10.1101/2021.01.27.21250658
===========
Dataset file: 1.0.0.COVID-19_Mortality_Cloudiness_Insolation_EUROPE_March_August_2020.csv
Dataset graphical preview: 1.0.0.INFOGRAFIC_CloudFraction_vs_COVID-19_mortality_Europe_March-August_2020.png
DATASET fields: "Country" : Country name; 37 European countries included.
"Date": Date stamp at the collection time. Data collection was performed in the last day of every month. Date format: YYYY-MM-DD
"Month_Key" : Date stamp at the collection time, formatted for easier monthly time series analysis. Date format: YYYY-MM
"Month_Fct2020" Date stamp at the collection time,formatted for easier graphing, as a string with names of the months (in English).
"Deaths_per_1Mpop" : Monthly mortality from COVID-19 raported in the country, reported as number of COVID-19 deaths per 1 million population of the country, in that particular month / country. NB: it is reported as million population, not patients.
"LogDeaths_per_1Mpop" : Log10 transformation of "Deaths_per_1Mpop"
"Insolation_Average" : Insolation average (solar irradiance at ground level), in that particular month / country. It is expressed in Watt / square meter of the ground surface. Data derived from data avaialble at NASA Langley Research Center, NASA’s Earth Observatory, CERES / FLASHFlux team, 2020, https://neo.sci.gsfc.nasa.gov/view.php?datasetId=CERES_INSOL_M
"Cloud_Fraction" : Cloudiness (also known as cloud fraction, cloud cover, cloud amount or sky cover), as decimal fraction of the sky obscured by clouds, in that particular month / country. Data derived from NASA Goddard Space Flight Center, NASA’s Earth Observatory, MODIS Atmosphere Science Team, 2020, https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MODAL2_M_CLD_FR
"CENTR_latitude" and
"CENTR_longitude" :
Latitude and Longitude of the country centroid, for each country.
Data derived from Google LLC, "Dataset publishing language: country centroids",
https://developers.google.com/public-data/docs/canonical/countries_csv
NOTE: This is identical in every month (obviuously);
it is redundantly included for easier monthly sectional analysis of the data.
===========
Versioning: 1.0.0.COVID-19_Mortality_Cloudiness_Insolation_EUROPE_March_August_2020.csv
MAJOR: changes yearly; 1 = 2020 MINOR: changes if new monthly data is added in that particular year. PATCH: Changes only if errors or minor edits were performed.
DOI for this version: 10.5281/zenodo.4266758
Dataset file source for this version (internal analysis source file): db_covid_all-ANALYSIS.2020-09-22_r10.csv
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This population dataset complements 13 other datasets as part of a study that compared ancient settlement patterns with modern environmental conditions in the Jazira region of Syria. This study examined settlement distribution and density patterns over the past five millennia using archaeological survey reports and French 1930s 1:200,000 scale maps to locate and map archaeological sites. An archaeological site dataset was created and compared to and modelled with soil, geology, terrain (contour), surface and subsurface hydrology and normal and dry year precipitation pattern datasets; there are also three spreadsheet datasets providing 1963 precipitation and temperature readings collected at three locations in the region. The environmental datasets were created to account for ancient and modern population subsistence activities, which comprise barley and wheat farming and livestock grazing. These environmental datasets were subsequently modelled with the archaeological site dataset, as well as, land use and population density datasets for the Jazira region. Ancient trade routes were also mapped and factored into the model, and a comparison was made to ascertain if there was a correlation between ancient and modern settlement patterns and environmental conditions; the latter influencing subsistence activities. Creation of this population dataset, derived from a 1961 census, was created to compare modern population density patterns with the distribution of ancient settlement patterns to ascertain if patterns are shared. There is a similarity between these patterns with higher concentrations of settlements and population along the banks of rivers until reaching the northern area of the Jazira where both extend across the wider landscape and away from rivers. Derived from 1:1 million scale map produced for the following report: Food and Agriculture Organization (FAO), United Nations. Etude des Ressources en Eaux Souterraines de la Jezireh Syrienne. Rome: FAO, 1966.Population map was copied to mylar and scanned to create a polygon coverage of the soil classes, which include land-use attribute information. Each polygon was labelled and attributed with population count. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2010-07-05 and migrated to Edinburgh DataShare on 2017-02-21.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution.
