100+ datasets found
  1. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  2. Mortality Statistics in US Cities

    • kaggle.com
    zip
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Mortality Statistics in US Cities [Dataset]. https://www.kaggle.com/datasets/thedevastator/mortality-statistics-in-us-cities
    Explore at:
    zip(96624 bytes)Available download formats
    Dataset updated
    Jan 23, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    Mortality Statistics in US Cities

    Deaths by Age and Cause of Death in 2016

    By Health [source]

    About this dataset

    This dataset contains mortality statistics for 122 U.S. cities in 2016, providing detailed information about all deaths that occurred due to any cause, including pneumonia and influenza. The data is voluntarily reported from cities with populations of 100,000 or more, and it includes the place of death and the week during which the death certificate was filed. Data is provided broken down by age group and includes a flag indicating the reliability of each data set to help inform analysis. Each row also provides longitude and latitude information for each reporting area in order to make further analysis easier. These comprehensive mortality statistics are invaluable resources for tracking disease trends as well as making comparisons between different areas across the country in order to identify public health risks quickly and effectively

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains mortality rates for 122 U.S. cities in 2016, including deaths by age group and cause of death. The data can be used to study various trends in mortality and contribute to the understanding of how different diseases impact different age groups across the country.

    In order to use the data, firstly one has to identify which variables they would like to use from this dataset. These include: reporting area; MMWR week; All causes by age greater than 65 years; All causes by age 45-64 years; All causes by age 25-44 years; All causes by age 1-24 years; All causes less than 1 year old; Pneumonia and Influenza total fatalities; Location (1 & 2); flag indicating reliability of data.

    Once you have identified the variables that you are interested in,you will need to filter the dataset so that it only includes relevant information for your analysis or research purposes. For example, if you are looking at trends between different ages, then all you would need is information on those 3 specific cause groups (greater than 65, 45-64 and 25-44). You can do this using a selection tool that allows you to pick only certain columns from your data set or an excel filter tool if your data is stored as a csv file type .

    Next step is preparing your data - it’s important for efficient analysis also helpful when there are too many variables/columns which can confuse our analysis process – eliminate unnecessary columns, rename column labels where needed etc ... In addition , make sure we clean up any missing values / outliers / incorrect entries before further investigation .Remember , outliers or corrupt entries may lead us into incorrect conclusions upon analyzing our set ! Once we complete the cleaning steps , now its safe enough transit into drawing insights !

    The last step involves using statistical methods such as linear regression with multiple predictors or descriptive statistical measures such as mean/median etc ..to draw key insights based on analysis done so far and generate some actionable points !

    With these steps taken care off , now its easier for anyone who decides dive into another project involving this particular dataset with added advantage formulated out of existing work done over our previous investigations!

    Research Ideas

    • Creating population health profiles for cities in the U.S.
    • Tracking public health trends across different age groups
    • Analyzing correlations between mortality and geographical locations

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: rows.csv | Column name | Description | |:--------------------------------------------|:-----------------------------------...

  3. Data from: Cause of death statistics

    • kaggle.com
    zip
    Updated Nov 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Cause of death statistics [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-death-rates-by-age-and-cause-2014
    Explore at:
    zip(6580 bytes)Available download formats
    Dataset updated
    Nov 19, 2022
    Authors
    The Devastator
    Description

    US Death Rates by Age and Cause

    Study why are people dying

    About this dataset

    Data on death rates in the United States in by age and cause of death. At the bottom of the table, some of the columns are a little out of whack but if you download the file, you should be able to make out all the numbers and information

    How to use the dataset

    Looking at death rates in the United States can be a sobering experience, but it can also be a helpful way to see where our country needs to focus its efforts in terms of public health. This dataset contains information on death rates in the United States in 2014, by age and cause of death. This can be used to help identify which age groups are most at risk for certain causes of death, and what factors may contribute to those risks

    Research Ideas

    • Find out what age group is dying the most and why.
    • Compare death rates from different causes of death.
    • Find out which states have the highest death rates

    Acknowledgements

    License

    Unknown License - Please check the dataset description for more information.

