100+ datasets found
  1. T

    GDP by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 29, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2011). GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gdp
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jun 29, 2011
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  2. GDP-BY-COUNTRY-2022

    • kaggle.com
    Updated Oct 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muneeb_Qureshi3131 (2024). GDP-BY-COUNTRY-2022 [Dataset]. https://www.kaggle.com/datasets/muneebqureshi3131/gdp-by-country
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 24, 2024
    Dataset provided by
    Kaggle
    Authors
    Muneeb_Qureshi3131
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset provides key economic indicators for five of the world's largest economies, based on their nominal Gross Domestic Product (GDP) in 2022. It includes the GDP values, population, GDP growth rates, per capita GDP, and each country's share of the global economy.

    Columns: Country: Name of the country. GDP (nominal, 2022): The total nominal GDP in 2022, represented in USD. GDP (abbrev.): The abbreviated GDP in trillions of USD. GDP growth: The percentage growth in GDP compared to the previous year. Population: Total population of each country in 2022. GDP per capita: The GDP per capita, representing average economic output per person in USD. Share of world GDP: The percentage of global GDP contributed by each country. Key Highlights: The dataset includes some of the largest global economies, such as the United States, China, Japan, Germany, and India. The data can be used to analyze the economic standing of countries in terms of overall GDP and per capita wealth. It offers insights into the relative growth rates and population sizes of these leading economies. This dataset is ideal for exploring economic trends, performing country-wise comparisons, or studying the relationship between population size and GDP growth.

  3. T

    GDP by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 30, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=america
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    May 30, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  4. T

    GDP by Country in ASIA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). GDP by Country in ASIA [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=asia
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Asia
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  5. World GDP Forecast-2023 EDA

    • kaggle.com
    Updated Jan 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Malay Vyas (2023). World GDP Forecast-2023 EDA [Dataset]. https://www.kaggle.com/datasets/malayvyas/world-gdp-forecast-2023
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 11, 2023
    Dataset provided by
    Kaggle
    Authors
    Malay Vyas
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    This is a dataset for the Exploratory Data Analysis purpose of the GDP of every country in the world from the 1980s to 2023. This dataset can also be used to forecast the countries' GDPs for the year 2024. And don't forget to upvote😄.

  6. T

    GDP PER CAPITA PPP by Country in EUROPE3

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jan 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). GDP PER CAPITA PPP by Country in EUROPE3 [Dataset]. https://tradingeconomics.com/country-list/gdp-per-capita-ppp?continent=europe3
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Jan 15, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    EUROPE3
    Description

    This dataset provides values for GDP PER CAPITA PPP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  7. F

    Gross Domestic Product

    • fred.stlouisfed.org
    • trends.sourcemedium.com
    json
    Updated Jul 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Gross Domestic Product [Dataset]. https://fred.stlouisfed.org/series/GDP
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    View economic output, reported as the nominal value of all new goods and services produced by labor and property located in the U.S.

  8. Z

    Global Country Information 2023

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Elgiriyewithana, Nidula
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    Country: Name of the country.

    Density (P/Km2): Population density measured in persons per square kilometer.

    Abbreviation: Abbreviation or code representing the country.

    Agricultural Land (%): Percentage of land area used for agricultural purposes.

    Land Area (Km2): Total land area of the country in square kilometers.

    Armed Forces Size: Size of the armed forces in the country.

    Birth Rate: Number of births per 1,000 population per year.

    Calling Code: International calling code for the country.

    Capital/Major City: Name of the capital or major city.

    CO2 Emissions: Carbon dioxide emissions in tons.

    CPI: Consumer Price Index, a measure of inflation and purchasing power.

    CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

    Currency_Code: Currency code used in the country.

    Fertility Rate: Average number of children born to a woman during her lifetime.

    Forested Area (%): Percentage of land area covered by forests.

    Gasoline_Price: Price of gasoline per liter in local currency.

    GDP: Gross Domestic Product, the total value of goods and services produced in the country.

    Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

    Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

    Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

    Largest City: Name of the country's largest city.

    Life Expectancy: Average number of years a newborn is expected to live.

    Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

    Minimum Wage: Minimum wage level in local currency.

    Official Language: Official language(s) spoken in the country.

    Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

    Physicians per Thousand: Number of physicians per thousand people.

    Population: Total population of the country.

    Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

    Tax Revenue (%): Tax revenue as a percentage of GDP.

    Total Tax Rate: Overall tax burden as a percentage of commercial profits.

    Unemployment Rate: Percentage of the labor force that is unemployed.

    Urban Population: Percentage of the population living in urban areas.

    Latitude: Latitude coordinate of the country's location.

    Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    Analyze population density and land area to study spatial distribution patterns.

    Investigate the relationship between agricultural land and food security.

    Examine carbon dioxide emissions and their impact on climate change.

    Explore correlations between economic indicators such as GDP and various socio-economic factors.

    Investigate educational enrollment rates and their implications for human capital development.

    Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

    Study labor market dynamics through indicators such as labor force participation and unemployment rates.

    Investigate the role of taxation and its impact on economic development.

    Explore urbanization trends and their social and environmental consequences.

  9. d

    505 Economics: Monthly Sub-National GDP Dataset for France (granular, timely...

    • datarade.ai
    Updated May 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    505 Economics (2021). 505 Economics: Monthly Sub-National GDP Dataset for France (granular, timely and precise) [Dataset]. https://datarade.ai/data-products/505-economics-monthly-sub-national-gdp-dataset-for-france-granular-timely-and-precise-505-economics
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    May 12, 2021
    Dataset authored and provided by
    505 Economics
    Area covered
    France
    Description

    505 Economics is on a mission to make academic economics accessible. We've developed the first monthly sub-national GDP data for EU and UK regions from January 2015 onwards.

    Our GDP dataset uses luminosity as a proxy for GDP. The brighter a place, the more economic activity that place tends to have.

    We produce the data using high-resolution night time satellite imagery and Artificial Intelligence.

    This builds on our academic research at the London School of Economics, and we're producing the dataset in collaboration with the European Space Agency BIC UK.

    We have published peer-reviewed academic articles on the usage of luminosity as an accurate proxy for GDP.

    Key features:

    • Granular: Data is provided at the following geographical units:
      • NUTS3 (e.g. London Boroughs),
      • NUTS2 (e.g. London),
      • NUTS1 (e.g. England), and
      • NUTS0 (e.g. United Kingdom) levels.
    • Frequent: Data is provided every month from January 2015. This is more frequent than the annualised official datasets.
    • Timely: Data is provided with a one month lag (i.e. the data for January 2021 was published at the end of February 2021). This is substantially quicker than the 18 month lag of official datasets.
    • Accurate: Our dataset uses Deep Learning to maximise accuracy (RMSE 1.2%).

    The dataset can be used by:

    • Governments and policy makers - to monitor the performance of local economies, to measure the localised impact of policies, and to get a real-time indication of economic activity.
    • Financial services - to get an indication of national-level GDP before official GDP statistics are released
    • Engineering companies - to monitor and evaluate the localised impact of infrastructure projects
    • Consultancies - to forecast the localised impact of specific projects, to retrospectively monitor and evaluate the localised impact of existing projects
    • Economics firms - to create macro forecasts at the national and sub-national level, to assess the impact of policy interventions.
    • Academia / Think Tanks - to conduct novel research at the local level. E.g. our dataset can be used to measure the impact of localised COVID-19 lockdowns.

    We have created this dataset for all UK sub-national regions, 28 EU Countries and Switzerland.

  10. k

    World Competitiveness Ranking based on Criteria

    • datasource.kapsarc.org
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). World Competitiveness Ranking based on Criteria [Dataset]. https://datasource.kapsarc.org/explore/dataset/world-competitiveness-ranking-based-on-criteria-2016/
    Explore at:
    Dataset updated
    Mar 13, 2024
    Description

    Explore the World Competitiveness Ranking dataset for 2016, including key indicators such as GDP per capita, fixed telephone tariffs, and pension funding. Discover insights on social cohesion, scientific research, and digital transformation in various countries.

