84 datasets found
  1. T

    GDP by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 29, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2011). GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gdp
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jun 29, 2011
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  2. GDP per capita all countries

    • kaggle.com
    Updated Apr 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nitisha (2020). GDP per capita all countries [Dataset]. https://www.kaggle.com/datasets/nitishabharathi/gdp-per-capita-all-countries/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 28, 2020
    Dataset provided by
    Kaggle
    Authors
    Nitisha
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Gross Domestic Product (GDP) is the monetary value of all finished goods and services made within a country during a specific period. GDP provides an economic snapshot of a country, used to estimate the size of an economy and growth rate. This dataset contains the GDP based on Purchasing Power Parity (PPP).

    GDP comparisons using PPP are arguably more useful than those using nominal GDP when assessing a nation's domestic market because PPP takes into account the relative cost of local goods, services and inflation rates of the country, rather than using international market exchange rates which may distort the real differences in per capita income

    Acknowledgement

    Thanks to World Databank

  3. T

    GDP by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 30, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=america
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    May 30, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  4. T

    GDP by Country in ASIA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). GDP by Country in ASIA [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=asia
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Asia
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  5. m

    Macro-economy Data

    • data.mendeley.com
    • narcis.nl
    Updated Dec 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elia Zakchona (2020). Macro-economy Data [Dataset]. http://doi.org/10.17632/dt628xp7dy.1
    Explore at:
    Dataset updated
    Dec 3, 2020
    Authors
    Elia Zakchona
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data is used for article of macroeconomic of some Asian countries in long period which explained about four Asian countries, such as Indonesia, Malaysia, Singapore, and South Korea. This data has taken from World Bank Development Indicators (WDI) database and is formed by Vector Auto Regression (VAR) model, then empirical result is executed by Granger causality model on E-views 11 program to gauge the relationship between gross domestic product, exchange rate, inflation rate, foreign direct investment, net export, government expenditures, unemployment rate, and savings. The results showed that most of gross domestic product of sample and other macro-economy variables have not causality relationship.

  6. M

    Data from: U.S. GDP

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). U.S. GDP [Dataset]. https://www.macrotrends.net/global-metrics/countries/usa/united-states/gdp-gross-domestic-product
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1960 - Dec 31, 2023
    Area covered
    United States
    Description

    Historical chart and dataset showing U.S. GDP by year from 1960 to 2023.

  7. w

    Fiscal Monitor (FM)

    • data360.worldbank.org
    • db.nomics.world
    Updated Apr 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Fiscal Monitor (FM) [Dataset]. https://data360.worldbank.org/en/dataset/IMF_FM
    Explore at:
    Dataset updated
    Apr 18, 2025
    Time period covered
    1991 - 2029
    Description

    The Fiscal Monitor surveys and analyzes the latest public finance developments, it updates fiscal implications of the crisis and medium-term fiscal projections, and assesses policies to put public finances on a sustainable footing.

    Country-specific data and projections for key fiscal variables are based on the April 2020 World Economic Outlook database, unless indicated otherwise, and compiled by the IMF staff. Historical data and projections are based on information gathered by IMF country desk officers in the context of their missions and through their ongoing analysis of the evolving situation in each country; they are updated on a continual basis as more information becomes available. Structural breaks in data may be adjusted to produce smooth series through splicing and other techniques. IMF staff estimates serve as proxies when complete information is unavailable. As a result, Fiscal Monitor data can differ from official data in other sources, including the IMF's International Financial Statistics.

    The country classification in the Fiscal Monitor divides the world into three major groups: 35 advanced economies, 40 emerging market and middle-income economies, and 40 low-income developing countries. The seven largest advanced economies as measured by GDP (Canada, France, Germany, Italy, Japan, United Kingdom, United States) constitute the subgroup of major advanced economies, often referred to as the Group of Seven (G7). The members of the euro area are also distinguished as a subgroup. Composite data shown in the tables for the euro area cover the current members for all years, even though the membership has increased over time. Data for most European Union member countries have been revised following the adoption of the new European System of National and Regional Accounts (ESA 2010). The low-income developing countries (LIDCs) are countries that have per capita income levels below a certain threshold (currently set at $2,700 in 2016 as measured by the World Bank's Atlas method), structural features consistent with limited development and structural transformation, and external financial linkages insufficiently close to be widely seen as emerging market economies. Zimbabwe is included in the group. Emerging market and middle-income economies include those not classified as advanced economies or low-income developing countries. See Table A, "Economy Groupings," for more details.

    Most fiscal data refer to the general government for advanced economies, while for emerging markets and developing economies, data often refer to the central government or budgetary central government only (for specific details, see Tables B-D). All fiscal data refer to the calendar years, except in the cases of Bangladesh, Egypt, Ethiopia, Haiti, Hong Kong Special Administrative Region, India, the Islamic Republic of Iran, Myanmar, Nepal, Pakistan, Singapore, and Thailand, for which they refer to the fiscal year.

    Composite data for country groups are weighted averages of individual-country data, unless otherwise specified. Data are weighted by annual nominal GDP converted to U.S. dollars at average market exchange rates as a share of the group GDP.

    In many countries, fiscal data follow the IMF's Government Finance Statistics Manual 2014. The overall fiscal balance refers to net lending (+) and borrowing ("") of the general government. In some cases, however, the overall balance refers to total revenue and grants minus total expenditure and net lending.