    Columns

    File: 2014 Death Rates by Age & Cause.csv | Column name | Description | |:-------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------| | Cause of death (based on ICD–10) | The cause of death that the row represents. This is given as a code based on the International Classification of Diseases (ICD). (String) | | All ages1 | The number of deaths due to the given cause in the given age group.(Integer) | | Under 1 year2 | The number of deaths due to the given cause in the given age group.(Integer) | | 1–4 | The number of deaths due to the given cause in the given age group.(Integer) | | 5–14 | The number of deaths due to the given cause in the given age group.(Integer) | | 15–24 | The number of deaths due to the given cause in the given age group.(Integer) | | 25–34 | The number of deaths due to the given cause in the given age group.(Integer) | | 35–44 | The number of deaths due to the given cause in the given age group.(Integer) | | 45–54 | The number of deaths due to the given cause in the given age group.(Integer) | | 55–64 | The number of deaths due to the given cause in the given age group.(Integer) | | 65–74 | The number of deaths due to the given cause in the given age group.(Integer) | | 75–84 | The number of deaths due to the given cause in the given age group.(Integer) | | 85 and over | The number of deaths due to the given cause in the given age group.(Integer) |

  4. C

    Death Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv(74351424), csv(75015194), csv(11738570), csv(1128641), csv(15127221), csv(60517511), csv(73906266), csv(60201673), csv(60676655), csv(28125832), csv(60023260), csv(51592721), csv(74689382), csv(52019564), csv(5095), csv(74043128), csv(24235858), csv(74497014), zip, csv(29775349)Available download formats
    Dataset updated
    Nov 26, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  5. f

    Table1_Different Trends in Excess Mortality in a Central European Country...

    • frontiersin.figshare.com
    • datasetcatalog.nlm.nih.gov
    • +1more
    xlsx
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Krisztina Bogos; Zoltan Kiss; Anna Kerpel Fronius; Gabriella Temesi; Jenő Elek; Ildikó Madurka; Zsuzsanna Cselkó; Péter Csányi; Zsolt Abonyi-Tóth; György Rokszin; Zsófia Barcza; Judit Moldvay (2023). Table1_Different Trends in Excess Mortality in a Central European Country Compared to Main European Regions in the Year of the COVID-19 Pandemic (2020): a Hungarian Analysis.XLSX [Dataset]. http://doi.org/10.3389/pore.2021.1609774.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Frontiers
    Authors
    Krisztina Bogos; Zoltan Kiss; Anna Kerpel Fronius; Gabriella Temesi; Jenő Elek; Ildikó Madurka; Zsuzsanna Cselkó; Péter Csányi; Zsolt Abonyi-Tóth; György Rokszin; Zsófia Barcza; Judit Moldvay
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hungary
    Description

    Objective: This study examined cumulative excess mortality in European countries in the year of the Covid-19 pandemic and characterized the dynamics of the pandemic in different countries, focusing on Hungary and the Central and Eastern European region.Methods: Age-standardized cumulative excess mortality was calculated based on weekly mortality data from the EUROSTAT database, and was compared between 2020 and the 2016–2019 reference period in European countries.Results: Cumulate weekly excess mortality in Hungary was in the negative range until week 44. By week 52, it reached 9,998 excess deaths, corresponding to 7.73% cumulative excess mortality vs. 2016–2019 (p-value = 0.030 vs. 2016–2019). In Q1, only Spain and Italy reported excess mortality compared to the reference period. Significant increases in excess mortality were detected between weeks 13 and 26 in Spain, United Kingdom, Belgium, Netherland and Sweden. Romania and Portugal showed the largest increases in age-standardized cumulative excess mortality in the Q3. The majority of Central and Eastern European countries experienced an outstandingly high impact of the pandemic in Q4 in terms of excess deaths. Hungary ranked 11th in cumulative excess mortality based on the latest available data of from the EUROSTAT database.Conclusion: Hungary experienced a mortality deficit in the first half of 2020 compared to previous years, which was followed by an increase in mortality during the second wave of the COVID-19 pandemic, reaching 7.7% cumulative excess mortality by the end of 2020. The excess was lower than in neighboring countries with similar dynamics of the pandemic.

