Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
Data Source: This dataset was compiled from multiple data sources
If this was helpful, a vote is appreciated ❤️ Thank you 🙂
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Bank's data for 2021 on total land area by country provides detailed information on the size of land in square kilometers for various countries worldwide. Here are some key highlights from the dataset:
Russia is the largest country by land area, with approximately 16.38 million square kilometers. Canada follows with around 9.98 million square kilometers. China has a land area of about 9.42 million square kilometers, making it the third largest. The United States (excluding territories) covers around 9.14 million square kilometers. Smaller countries and regions include:
Vatican City, with an area of about 0.44 square kilometers. Monaco, with 2 square kilometers
THIS DATA WAS LAST UPDATED IN 2024 and it is owned by https://data.worldbank.org/indicator/AG.LND.TOTL.K2?end=2021&start=2021&view=map
Facebook
Twitterhttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
=========================
Country Name :Country name Country Code :Country Code Capital :Capital of the country Continent :Continent Area (km²) :Area of the country (km²) Population Density (per km²) :Population Density of the country (per km²) Population Growth Rate :Population Growth Rate of the country World Population Percentage :World Population Percentage Population Rank :Population Rank Forest Area 1990 :Forest coverage recorded in 1990 (% of land area) Forest Area 1991 :Forest coverage recorded in 1991(% of land area) Forest Area 1992 :Forest coverage recorded in 1992(% of land area) Forest Area 1993 :Forest coverage recorded in 1993(% of land area) Forest Area 1994 :Forest coverage recorded in 1994(% of land area) Forest Area 1995 :Forest coverage recorded in 1995(% of land area) Forest Area 1996 :Forest coverage recorded in 1996(% of land area) Forest Area 1997 :Forest coverage recorded in 1997(% of land area) Forest Area 1998 :Forest coverage recorded in 1998(% of land area) Forest Area 1999 :Forest coverage recorded in 1999(% of land area) Forest Area 2000 :Forest coverage recorded in 2000(% of land area) Forest Area 2001 :Forest coverage recorded in 2001(% of land area) Forest Area 2002 :Forest coverage recorded in 2002(% of land area) Forest Area 2003 :Forest coverage recorded in 2003(% of land area) Forest Area 2004 :Forest coverage recorded in 2004(% of land area) Forest Area 2005 :Forest coverage recorded in 2005(% of land area) Forest Area 2006 :Forest coverage recorded in 2006(% of land area) Forest Area 2007 :Forest coverage recorded in 2007(% of land area) Forest Area 2008 :Forest coverage recorded in 2008(% of land area) Forest Area 2009 :Forest coverage recorded in 2009(% of land area) Forest Area 2010 :Forest coverage recorded in 2010(% of land area) Forest Area 2011 :Forest coverage recorded in 2011(% of land area) Forest Area 2012 :Forest coverage recorded in 2012(% of land area) Forest Area 2013 :Forest coverage recorded in 2013(% of land area) Forest Area 2014 :Forest coverage recorded in 2014(% of land area) Forest Area 2015 :Forest coverage recorded in 2015(% of land area) Forest Area 2016 :Forest coverage recorded in 2016(% of land area) Forest Area 2017 :Forest coverage recorded in 2017(% of land area) Forest Area 2018 :Forest coverage recorded in 2018(% of land area) Forest Area 2019 :Forest coverage recorded in 2019(% of land area) Forest Area 2020 :Forest coverage recorded in 2020(% of land area)
=============
In this Dataset, We have forest cover area data recorded from 1990 to 2020 for every Country/Territory in the world. Along with dataset contains different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc.
==============
This Dataset is created from https://data.worldbank.org/ If you want to learn more, you can visit the Website.
Cover Photo by: https://www.istockphoto.com/
Facebook
TwitterThe Gridded Population of the World, Version 4 (GPWv4): National Identifier Grid, Revision 11 is a raster representation of nation-states in GPWv4 for use in aggregating population data. This data set was produced from the input census Units which were used to create a raster surface where pixels that cover the same census data source (most often a country or territory) have the same value. Note that these data are not official representations of country boundaries; rather, they represent the area covered by the input data. In cases where multiple countries overlapped a given pixel (e.g. on national borders), the pixels were assigned the country code of the input data set which made up the majority of the land area. The data file was produced as a global raster at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions. Each level of aggregation results in the loss of one or more countries with areas smaller than the cell size of the final raster. Rasters of all resolutions were also converted to polygon shapefiles.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about countries in Caribbean. It has 13 rows. It features 3 columns: land area, and rural population.
Facebook
Twitterhttps://choosealicense.com/licenses/gpl/https://choosealicense.com/licenses/gpl/
Africa Permanent cropland (% of land area) Dataset
Overview
This dataset contains permanent cropland (% of land area) data for African countries from the World Bank.