Purpose: To provide estimates of population density for the years 2000, 2005, 2010, 2015, and 2020, based on counts consistent with national censuses and population registers, as raster data to facilitate data integration.
Recommended Citation(s)*: Center for International Earth Science Information Network - CIESIN - Columbia University. 2018. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H49C6VHW. Accessed DAY MONTH YEAR.
The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.
This dataset presents information on historical central government revenues for 31 countries in Europe and the Americas for the period from 1800 (or independence) to 2012. The countries included are: Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Chile, Colombia, Denmark, Ecuador, Finland, France, Germany (West Germany between 1949 and 1990), Ireland, Italy, Japan, Mexico, New Zealand, Norway, Paraguay, Peru, Portugal, Spain, Sweden, Switzerland, the Netherlands, the United Kingdom, the United States, Uruguay, and Venezuela. In other words, the dataset includes all South American, North American, and Western European countries with a population of more than one million, plus Australia, New Zealand, Japan, and Mexico. The dataset contains information on the public finances of central governments. To make such information comparable cross-nationally we have chosen to normalize nominal revenue figures in two ways: (i) as a share of the total budget, and (ii) as a share of total gross domestic product. The total tax revenue of the central state is disaggregated guided by the Government Finance Statistics Manual 2001 of the International Monetary Fund (IMF) which provides a classification of types of revenue, and describes in detail the contents of each classification category. Given the paucity of detailed historical data and the needs of our project, we combined some subcategories. First, we are interested in total tax revenue (centaxtot), as well as the shares of total revenue coming from direct (centaxdirectsh) and indirect (centaxindirectsh) taxes. Further, we measure two sub-categories of direct taxation, namely taxes on property (centaxpropertysh) and income (centaxincomesh). For indirect taxes, we separate excises (centaxexcisesh), consumption (centaxconssh), and customs(centaxcustomssh).
For a more detailed description of the dataset and the coding process, see the codebook available in the .zip-file.
Purpose:
This dataset presents information on historical central government revenues for 31 countries in Europe and the Americas for the period from 1800 (or independence) to 2012. The countries included are: Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Chile, Colombia, Denmark, Ecuador, Finland, France, Germany (West Germany between 1949 and 1990), Ireland, Italy, Japan, Mexico, New Zealand, Norway, Paraguay, Peru, Portugal, Spain, Sweden, Switzerland, the Netherlands, the United Kingdom, the United States, Uruguay, and Venezuela. In other words, the dataset includes all South American, North American, and Western European countries with a population of more than one million, plus Australia, New Zealand, Japan, and Mexico. The dataset contains information on the public finances of central governments. To make such information comparable cross-nationally we have chosen to normalize nominal revenue figures in two ways: (i) as a share of the total budget, and (ii) as a share of total gross domestic product. The total tax revenue of the central state is disaggregated guided by the Government Finance Statistics Manual 2001 of the International Monetary Fund (IMF) which provides a classification of types of revenue, and describes in detail the contents of each classification category. Given the paucity of detailed historical data and the needs of our project, we combined some subcategories. First, we are interested in total tax revenue (centaxtot), as well as the shares of total revenue coming from direct (centaxdirectsh) and indirect (centaxindirectsh) taxes. Further, we measure two sub-categories of direct taxation, namely taxes on property (centaxpropertysh) and income (centaxincomesh). For indirect taxes, we separate excises (centaxexcisesh), consumption (centaxconssh), and customs(centaxcustomssh).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in Sweden was estimated at 10.6 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - Sweden Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in China was estimated at 1409.7 million people in 2023, according to the latest census figures and projections from Trading Economics. This dataset provides - China Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://www.insight.hdrhub.org/https://www.insight.hdrhub.org/
Diabetes mellitus affects over 3.9 million people in the UK, with over 2.6 million people in England alone. Diabetic retinopathy (DR) is a common microvascular complication of type 1 and type 2 diabetes and remains a major cause of vision loss and blindness in those of working age. The National Institute for Health and Care Excellence recommendations are for annual screening using digital retinal photography for all patients with diabetes aged 12 years and over until such time as specialist surveillance or referral to Hospital Eye Services (HES) is required.