  6. World Statistics dataset from World Bank

    • kaggle.com
    zip
    Updated Nov 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr_statistics (2020). World Statistics dataset from World Bank [Dataset]. https://www.kaggle.com/datasets/mutindafestus/world-statistics-dataset-from-world-bank/code
    Explore at:
    zip(2862682 bytes)Available download formats
    Dataset updated
    Nov 22, 2020
    Authors
    Dr_statistics
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Area covered
    World
    Description

    Context

    There's a story behind every dataset and here's your opportunity to share yours.

    Content

    This Data consists of some world statistics published by the World Bank since 1961

    Variables:

    1) Agriculture and Rural development - 42 indicators published on this website. https://data.worldbank.org/topic/agriculture-and-rural-development

    2) Access to electricity (% of the population) - Access to electricity is the percentage of the population with access to electricity. Electrification data are collected from industry, national surveys, and international sources.

    3) CPIA gender equality rating (1=low to 6=high) - Gender equality assesses the extent to which the country has installed institutions and programs to enforce laws and policies that promote equal access for men and women in education, health, the economy, and protection under law.

    4) Mineral rents (% of GDP) - Mineral rents are the difference between the value of production for a stock of minerals at world prices and their total costs of production. Minerals included in the calculation are tin, gold, lead, zinc, iron, copper, nickel, silver, bauxite, and phosphate.

    5) GDP per capita (current US$) - GDP per capita is gross domestic product divided by midyear population. GDP is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in current U.S. dollars.

    6) Literacy rate, adult total (% of people ages 15 and above)- Adult literacy rate is the percentage of people ages 15 and above who can both read and write with understanding a short simple statement about their everyday life.

    7) Net migration - Net migration is the net total of migrants during the period, that is, the total number of immigrants less the annual number of emigrants, including both citizens and noncitizens. Data are five-year estimates.

    8) Birth rate, crude (per 1,000 people) - Crude birth rate indicates the number of live births occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.

    9) Death rate, crude (per 1,000 people) - Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.

    10) Mortality rate, infant (per 1,000 live births) - Infant mortality rate is the number of infants dying before reaching one year of age, per 1,000 live births in a given year.

    11) Population, total - Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.

    Acknowledgements

    These datasets are publicly available for anyone to use under the following terms provided by the Dataset Source https://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Banner photo by https://population.un.org/wpp/Maps/

    Inspiration

    Subsaharan Africa and east Asia record high population total, actually Subsaharan Africa population bypassed Europe and central Asia population by 2010, has this been influenced by crop and food production, large arable land, high crude birth rates(influx), low mortality rates(exits from the population) or Net migration.

  7. m

    Data for: COVID-19 Dataset: Worldwide Spread Log Including Countries First...

    • data.mendeley.com
    Updated Jul 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hasmot Ali (2020). Data for: COVID-19 Dataset: Worldwide Spread Log Including Countries First Case And First Death [Dataset]. http://doi.org/10.17632/vw427wzzkk.5
    Explore at:
    Dataset updated
    Jul 20, 2020
    Authors
    Hasmot Ali
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Contain informative data related to COVID-19 pandemic. Specially, figure out about the First Case and First Death information for every single country. The datasets mainly focus on two major fields first one is First Case which consists of information of Date of First Case(s), Number of confirm Case(s) at First Day, Age of the patient(s) of First Case, Last Visited Country and the other one First Death information consist of Date of First Death and Age of the Patient who died first for every Country mentioning corresponding Continent. The datasets also contain the Binary Matrix of spread chain among different country and region.