    Social cohesion, The image abroad of your country encourages business development, Scientific articles published by origin of author, International Telecommunication Union, World Telecommunication/ICT Indicators database, Data reproduced with the kind permission of ITU, National sources, Fixed telephone tariffs, GDP (PPP) per capita, Overall, Exports of goods - growth, Pension funding is adequately addressed for the future, Companies are very good at using big data and analytics to support decision-making, Gross fixed capital formation - real growth, Economic Performance, Scientific research legislation, Percentage of GDP, Health infrastructure meets the needs of society, Estimates based on preliminary data for the most recent year., Singapore: including re-exports., Value, Laws relating to scientific research do encourage innovation, % of GDP, Gross Domestic Product (GDP), Health Infrastructure, Digital transformation in companies is generally well understood, Industrial disputes, EE, Female / male ratio, State ownership of enterprises, Total expenditure on R&D (%), Score, Colombia, Estimates for the most recent year., Percentage change, based on US$ values, Number of listed domestic companies, Tax evasion is not a threat to your economy, Scientific articles, Tax evasion, % change, Use of big data and analytics, National sources, Disposable Income, Equal opportunity, Listed domestic companies, Government budget surplus/deficit (%), Pension funding, US$ per capita at purchasing power parity, Estimates; US$ per capita at purchasing power parity, Image abroad or branding, Equal opportunity legislation in your economy encourages economic development, Number, Article counts are from a selection of journals, books, and conference proceedings in S&E from Scopus. Articles are classified by their year of publication and are assigned to a region/country/economy on the basis of the institutional address(es) listed in the article. Articles are credited on a fractional-count basis. The sum of the countries/economies may not add to the world total because of rounding. Some publications have incomplete address information for coauthored publications in the Scopus database. The unassigned category count is the sum of fractional counts for publications that cannot be assigned to a country or economy. Hong Kong: research output items by the higher education institutions funded by the University Grants Committee only., State ownership of enterprises is not a threat to business activities, Protectionism does not impair the conduct of your business, Digital transformation in companies, Total final energy consumption per capita, Social cohesion is high, Rank, MTOE per capita, Percentage change, based on constant prices, US$ billions, National sources, World Trade Organization Statistics database, Rank, Score, Value, World Rankings

    Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, China, Colombia, Croatia, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Jordan, Kazakhstan, Latvia, Lithuania, Luxembourg, Malaysia, Mexico, Mongolia, Netherlands, New Zealand, Norway, Oman, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Saudi Arabia, Singapore, Slovenia, South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, Ukraine, United Kingdom, Venezuela

    Follow data.kapsarc.org for timely data to advance energy economics research.

  11. T

    PRIVATE DEBT TO GDP by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). PRIVATE DEBT TO GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/private-debt-to-gdp
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for PRIVATE DEBT TO GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  12. C

    Chad TD: GDP: USD: Gross National Income per Capita: Atlas Method

    • ceicdata.com
    Updated Mar 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Chad TD: GDP: USD: Gross National Income per Capita: Atlas Method [Dataset]. https://www.ceicdata.com/en/chad/gross-domestic-product-nominal/td-gdp-usd-gross-national-income-per-capita-atlas-method
    Explore at:
    Dataset updated
    Mar 1, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    Chad
    Variables measured
    Gross Domestic Product
    Description

    Chad TD: GDP: USD: Gross National Income per Capita: Atlas Method data was reported at 670.000 USD in 2023. This records an increase from the previous number of 660.000 USD for 2022. Chad TD: GDP: USD: Gross National Income per Capita: Atlas Method data is updated yearly, averaging 220.000 USD from Dec 1962 (Median) to 2023, with 62 observations. The data reached an all-time high of 940.000 USD in 2014 and a record low of 110.000 USD in 1964. Chad TD: GDP: USD: Gross National Income per Capita: Atlas Method data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Chad – Table TD.World Bank.WDI: Gross Domestic Product: Nominal. GNI per capita (formerly GNP per capita) is the gross national income, converted to U.S. dollars using the World Bank Atlas method, divided by the midyear population. GNI is the sum of value added by all resident producers plus any product taxes (less subsidies) not included in the valuation of output plus net receipts of primary income (compensation of employees and property income) from abroad. GNI, calculated in national currency, is usually converted to U.S. dollars at official exchange rates for comparisons across economies, although an alternative rate is used when the official exchange rate is judged to diverge by an exceptionally large margin from the rate actually applied in international transactions. To smooth fluctuations in prices and exchange rates, a special Atlas method of conversion is used by the World Bank. This applies a conversion factor that averages the exchange rate for a given year and the two preceding years, adjusted for differences in rates of inflation between the country, and through 2000, the G-5 countries (France, Germany, Japan, the United Kingdom, and the United States). From 2001, these countries include the Euro area, Japan, the United Kingdom, and the United States.;World Bank national accounts data, and OECD National Accounts data files.;Weighted average;