Birmingham, Solihull and Black Country DR screening program is a member of the National Health Service (NHS) Diabetic Eye Screening Programme. This dataset contains routine community annual longitudinal screening patient results of over 200000 patients with screening results per patient ranging from 1 year to 15 years. Key data included are: • Total number of patients screened and graded over a 15 year period. • Demographic information (including age, sex and ethnicity) • Diabetes status • Diabetes type • Length of time since diagnosis of diabetes • Visual acuity • The national screening diabetic screening grade category (seven categories from R0M0 to R3M1) • Diabetic eye clinical features • Reason for sight and severe sight impairment • Screening Outcome (digital surveillance and time; referral to HES)
Geography Birmingham, Solihull and Black Country is set within the West Midlands and has a population of circa 5.9million. The region includes a diverse ethnic, and socio-economic mix, with a higher than UK average of minority ethnic groups. It has a large number of elderly residents but is the youngest population in the UK. There are particularly high rates of diabetes, physical inactivity, obesity, and smoking.
Data source: The Birmingham, Solihull and Black Country Data Set, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom. They manage over 200,000 patients, with longitudinal follow-up up to 15 years, making this the largest urban diabetic screening scheme in Europe.
Website: https://www.retinalscreening.co.uk/
Pathway: The Birmingham, Solihull and Black Country dataset is representative of the patient pathway for community screening and grading of diabetic eye disease. It covers standard UK Public Health England Diabetic Eye Screening requirements and will include patients receiving screening through the standard model, routine diabetic screening, surveillance and slit lamp examination.
Final approved map by the 2020 California Citizens Redistricting Commission for the California State Senate. Final approved map by the 2020 California Citizens Redistricting Commission for the California State Senate; the authoritative and official delineations of the California State Senate drawn during the 2020 redistricting cycle. The Citizens Redistricting Commission for the State of California has created statewide district maps for the State Assembly, State Senate, State Board of Equalization, and United States Congress in accordance, with the provisions of Article XXI of the California Constitution. The Commission has approved the final maps and certified them to the Secretary of State. Line drawing criteria included population equality as required by the U.S. Constitution, the Federal Voting Rights Act, geographic contiguity, geographic integrity, geographic compactness, and nesting. Geography was defined by U.S. Census Block geometry. Each of the 40 Senate districts has an ideal population of nearly one million people and represents the largest state legislative districts in the nation. In consideration of population equality, the Commission chose to limit the population deviation as close to zero percent as practicable. Per the California Constitution, the Commission strived to nest two Assembly districts where practicable. However, higher ranking criteria made this difficult in practice. While the size of the Senate districts allowed the Commission to recognize broadly shared interests, these interests did not always overlap exactly with the interests of smaller communities recognized in the related Assembly districts. Based on the large number of people in each district, there were a variety of different interests that were balanced and included.
The China County-Level Data on Population (Census) and Agriculture, Keyed To 1:1M GIS Map consists of census, agricultural economic, and boundary data for the administrative regions of China for 1990. The census data includes urban and rural residency, age and sex distribution, educational attainment, illiteracy, marital status, childbirth, mortality, immigration (since 1985), industrial/economic activity, occupation, and ethnicity. The agricultural economic data encompasses rural population, labor force, forestry, livestock and fishery, commodities, equipment, utilities, irrigation, and output value. The boundary data are at a scale of one to one million (1:1M) at the county level. This data set is produced in collaboration with the University of Washington as part of the China in Time and Space (CITAS) project, University of California-Davis China in Time and Space (CITAS) project, and the Center for International Earth Science Information Network (CIESIN).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the New York population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of New York across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of New York was 8.26 million, a 0.93% decrease year-by-year from 2022. Previously, in 2022, New York population was 8.34 million, a decline of 1.49% compared to a population of 8.46 million in 2021. Over the last 20 plus years, between 2000 and 2023, population of New York increased by 242,826. In this period, the peak population was 8.74 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New York Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Honolulu County population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Honolulu County across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Honolulu County was 989,408, a 0.54% decrease year-by-year from 2022. Previously, in 2022, Honolulu County population was 994,828, a decline of 0.93% compared to a population of 1 million in 2021. Over the last 20 plus years, between 2000 and 2023, population of Honolulu County increased by 113,624. In this period, the peak population was 1.01 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Honolulu County Population by Year. You can refer the same here