    *This is not a country. This is a ship. The name of the Cruise Ship was not given from the government.
    "N+": the age is not specified but greater than N
    “No Trace”: some data was not found
    “Unspecified”: not available from the authority
    “N/A”: for “Last Visited Country(s) of Confirmed Case(s)” column, “N/A” indicates that the confirmed case(s) of those countries do not have any travel history in recent past; in “Age of First Death(s)” column “N/A” indicates that those countries do not have may death case till May 16, 2020.

  8. C

    California Hospital Inpatient Mortality Rates and Quality Ratings

    • data.chhs.ca.gov
    • data.ca.gov
    • +5more
    csv, pdf, xls, zip
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2025). California Hospital Inpatient Mortality Rates and Quality Ratings [Dataset]. https://data.chhs.ca.gov/dataset/california-hospital-inpatient-mortality-rates-and-quality-ratings
    Explore at:
    pdf(306372), pdf, xls(143872), pdf(134270), pdf(83317), pdf(445171), pdf(700782), pdf(280571), pdf(419645), xls(214016), xls(165376), csv(3189182), xls, pdf(451935), pdf(253971), pdf(791847), pdf(150793), xls(141824), xls(166400), xls(163840), pdf(1235022), xls(172032), pdf(713960), pdf(363570), pdf(798633), pdf(538945), pdf(100994), pdf(288823), pdf(452858), pdf(146736), pdf(114573), pdf(264343), pdf(730246), pdf(238223), pdf(796065), pdf(254426), pdf(729792), pdf(239000), pdf(321071), pdf(147517), csv(6740988), zipAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset authored and provided by
    Department of Health Care Access and Information
    Area covered
    California
    Description

    The dataset contains risk-adjusted mortality rates, quality ratings, and number of deaths and cases for 6 medical conditions treated (Acute Stroke, Acute Myocardial Infarction, Heart Failure, Gastrointestinal Hemorrhage, Hip Fracture and Pneumonia) and 3 procedures performed (Carotid Endarterectomy, Pancreatic Resection, and Percutaneous Coronary Intervention) in California hospitals. The 2023 IMIs were generated using AHRQ Version 2024, while previous years' IMIs were generated with older versions of AHRQ software (2022 IMIs by Version 2023, 2021 IMIs by Version 2022, 2020 IMIs by Version 2021, 2019 IMIs by Version 2020, 2016-2018 IMIs by Version 2019, 2014 and 2015 IMIs by Version 5.0, and 2012 and 2013 IMIs by Version 4.5). The differences in the statistical method employed and inclusion and exclusion criteria using different versions can lead to different results. Users should not compare trends of mortality rates over time. However, many hospitals showed consistent performance over years; “better” performing hospitals may perform better and “worse” performing hospitals may perform worse consistently across years. This dataset does not include conditions treated or procedures performed in outpatient settings. Please refer to statewide table for California overall rates: https://data.chhs.ca.gov/dataset/california-hospital-inpatient-mortality-rates-and-quality-ratings/resource/af88090e-b6f5-4f65-a7ea-d613e6569d96

  9. Annual cause death numbers

    • kaggle.com
    zip
    Updated Mar 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2024). Annual cause death numbers [Dataset]. https://www.kaggle.com/datasets/willianoliveiragibin/annual-cause-death-numbers
    Explore at:
    zip(405869 bytes)Available download formats
    Dataset updated
    Mar 17, 2024
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    this graph was created in Tableu and Ourdataworld :

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fc5bb0b21c8b3a126eca89160e1d25d03%2Fgraph1.png?generation=1710708871099084&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Ff81fcfa72e97f08202ba1cb06fe138da%2Fgraph2.png?generation=1710708877558039&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fabbdfd146844a7e8d19e277c2eecb83b%2Fgraph3.png?generation=1710708883608541&alt=media" alt="">

    Understanding the Global Distribution of HIV/AIDS Deaths

    Introduction:

    HIV/AIDS remains one of the most significant public health challenges globally, with its impact varying widely across countries and regions. While the overall share of deaths attributed to HIV/AIDS stands at around 1.5% globally, this statistic belies the stark disparities observed on a country-by-country basis. This essay delves into the global distribution of deaths from HIV/AIDS, examining both the overarching trends and the localized impacts across different regions, particularly focusing on Southern Sub-Saharan Africa.