Data Details
Indicator Code: AG.LND.CROP.ZS Description: Permanent cropland (% of land area) Geographic Coverage: 54 African countries Time Period: 1961-2022 Data Points: 3,152 observations Coverage: 89.80% of possible country-year combinations
File Formats
Main Dataset… See the full description on the dataset page: https://huggingface.co/datasets/electricsheepafrica/Africa-Permanent-cropland-percentage-of-land-area.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Use this regional model layer when performing analysis within a single continent. This layer displays a single global land cover map that is modeled by region for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset provides a comprehensive list of countries and their respective land and water areas. It includes a detailed comparison of country sizes as depicted on the Mercator projection versus their true geographic proportions. This dataset is inspired by the limitations of traditional map projections and aims to provide a more accurate representation of global land masses.
File Information: - true-size-of-countries-2024.csv: A CSV file containing a list of countries, their land area, water area, total area, and percentage of water area.
Facebook
TwitterThe Gridded Population of the World, Version 3 (GPWv3): Land and Geographic Unit Area Grids measure land areas in square kilometers and the mean Unit size (population-weighted) in square kilometers. The land area grid permits the summation of areas (net of permanent ice and water) at the same resolution as the population density, count, and urban-rural grids. The mean Unit size grids provides a quantitative surface that indicates the size of the input Unit(s) from which population count and density grids are derived..GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary:
There are over 608 million farms around the world but they are not the same. We developed high spatial resolution maps telling where small and large farms were located and which crops were planted for 56 countries. We checked the reliability and have the confidence to use them for the country-level and global studies. Our maps will help more studies to easily measure how agriculture policies, water availabilities, and climate change affect small and large farms respectively.
The code, source data, and the simultaneously farm-size- and crop-specific harvested area datasets, including the GAEZv4 crop map based dataset and SPAM2010 crop map based dataset, are open-access, free, and available, which can be found below. The resulting dataset is available in *.csv and *.nc (netCDF) for each crop and farming system. For each crop, farming system, and farm size, we provide the gridded harvested area in the coordinate Systems of EPSG:4326 - WGS 84. Gridded summaries over crops and farming systems are also available.
How to cite this dataset:
Su, H., Willaarts, B., Luna-Gonzalez, D., Krol, M.S. and Hogeboom, R.J., 2022. Gridded 5 arcmin datasets for simultaneously farm-size-specific and crop-specific harvested areas in 56 countries. Earth System Science Data, 14(9), pp.4397-4418.
Update history:
I am happy to receive any questions, comments, or potential collaboration on further dataset development. Please drop your email to Han Su (h.su@utwente.nl, han_su20@163.com)
Version 1.03: Fix bugs in data format; Netcdf didn't show properly before in QGIS. Data underlying the three versions are the same.
Version 1.02: New data summary, add Netcdf data format
Version 1: Initial dataset for peer-review, CSV format only
Note: please cite the original publications/sources if any data source based on which this dataset was developed is reused for your own study.
SPAM2010:
Yu, Q., You, L., Wood-Sichra, U., Ru, Y., Joglekar, A. K. B., Fritz, S., Xiong, W., Lu, M., Wu, W., and Yang, P.: A cultivated planet in 2010 – Part 2: The global gridded agricultural-production maps, Earth System Science Data, 12, 3545-3572, 10.5194/essd-12-3545-2020, 2020.
GAEZv4:
FAO and IIASA: Global Agro Ecological Zones version 4 (GAEZ v4), FAO UN, Rome, Italy, 2021
The dataset of Ricciardi et al.'s:
Ricciardi, V., Ramankutty, N., Mehrabi, Z., Jarvis, L., and Chookolingo, B.: How much of the world's food do smallholders produce?, Global Food Security, 17, 64-72, 2018.
The global dominant field size dataset:
Lesiv, M., Laso Bayas, J. C., See, L., Duerauer, M., Dahlia, D., Durando, N., Hazarika, R., Kumar Sahariah, P., Vakolyuk, M., Blyshchyk, V., Bilous, A., Perez-Hoyos, A., Gengler, S., Prestele, R., Bilous, S., Akhtar, I. U. H., Singha, K., Choudhury, S. B., Chetri, T., Malek, Z., Bungnamei, K., Saikia, A., Sahariah, D., Narzary, W., Danylo, O., Sturn, T., Karner, M., McCallum, I., Schepaschenko, D., Moltchanova, E., Fraisl, D., Moorthy, I., and Fritz, S.: Estimating the global distribution of field size using crowdsourcing, Glob Chang Biol, 25, 174-186, 10.1111/gcb.14492, 2019.
GLC-Share:
Latham, J., Cumani, R., Rosati, I., and Bloise, M.: Global land cover share (GLC-SHARE) database beta-release version 1.0-2014, FAO, Rome, Italy, 2014.
CAAS-IFPRI cropland extent map:
Lu, M., Wu, W., You, L., See, L., Fritz, S., Yu, Q., Wei, Y., Chen, D., Yang, P., and Xue, B.: A cultivated planet in 2010 – Part 1: The global synergy cropland map, Earth System Science Data, 12, 1913-1928, 10.5194/essd-12-1913-2020, 2020.
