This dataset contains counts of live births for California counties based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.
The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.
This dataset contains counts of live births for California as a whole based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.
The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CN: Population: Birth Rate: Shanxi data was reported at 0.694 % in 2024. This records an increase from the previous number of 0.613 % for 2023. CN: Population: Birth Rate: Shanxi data is updated yearly, averaging 1.132 % from Dec 1990 (Median) to 2024, with 35 observations. The data reached an all-time high of 2.254 % in 1990 and a record low of 0.613 % in 2023. CN: Population: Birth Rate: Shanxi data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Birth Rate: By Region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
Potential Use Cases
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Number and percentage of live births, by month of birth, 1991 to most recent year.
This dataset contains counts of live births to California residents by ZIP Code based on information entered on birth certificates. Final counts are derived from static data and include out-of-state births to California residents. The data tables include births to residents of California by ZIP Code of residence (by residence).
Note that ZIP Codes are intended for mail delivery routing and do not represent geographic regions. ZIP Codes are subject to change over time and may not represent the same locations between different time periods. All ZIP Codes in the list of California ZIP Codes used for validation are included for all years, but this does not mean that the ZIP Code was in use at that time.
This dataset presents the estimated percentage of babies born alive before 37 weeks of pregnancy are completed, by country. Preterm birth is a leading cause of neonatal morbidity and mortality. Understanding national rates supports efforts to improve antenatal care, timely interventions, and newborn outcomes. These estimates are adapted from Liang et al. (2024), based on the Global Burden of Disease Study 2021, and provide a globally comparable measure of preterm birth burden.Data Source:The Lancet: https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(24)00419-X/fulltext Data Dictionary: The data is collated with the following columns:Column headingContent of this columnPossible valuesRefNumerical counter for each row of data, for ease of identification1+CountryShort name for the country195 countries in total – all 194 WHO member states plus PalestineISO3Three-digit alphabetical codes International Standard ISO 3166-1 assigned by the International Organization for Standardization (ISO). e.g. AFG (Afghanistan)ISO22 letter identifier code for the countrye.g. AF (Afghanistan)ICM_regionICM Region for countryAFR (Africa), AMR (Americas), EMR (Eastern Mediterranean), EUR (Europe), SEAR (South east Asia) or WPR (Western Pacific)CodeUnique project code for each indicator:GGTXXnnnGG=data group e.g. OU for outcomeT = N for novice or E for ExpertXX = identifier number 00 to 30nnn = identifier name eg mmre.g. OUN01sbafor Outcome Novice Indicator 01 skilled birth attendance Short_nameIndicator namee.g. maternal mortality ratioDescriptionText description of the indicator to be used on websitee.g. Maternal mortality ratio (maternal deaths per 100,000 live births)Value_typeDescribes the indicator typeNumeric: decimal numberPercentage: value between 0 & 100Text: value from list of text optionsY/N: yes or noValue_categoryExpect this to be ‘total’ for all indicators for Phase 1, but this could allow future disaggregation, e.g. male/female; urban/ruraltotalYearThe year that the indicator value was reported. For most indicators, we will only report if 2014 or more recente.g. 2020Latest_Value‘LATEST’ if this is the most recent reported value for the indicator since 2014, otherwise ‘No’. Useful for indicators with time trend data.LATEST or NOValueIndicator valuee.g. 99.8. NB Some indicators are calculated to several decimal places. We present the value to the number of decimal places that should be displayed on the Hub.SourceFor Caesarean birth rate [OUN13cbr] ONLY, this column indicates the source of the data, either OECD when reported, or UNICEF otherwise.OECD or UNICEFTargetHow does the latest value compare with Global guidelines / targets?meets targetdoes not meet targetmeets global standarddoes not meet global standardRankGlobal rank for indicator, i.e. the country with the best global score for this indicator will have rank = 1, next = 2, etc. This ranking is only appropriate for a few indicators, others will show ‘na’1-195Rank out ofThe total number of countries who have reported a value for this indicator. Ranking scores will only go as high as this number.Up to 195TrendIf historic data is available, an indication of the change over time. If there is a global target, then the trend is either getting better, static or getting worse. For mmr [OUN04mmr] and nmr [OUN05nmr] the average annual rate of reduction (arr) between 2016 and latest value is used to determine the trend:arr <-1.0 = getting worsearr >=-1.0 AND <=1.0 = staticarr >1.0 = getting betterFor other indicators, the trend is estimated by comparing the average of the last three years with the average ten years ago:decreasing if now < 95% 10 yrs agoincreasing if now > 105% 10 yrs agostatic otherwiseincreasingdecreasing Or, if there is a global target: getting better,static,getting worseNotesClarification comments, when necessary LongitudeFor use with mapping LatitudeFor use with mapping DateDate data uploaded to the Hub the following codes are also possible values: not reported does not apply don’t know This is one of many datasets featured on the Midwives’ Data Hub, a digital platform designed to strengthen midwifery and advocate for better maternal and newborn health services.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CN: Population: Birth Rate: Anhui data was reported at 0.617 % in 2024. This records a decrease from the previous number of 0.645 % for 2023. CN: Population: Birth Rate: Anhui data is updated yearly, averaging 1.288 % from Dec 1990 (Median) to 2024, with 35 observations. The data reached an all-time high of 2.447 % in 1990 and a record low of 0.617 % in 2024. CN: Population: Birth Rate: Anhui data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Birth Rate: By Region.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Live births and stillbirths annual summary statistics, by sex, age of mother, whether within marriage or civil partnership, percentage of non-UK-born mothers, birth rates and births by month and mothers' area of usual residence.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual UK and constituent country figures for births, deaths, marriages, divorces, civil partnerships and civil partnership dissolutions.