    Understanding Global Trends:

    At a global level, HIV/AIDS accounts for approximately 1.5% of all deaths. This figure, though relatively low in comparison to other causes of mortality, represents a significant burden on public health systems and communities worldwide. However, when zooming in on specific regions, such as Europe, the share of deaths attributable to HIV/AIDS drops significantly, often comprising less than 0.1% of total mortality. This pattern suggests varying levels of prevalence and effectiveness of HIV/AIDS prevention and treatment strategies across different parts of the world.

    Regional Disparities:

    The distribution of HIV/AIDS deaths is not uniform across the globe, with certain regions experiencing disproportionately high burdens. Southern Sub-Saharan Africa emerges as a focal point of the HIV/AIDS epidemic, with a significant portion of deaths attributed to the virus occurring in this region. Factors such as limited access to healthcare, socio-economic disparities, cultural stigmatization, and insufficient education about HIV/AIDS contribute to the heightened prevalence and impact of the disease in this area.

    Southern Sub-Saharan Africa: A Hotspot for HIV/AIDS Deaths:

    Within Southern Sub-Saharan Africa, countries such as South Africa, Botswana, and Swaziland stand out for their exceptionally high rates of HIV/AIDS-related mortality. In these nations, HIV/AIDS can account for up to a quarter of all deaths, highlighting the acute nature of the epidemic in these regions. The reasons behind this disproportionate burden are multifaceted, encompassing issues ranging from inadequate healthcare infrastructure to socio-cultural barriers inhibiting prevention and treatment efforts.

    Challenges and Responses:

    Addressing the unequal distribution of HIV/AIDS deaths necessitates a multi-faceted approach that encompasses both prevention and treatment strategies tailored to the specific needs of affected communities. Efforts to expand access to antiretroviral therapy (ART), promote comprehensive sexual education, combat stigma, and strengthen healthcare systems are crucial components of an effective response. Moreover, fostering partnerships between governments, civil society organizations, and international entities is essential for coordinating resources and expertise to tackle the HIV/AIDS epidemic comprehensively.

    Lessons Learned and Future Directions:

    The global distribution of deaths from HIV/AIDS underscores the importance of context-specific interventions that take into account the unique social, economic, and cultural factors influencing the spread and impact of the disease. While progress has been made in reducing HIV/AIDS-related mortality in some regions, much work remains to be done, particularly in areas where the burden of the epidemic remains disproportionately high. Going forward, sustained investment in research, healthcare infrastructure, and community empowerment initiatives will be vital for achieving meaningful reductions in HIV/AIDS deaths worldwide.

    Conclusion:

    In conclusion, the global distribution of deaths from HIV/AIDS reveals a complex landscape characterized by both overarching trends and localized disparities. While the overall share of deaths attributable to HIV/AIDS may seem relatively modest on a global scale, the stark contrasts observed across different countries and regions underscore the need for targeted interventions tailored to the specific contexts in which the epidemic is most pronounced. By addressing the underlying social, economic, and healthcare-related factors driving the unequal distribution of HIV/AIDS deaths, the global co...

  10. Deaths and age-specific mortality rates, by selected grouped causes

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Deaths and age-specific mortality rates, by selected grouped causes [Dataset]. http://doi.org/10.25318/1310039201-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.

  11. m

    Death rate, crude (per 1,000 people) - Virgin Islands (U.S.)