  13. World Bank GDP ranking

    • kaggle.com
    Updated May 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). World Bank GDP ranking [Dataset]. https://www.kaggle.com/theworldbank/world-bank-gdp-ranking/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 16, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    World Bank
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Content

    More details about each file are in the individual file descriptions.

    Context

    This is a dataset hosted by the World Bank. The organization has an open data platform found here and they update their information according the amount of data that is brought in. Explore the World Bank using Kaggle and all of the data sources available through the World Bank organization page!

    • Update Frequency: This dataset is updated daily.

    Acknowledgements

    This dataset is maintained using the World Bank's APIs and Kaggle's API.

  14. International Macroeconomic Data Set

    • agdatacommons.nal.usda.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +3more
    bin
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Economic Research Service (2025). International Macroeconomic Data Set [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/International_Macroeconomic_Data_Set/25696602
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Economic Research Servicehttp://www.ers.usda.gov/
    Authors
    USDA Economic Research Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The International Macroeconomic Data Set provides data from 1969 through 2030 for real (adjusted for inflation) gross domestic product (GDP), population, real exchange rates, and other variables for the 190 countries and 34 regions that are most important for U.S. agricultural trade. The data presented here are a key component of the USDA Baseline projections process, and can be used as a benchmark for analyzing the impacts of U.S. and global macroeconomic shocks.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Web page with links to Excel files For complete information, please visit https://data.gov.

  15. d

    505 Economics: Monthly National GDP Dataset for Spain (quick, frequent and...

    • datarade.ai
    Updated May 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    505 Economics (2021). 505 Economics: Monthly National GDP Dataset for Spain (quick, frequent and precise) [Dataset]. https://datarade.ai/data-products/505-economics-monthly-national-gdp-dataset-for-spain-quick-frequent-and-precise-505-economics
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    May 1, 2021
    Dataset authored and provided by
    505 Economics
    Area covered
    Spain
    Description

    505 Economics is on a mission to make academic economics accessible. We've developed the first monthly sub-national GDP data for EU and UK regions from January 2015 onwards.

    Our GDP dataset uses luminosity as a proxy for GDP. The brighter a place, the more economic activity that place tends to have.

    We produce the data using high-resolution night time satellite imagery and Artificial Intelligence.

    This builds on our academic research at the London School of Economics, and we're producing the dataset in collaboration with the European Space Agency BIC UK.

    We have published peer-reviewed academic articles on the usage of luminosity as an accurate proxy for GDP.

    Key features: - Frequent: Data is provided every month from January 2015. This is more frequent than quarterly official datasets. - Timely: Data is provided with a three week lag (i.e. the data for January 2021 was published at the end of February 2021). This is substantially quicker than the 3-6 month lag of official datasets. - Accurate: Our dataset uses Deep Learning to maximise accuracy (RMSE 1.2%).

    The dataset can be used by:

    • Financial services - to get an indication of national-level GDP before official GDP statistics are released
    • Governments and policy makers - to monitor the performance of economies, to measure the impact of policies, and to get a real-time indication of economic activity.
    • Engineering companies - to monitor and evaluate the national impact of infrastructure projects
    • Consultancies - to forecast the national impact of specific projects, to retrospectively monitor and evaluate the localised impact of existing projects
    • Economics firms - to create macro forecasts at the national, to assess the impact of policy interventions.
    • Academia / Think Tanks - to conduct novel research with more-frequent GDP data than is available from official sources. E.g. our dataset can be used to measure the impact of localised COVID-19 lockdowns.

    We have created this dataset for the UK, Switzerland and 28 EU Countries.