This dataset includes birth rates for unmarried women by age group, race, and Hispanic origin in the United States since 1970. Methods for collecting information on marital status changed over the reporting period and have been documented in: • Ventura SJ, Bachrach CA. Nonmarital childbearing in the United States, 1940–99. National vital statistics reports; vol 48 no 16. Hyattsville, Maryland: National Center for Health Statistics. 2000. Available from: http://www.cdc.gov/nchs/data/nvsr/nvsr48/nvs48_16.pdf. • National Center for Health Statistics. User guide to the 2013 natality public use file. Hyattsville, Maryland: National Center for Health Statistics. 2014. Available from: http://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm. National data on births by Hispanics origin exclude data for Louisiana, New Hampshire, and Oklahoma in 1989; for New Hampshire and Oklahoma in 1990; for New Hampshire in 1991 and 1992. Information on reporting Hispanic origin is detailed in the Technical Appendix for the 1999 public-use natality data file (see (ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/DVS/natality/Nat1999doc.pdf.) All birth data by race before 1980 are based on race of the child. Starting in 1980, birth data by race are based on race of the mother. SOURCES CDC/NCHS, National Vital Statistics System, birth data (see http://www.cdc.gov/nchs/births.htm); public-use data files (see http://www.cdc.gov/nchs/data_access/Vitalstatsonline.htm); and CDC WONDER (see http://wonder.cdc.gov/). REFERENCES Curtin SC, Ventura SJ, Martinez GM. Recent declines in nonmarital childbearing in the United States. NCHS data brief, no 162. Hyattsville, MD: National Center for Health Statistics. 2014. Available from: http://www.cdc.gov/nchs/data/databriefs/db162.pdf. Martin JA, Hamilton BE, Osterman MJK, et al. Births: Final data for 2015. National vital statistics reports; vol 66 no 1. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_01.pdf.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Live births in the UK by area of usual residence of mother. The tables contain summary data for local authorities and local health boards (within Wales) including figures by age of mother.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The United States Census Bureau’s International Dataset provides estimates of country populations since 1950 and projections through 2050.
The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000. Specifically, the data set includes midyear population figures broken down by age and gender assignment at birth. Additionally, they provide time-series data for attributes including fertility rates, birth rates, death rates, and migration rates.
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_international
https://cloud.google.com/bigquery/public-data/international-census
Dataset Source: www.census.gov
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source -http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Steve Richey from Unsplash.
What countries have the longest life expectancy?
Which countries have the largest proportion of their population under 25?
Which countries are seeing the largest net migration?
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The low birth-weight rate measures the percentage of live births with weights below 2500 grams. A low birth-weight can affect health outcomes later in life, and is an illustrative indicator for the overall health of the measured population.
The low birth-weight rate in Champaign County has been above 8 percent since 2011, the earliest Reporting Year available in the dataset. This is close to the statewide rate, which returned to 8.4 percent from Reporting Year 2021 through present after a slight decrease in recent years. The lowest county low birth-weight rate in the state is 5.6 percent (Carroll County in the northwest corner of the state), while the highest county low birth-weight rate in the state is 11.9 percent (Pulaski County in southernmost Illinois).
This data was sourced from the University of Wisconsin's Population Health Institute's and the Robert Wood Johnson Foundation’s County Health Rankings & Roadmaps. Each year’s County Health Rankings uses data from years prior. Therefore, the 2023 County Health Rankings (“Reporting Year” in the table) uses data from 2014-2020 (“Data Years” in the table).
Source: University of Wisconsin Population Health Institute. County Health Rankings & Roadmaps 2023.
This dataset was created from the CDC's National Vital Statistics Reports Volume 56, Number 6. The dataset includes all data available from this report by state level and includes births by race and Hispanic origin, births to unmarried women, rates of cesarean delivery, and twin and multiple birth rates. The data are final for 2005. No value is represented by a -1. "Descriptive tabulations of data reported on the birth certificates of the 4.1 million births that occurred in 2005 are presented. Denominators for population-based rates are postcensal estimates derived from the U.S. 2000 census".
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Indiana population pyramid, which represents the Indiana population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Indiana Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CN: Population: Birth Rate: Tibet data was reported at 1.372 % in 2023. This records a decrease from the previous number of 1.424 % for 2022. CN: Population: Birth Rate: Tibet data is updated yearly, averaging 1.690 % from Dec 1990 (Median) to 2023, with 34 observations. The data reached an all-time high of 2.668 % in 1993 and a record low of 1.372 % in 2023. CN: Population: Birth Rate: Tibet data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Birth Rate: By Region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the San Jose, CA population pyramid, which represents the San Jose population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for San Jose Population by Age. You can refer the same here
This dataset contains counts of live births for California counties based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.
The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.