    • macro-rankings.com
    csv, excel
    Updated Nov 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Death rate, crude (per 1,000 people) - Virgin Islands (U.S.) [Dataset]. https://www.macro-rankings.com/united-states-virgin-islands/death-rate-crude-(per-1-000-people)
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Nov 5, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    U.S. Virgin Islands
    Description

    Time series data for the statistic Death rate, crude (per 1,000 people) and country Virgin Islands (U.S.). Indicator Definition:Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.The indicator "Death rate, crude (per 1,000 people)" stands at 9.00 as of 12/31/2023, the highest value since 12/31/1964. Regarding the One-Year-Change of the series, the current value constitutes an increase of 2.27 percent compared to the value the year prior.The 1 year change in percent is 2.27.The 3 year change in percent is 7.14.The 5 year change in percent is 13.92.The 10 year change in percent is 30.43.The Serie's long term average value is 6.42. It's latest available value, on 12/31/2023, is 40.27 percent higher, compared to it's long term average value.The Serie's change in percent from it's minimum value, on 12/31/1991, to it's latest available value, on 12/31/2023, is +100.00%.The Serie's change in percent from it's maximum value, on 12/31/1960, to it's latest available value, on 12/31/2023, is -10.00%.

  12. Deaths registered by area of usual residence, UK

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Feb 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths registered by area of usual residence, UK [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsregisteredbyareaofusualresidenceenglandandwales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 24, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Annual data on death registrations by area of usual residence in the UK. Summary tables including age-standardised mortality rates.

  13. O

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • data.ct.gov
    • s.cnmilf.com
    • +2more
    csv, xlsx, xml
    Updated Jun 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-and-Deaths-by-Race-Ethnicity-ARCHIV/7rne-efic
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf

    Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.

    Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

  14. Mortality rates, by age group

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Dec 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Mortality rates, by age group [Dataset]. http://doi.org/10.25318/1310071001-eng
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    Government of Canadahttp://www.gg.ca/
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.

  15. T

    Thailand TH: Death Rate: Crude: per 1000 People

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Thailand TH: Death Rate: Crude: per 1000 People [Dataset]. https://www.ceicdata.com/en/thailand/population-and-urbanization-statistics/th-death-rate-crude-per-1000-people
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Thailand
    Variables measured
    Population
    Description

    Thailand TH: Death Rate: Crude: per 1000 People data was reported at 7.872 Ratio in 2016. This records an increase from the previous number of 7.750 Ratio for 2015. Thailand TH: Death Rate: Crude: per 1000 People data is updated yearly, averaging 7.229 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 13.180 Ratio in 1960 and a record low of 5.663 Ratio in 1989. Thailand TH: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Thailand – Table TH.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  16. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  17. NCHS - Leading Causes of Death: United States

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Leading Causes of Death: United States [Dataset]. https://catalog.data.gov/dataset/nchs-leading-causes-of-death-united-states
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    This dataset presents the age-adjusted death rates for the 10 leading causes of death in the United States beginning in 1999. Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia using demographic and medical characteristics. Age-adjusted death rates (per 100,000 population) are based on the 2000 U.S. standard population. Populations used for computing death rates after 2010 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of death classified by the International Classification of Diseases, Tenth Revision (ICD–10) are ranked according to the number of deaths assigned to rankable causes. Cause of death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.

  18. n

    Human Mortality Database

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Jun 20, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2014). Human Mortality Database [Dataset]. http://identifiers.org/RRID:SCR_002370
    Explore at:
    Dataset updated
    Jun 20, 2014
    Description

    A database providing detailed mortality and population data to those interested in the history of human longevity. For each country, the database includes calculated death rates and life tables by age, time, and sex, along with all of the raw data (vital statistics, census counts, population estimates) used in computing these quantities. Data are presented in a variety of formats with regard to age groups and time periods. The main goal of the database is to document the longevity revolution of the modern era and to facilitate research into its causes and consequences. New data series is continually added to this collection. However, the database is limited by design to populations where death registration and census data are virtually complete, since this type of information is required for the uniform method used to reconstruct historical data series. As a result, the countries and areas included are relatively wealthy and for the most part highly industrialized. The database replaces an earlier NIA-funded project, known as the Berkeley Mortality Database. * Dates of Study: 1751-present * Study Features: Longitudinal, International * Sample Size: 37 countries or areas

  19. f

    Data_Sheet_1_Why Does Child Mortality Decrease With Age? Modeling the...