  16. A

    ‘Country Socioeconomic Status Scores: 1880-2010’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Sep 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Country Socioeconomic Status Scores: 1880-2010’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-country-socioeconomic-status-scores-1880-2010-b9b8/703e72a5/?iid=006-425&v=presentation
    Explore at:
    Dataset updated
    Sep 30, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Country Socioeconomic Status Scores: 1880-2010’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/sdorius/globses on 30 September 2021.

    --- Dataset description provided by original source is as follows ---

    This dataset contains estimates of the socioeconomic status (SES) position of each of 149 countries covering the period 1880-2010. Measures of SES, which are in decades, allow for a 130 year time-series analysis of the changing position of countries in the global status hierarchy. SES scores are the average of each country’s income and education ranking and are reported as percentile rankings ranging from 1-99. As such, they can be interpreted similarly to other percentile rankings, such has high school standardized test scores. If country A has an SES score of 55, for example, it indicates that 55 percent of the world’s people live in a country with a lower average income and education ranking than country A. ISO alpha and numeric country codes are included to allow users to merge these data with other variables, such as those found in the World Bank’s World Development Indicators Database and the United Nations Common Database.

    See here for a working example of how the data might be used to better understand how the world came to look the way it does, at least in terms of status position of countries.

    VARIABLE DESCRIPTIONS: UNID: ISO numeric country code (used by the United Nations) WBID: ISO alpha country code (used by the World Bank) SES: Socioeconomic status score (percentile) based on GDP per capita and educational attainment (n=174) country: Short country name year: Survey year SES: Socioeconomic status score (1-99) for each of 174 countries gdppc: GDP per capita: Single time-series (imputed) yrseduc: Completed years of education in the adult (15+) population popshare: Total population shares

    DATA SOURCES: The dataset was compiled by Shawn Dorius (sdorius@iastate.edu) from a large number of data sources, listed below. GDP per Capita: 1. Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. Maddison population data in 000s; GDP & GDP per capita data in (1990 Geary-Khamis dollars, PPPs of currencies and average prices of commodities). Maddison data collected from: http://www.ggdc.net/MADDISON/Historical_Statistics/horizontal-file_02-2010.xls. 2. World Development Indicators Database Years of Education 1. Morrisson and Murtin.2009. 'The Century of Education'. Journal of Human Capital(3)1:1-42. Data downloaded from http://www.fabricemurtin.com/ 2. Cohen, Daniel & Marcelo Cohen. 2007. 'Growth and human capital: Good data, good results' Journal of economic growth 12(1):51-76. Data downloaded from http://soto.iae-csic.org/Data.htm 3. Barro, Robert and Jong-Wha Lee, 2013, "A New Data Set of Educational Attainment in the World, 1950-2010." Journal of Development Economics, vol 104, pp.184-198. Data downloaded from http://www.barrolee.com/ Total Population 1. Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. 13.
    2. United Nations Population Division. 2009.

    --- Original source retains full ownership of the source dataset ---

  17. d

    Data from: Gridded global datasets for Gross Domestic Product and Human...

    • datadryad.org
    • search.dataone.org
    • +2more
    zip
    Updated Jan 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matti Kummu; Maija Taka; Joseph H. A. Guillaume (2019). Gridded global datasets for Gross Domestic Product and Human Development Index over 1990-2015 [Dataset]. http://doi.org/10.5061/dryad.dk1j0
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 10, 2019
    Dataset provided by
    Dryad
    Authors
    Matti Kummu; Maija Taka; Joseph H. A. Guillaume
    Time period covered
    May 10, 2017
    Area covered
    Global, Global (30 arc-minute resolution)
    Description

    Administrative unitsRepresents the administrative units used for GDP per capita (PPP) and HDI data products. National administrative units have id 1-999, sub-national ones 1001-admin_areas_GDP_HDI.ncGDP_per_capita_PPP_1990_2015The GDP per capita (PPP) dataset represents average gross domestic production per capita in a given administrative area unit. GDP is given in 2011 international US dollars. Gap-filled sub-national data were used, supplemented by national data where necessary. Datagaps were filled by using national temporal pattern. Dataset has global extent at 5 arc-min resolution for the 26-year period of 1990-2015. Detail description is given in a linked article and metadata is provided as an attribute in the NetCDF file itself.GDP_PPP_1990_2015_5arcminThis global dataset represents the gross domestic production (GDP) of each grid cell. GDP is given in 2011 international US dollars. The data is derived from GDP per capita (PPP) which is multiplied by gridded population data HYDE...