Facebook
Twitterhttps://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The dataset contains State-, year-, season- and size-class-wise compiled data on average area of agricultural lands leased-in by Scheduled Caste (SC), Scheduled Tribe (ST), Other Backward Classes (OBC) and other caste people during the period of 2003 to 2019. The dataset has been compiled from Tables Nos. 3R, 8 and 34 of 59th, 70th and 77th NSS Reports, respectively
Facebook
TwitterThe Gridded Population of the World, Version 4 (GPWv4): National Identifier Grid, Revision 11 is a raster representation of nation-states in GPWv4 for use in aggregating population data. This data set was produced from the input census units which were used to create a raster surface where pixels that cover the same census data source (most often a country or territory) have the same value. Note that these data are not official representations of country boundaries; rather, they represent the area covered by the input data. In cases where multiple countries overlapped a given pixel (e.g. on national borders), the pixels were assigned the country code of the input data set which made up the majority of the land area. The data file was produced as a global raster at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research communities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions. Each level of aggregation results in the loss of one or more countries with areas smaller than the cell size of the final raster. Rasters of all resolutions were also converted to polygon shapefiles. To provide a raster representation of nation-states in GPWv4 for use in aggregating population data.
Facebook
TwitterWorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below.
These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country.
They can also be visualised and explored through the woprVision App.
The remaining datasets in the links below are produced using the "top-down" method,
with either the unconstrained or constrained top-down disaggregation method used.
Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):
- Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
-Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
-Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
-Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020.
-Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national
population estimates (UN 2019).
Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
Facebook
TwitterThe Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): National Identifier Grid is derived from the land area grid to create a raster surface where pixels (cells) that cover the same nation or territory have the same value. The countries and territories are not official representations of country boundaries; rather they represent the area covered by the statistical data as provided. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT).
Facebook
TwitterThis data set contains vector polygons representing coastal hydrography that defines the primary land masses used in the creation of the Environmental Sensitivity Index (ESI) for Western Alaska. The HYDRO data layer contains all annotation used in producing the atlas. The annotation features are categorized into three subclasses in order to simplify the mapping and quality control procedures: GEOG or geographic features, SOC or socioeconomic features, and HYDRO or water features. This data set comprises a portion of the ESI for Western Alaska. ESI data characterize the marine and coastal environments and wildlife by their sensitivity to spilled oil. The ESI data include information for three main components: shoreline habitats, sensitive biological resources, and human-use resources.
Facebook
TwitterThe Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Land and Geographic Unit Area Grids measure land areas in square kilometers and the mean Unit size (population-weighted) in square kilometers. The land area grid permits the summation of areas (net of permanent ice and water) at the same resolution as the population density, count, and urban-rural grids. The mean Unit size grids provide a quantitative surface that indicates the size of the input Unit(s) from which population count and density grids are derived. Additional global grids are created from the 30 arc-second grid at 1/4, 1/2, and 1 degree resolutions. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT).
Facebook
TwitterThe "Global Country Rankings Dataset" is a comprehensive collection of metrics and indicators that ranks countries worldwide based on their socioeconomic performance. This datasets are providing valuable insights into the relative standings of nations in terms of key factors such as GDP per capita, economic growth, and various other relevant criteria.
Researchers, analysts, and policymakers can leverage this dataset to gain a deeper understanding of the global economic landscape and track the progress of countries over time. The dataset covers a wide range of metrics, including but not limited to:
Economic growth: the rate of change of real GDP- Country rankings: The average for 2021 based on 184 countries was 5.26 percent.The highest value was in the Maldives: 41.75 percent and the lowest value was in Afghanistan: -20.74 percent. The indicator is available from 1961 to 2021.
GDP per capita, Purchasing Power Parity - Country rankings: The average for 2021 based on 182 countries was 21283.21 U.S. dollars.The highest value was in Luxembourg: 115683.49 U.S. dollars and the lowest value was in Burundi: 705.03 U.S. dollars. The indicator is available from 1990 to 2021.
GDP per capita, current U.S. dollars - Country rankings: The average for 2021 based on 186 countries was 17937.03 U.S. dollars.The highest value was in Monaco: 234315.45 U.S. dollars and the lowest value was in Burundi: 221.48 U.S. dollars. The indicator is available from 1960 to 2021.
GDP per capita, constant 2010 dollars - Country rankings: The average for 2021 based on 184 countries was 15605.8 U.S. dollars.The highest value was in Monaco: 204190.16 U.S. dollars and the lowest value was in Burundi: 261.02 U.S. dollars. The indicator is available from 1960 to 2021.
Facebook
TwitterLand Area by County reports the total area of land per county in square miles. Dimensions Measure Type,Variable Full Description Land Area by County reports the total area of land per county in square miles. These values originate from the 2000 and 2010 Decennial Census and in both cases are taken from Summary File 1, table G001.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The City Land Mass dataset represents all land surfaces, area covered by the City limit minus water bodies, that lay within the jurisdiction of the City of Miami. It consists of the main land and 30 islands. The data is maintained and managed by the GIS Team of the City.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
Data Source: This dataset was compiled from multiple data sources
If this was helpful, a vote is appreciated ❤️ Thank you 🙂