    • figshare.com
    • frontiersin.figshare.com
    txt
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Josef Dolejs; Helena Homolková (2023). Data_Sheet_1_Why Does Child Mortality Decrease With Age? Modeling the Age-Associated Decrease in Mortality Rate Using WHO Metadata From 14 European Countries.csv [Dataset]. http://doi.org/10.3389/fped.2020.527811.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Frontiers
    Authors
    Josef Dolejs; Helena Homolková
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: Mortality rate rapidly decreases with age after birth, and, simultaneously, the spectrum of death causes show remarkable changes with age. This study analyzed age-associated decreases in mortality rate from diseases of all main chapters of the 10th revision of the International Classification of Diseases.Methods: The number of deaths was extracted from the mortality database of the World Health Organization. As zero cases could be ascertained for a specific age category, the Halley method was used to calculate the mortality rates in all possible calendar years and in all countries combined.Results: All causes mortality from the 1st day of life to the age of 10 years can be represented by an inverse proportion model with a single parameter. High coefficients of determination were observed for total mortality in all populations (arithmetic mean = 0.9942 and standard deviation = 0.0039).Slower or no mortality decrease with age was detected in the 1st year of life, while the inverse proportion method was valid for the age range [1, 10) years in most of all main chapters with three exceptions. The decrease was faster for the chapter “Certain conditions originating in the perinatal period” (XVI).The inverse proportion was valid already from the 1st day for the chapter “Congenital malformations, deformations and chromosomal abnormalities” (XVII).The shape of the mortality decrease was very different for the chapter “Neoplasms” (II) and the rates of mortality from neoplasms were age-independent in the age range [1, 10) years in all populations.Conclusion: The theory of congenital individual risks of death is presented and can explain the results. If it is valid, latent congenital impairments may be present among all cases of death that are not related to congenital impairments. All results are based on published data, and the data are presented as a supplement.

  20. f

    Table_1_Why Does Child Mortality Decrease With Age? Modeling the...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Josef Dolejs; Helena Homolková (2023). Table_1_Why Does Child Mortality Decrease With Age? Modeling the Age-Associated Decrease in Mortality Rate Using WHO Metadata From 25 Countries.XLSX [Dataset]. http://doi.org/10.3389/fped.2021.657298.s003
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Frontiers
    Authors
    Josef Dolejs; Helena Homolková
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: Our previous study analyzed the age trajectory of mortality (ATM) in 14 European countries, while this study aimed at investigating ATM in other continents and in countries with a higher level of mortality. Data from 11 Non-European countries were used.Methods: The number of deaths was extracted from the WHO mortality database. The Halley method was used to calculate the mortality rates in all possible calendar years and all countries combined. This method enables us to combine more countries and more calendar years in one hypothetical population.Results: The age trajectory of total mortality (ATTM) and also ATM due to specific groups of diseases were very similar in the 11 non-European countries and in the 14 European countries. The level of mortality did not affect the main results found in European countries. The inverse proportion was valid for ATTM in non-European countries with two exceptions.Slower or no mortality decrease with age was detected in the first year of life, while the inverse proportion model was valid for the age range (1, 10) years in most of the main chapters of ICD10.Conclusions: The decrease in child mortality with age may be explained as the result of the depletion of individuals with congenital impairment. The majority of deaths up to the age of 10 years were related to congenital impairments, and the decrease in child mortality rate with age was a demonstration of population heterogeneity. The congenital impairments were latent and may cause death even if no congenital impairment was detected.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths

CORONAVIRUS DEATHS by Country Dataset

CORONAVIRUS DEATHS by Country Dataset (2025)

Explore at:
16 scholarly articles cite this dataset (View in Google Scholar)
csv, excel, xml, jsonAvailable download formats
Dataset updated
Mar 4, 2020
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
2025
Area covered
World
Description

This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

Search
Clear search
Close search
Google apps
Main menu