  18. Victoria 2 (the game) Economy Data

    • kaggle.com
    Updated Nov 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Derrek Devon (2023). Victoria 2 (the game) Economy Data [Dataset]. https://www.kaggle.com/datasets/derrekdevon/victoria-2-the-game-economy-data/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 18, 2023
    Dataset provided by
    Kaggle
    Authors
    Derrek Devon
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    I have been a fan of Paradox Interactive's Victoria 2 for a while now. This dataset is based off my most recent campaign playing as the small nation of Biafra in Western Africa. Using a software I found on the web, I was able to extract much of the data however, I really wish I were able to get more data. That game has loads of interesting data trapped in it. Hopefully, in the nearest future, a software can be built to help me get that done.

    The data, I think, is fairly comprehensive. It maps out a 38 year period between 1993 and 2030, tracking each countries gdp, GDP per Capita, unemployment rate e.t.c.

    Note: Keen observers will notice that 4 of the largest economies in the world seem to nose dive around the year 2023-2024. This is because, within the game, India nukes The United States, France, and Great Britain in a great war. All three countries retaliate with their own nukes, thereby reducing all 4 countries to economic obscurity within a matter of 5 years. It was indeed a scary thing to watch. Nearly 700 million people lost their lives due to the fallout.

    Edit: You will find a lot of zero's in the gdp data. This is not because those countries gdp were actually 0. For the vast majority of countries with 0 as their GDP, they simply did not exist officially that year. For instance Ambazonia has many years of 0 GDP data. This is because Ambazonia did not exist as a country all those years. Also, within the game there was never any country with a population of 0. Therefore, any country with a population of 0 in our dataset did not exist.

  19. o

    Economic Fitness - Dataset - Data Catalog Armenia

    • data.opendata.am
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Economic Fitness - Dataset - Data Catalog Armenia [Dataset]. https://data.opendata.am/dataset/dcwb0041694
    Explore at:
    Dataset updated
    Jul 7, 2023
    Area covered
    Armenia
    Description

    Economic Fitness (EF) is both a measure of a country’s diversification and ability to produce complex goods on a globally competitive basis. Countries with the highest levels of EF have capabilities to produce a diverse portfolio of products, ability to upgrade into ever-increasing complex goods, tend to have more predictable long-term growth, and to attain good competitive position relative to other countries. Countries with low EF levels tend to suffer from poverty, low capabilities, less predictable growth, low value-addition, and trouble upgrading and diversifying faster than other countries. The comparison of the Fitness to the GDP reveals hidden information for the development and the growth of the countries.

  20. e

    Primary Energy Demand and GDP per Capita for most Countries of the World,...

    • b2find.eudat.eu
    Updated May 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Primary Energy Demand and GDP per Capita for most Countries of the World, 1950-2014 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/7007119a-f78b-5907-8b40-1d59f538f6cc
    Explore at:
    Dataset updated
    May 3, 2023
    Area covered
    World
    Description

    The dataset reports annual estimates for primary energy per capita and GDP per capita for 185 countries for 1950 through 2014. The data allows investigating long-term joint evolution of economic activity and energy demand, which is important for both understanding the past energy needs of economic development, and forming useful baselines for scenario development, especially for integrated assessment modeling around climate change mitigation. Other commonly used datasets only go back to 1971 (International Energy Agency) for worldwide coverage and so extending the data back to 1950 allows analyzing a longer time period than before. The dataset also includes more individual country time series than IEA data thanks to data from the UN. 185 Countries as well as Czechoslovakia, East and West Pakistan, Soviet Union, Yugoslavia prior to their dissolution. Covers upward of 99% of global population after 1970. Data were downloaded from online repositories and then cleaned, harmonized and merged.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2011). GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gdp

GDP by Country Dataset

GDP by Country Dataset (2025)

Explore at:
255 scholarly articles cite this dataset (View in Google Scholar)
csv, json, xml, excelAvailable download formats
Dataset updated
Jun 29, 2011
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
2025
Area covered
World
Description

This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

Search
Clear search
Close search
Google apps
Main menu