    The fiscal gross and net debt data reported in the Fiscal Monitor are drawn from official data sources and IMF staff estimates. While attempts are made to align gross and net debt data with the definitions in the IMF's Government Finance Statistics Manual, as a result of data limitations or specific country circumstances, these data can sometimes deviate from the formal definitions.

  8. T

    LEADING ECONOMIC INDEX by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). LEADING ECONOMIC INDEX by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/leading-economic-index
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    May 26, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for LEADING ECONOMIC INDEX reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  9. International Macroeconomic Data Set

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +1more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Economic Research Service, Department of Agriculture (2025). International Macroeconomic Data Set [Dataset]. https://catalog.data.gov/dataset/international-macroeconomic-data-set
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Economic Research Servicehttp://www.ers.usda.gov/
    Description

    The International Macroeconomic Data Set provides data from 1969 through 2030 for real (adjusted for inflation) gross domestic product (GDP), population, real exchange rates, and other variables for the 190 countries and 34 regions that are most important for U.S. agricultural trade. The data presented here are a key component of the USDA Baseline projections process, and can be used as a benchmark for analyzing the impacts of U.S. and global macroeconomic shocks.

  10. Richness index (2010) - ClimAfrica WP4

    • data.amerigeoss.org
    • data.apps.fao.org
    http, pdf, png, wms +1
    Updated Feb 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Richness index (2010) - ClimAfrica WP4 [Dataset]. https://data.amerigeoss.org/dataset/5d112b2b-9793-4484-808c-4a6172c5d4d0
    Explore at:
    png, pdf, http, zip, wmsAvailable download formats
    Dataset updated
    Feb 6, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The “richness index” represents the level of economical wellbeing a country certain area in 2010. Regions with higher income per capita and low poverty rate and more access to market are wealthier and are therefore better able to prepare for and respond to adversity. The index results from the second cluster of the Principal Component Analysis preformed among 9 potential variables. The analysis identifies four dominant variables, namely “GDPppp per capita”, “agriculture share GDP per agriculture sector worker”, “poverty rate” and “market accessibility”, assigning weights of 0.33, 0.26, 0.25 and 0.16, respectively. Before to perform the analysis all variables were log transformed (except the “agriculture share GDP per agriculture sector worker”) to shorten the extreme variation and then were score-standardized (converted to distribution with average of 0 and standard deviation of 1; inverse method was applied for the “poverty rate” and “market accessibility”) in order to be comparable. The 0.5 arc-minute grid total GDPppp is based on the night time light satellite imagery of NOAA (see Ghosh, T., Powell, R., Elvidge, C. D., Baugh, K. E., Sutton, P. C., & Anderson, S. (2010).Shedding light on the global distribution of economic activity. The Open Geography Journal (3), 148-161) and adjusted to national total as recorded by International Monetary Fund for 2010. The “GDPppp per capita” was calculated dividing the total GDPppp by the population in each pixel. Further, a focal statistic ran to determine mean values within 10 km. This had a smoothing effect and represents some of the extended influence of intense economic activity for the local people. Country based data for “agriculture share GDP per agriculture sector worker” were calculated from GDPppp (data from International Monetary Fund) fraction from agriculture activity (measured by World Bank) divided by the number of worker in the agriculture sector (data from World Bank). The tabular data represents the average of the period 2008-2012 and were linked by country unit to the national boundaries shapefile (FAO/GAUL) and then converted into raster format (resolution 0.5 arc-minute). The first administrative level data for the “poverty rate” were estimated by NOAA for 2003 using nighttime lights satellite imagery. Tabular data were linked by first administrative unit to the first administrative boundaries shapefile (FAO/GAUL) and then converted into raster format (resolution 0.5 arc-minute). The 0.5 arc-minute grid “market accessibility” measures the travel distance in minutes to large cities (with population greater than 50,000 people). This dataset was developed by the European Commission and the World Bank to represent access to markets, schools, hospitals, etc.. The dataset capture the connectivity and the concentration of economic activity (in 2000). Markets may be important for a variety of reasons, including their abilities to spread risk and increase incomes. Markets are a means of linking people both spatially and over time. That is, they allow shocks (and risks) to be spread over wider areas. In particular, markets should make households less vulnerable to (localized) covariate shocks. This dataset has been produced in the framework of the “Climate change predictions in Sub-Saharan Africa: impacts and adaptations (ClimAfrica)” project, Work Package 4 (WP4). More information on ClimAfrica project is provided in the Supplemental Information section of this metadata.

    Data publication: 2014-05-15

    Supplemental Information:

    ClimAfrica was an international project funded by European Commission under the 7th Framework Programme (FP7) for the period 2010-2014. The ClimAfrica consortium was formed by 18 institutions, 9 from Europe, 8 from Africa, and the Food and Agriculture Organization of United Nations (FAO).

    ClimAfrica was conceived to respond to the urgent international need for the most appropriate and up-to-date tools and methodologies to better understand and predict climate change, assess its impact on African ecosystems and population, and develop the correct adaptation strategies. Africa is probably the most vulnerable continent to climate change and climate variability and shows diverse range of agro-ecological and geographical features. Thus the impacts of climate change can be very high and can greatly differ across the continent, and even within countries.

    The project focused on the following specific objectives:

    1. Develop improved climate predictions on seasonal to decadal climatic scales, especially relevant to SSA;

    2. Assess climate impacts in key sectors of SSA livelihood and economy, especially water resources and agriculture;

    3. Evaluate the vulnerability of ecosystems and civil population to inter-annual variations and longer trends (10 years) in climate;

    4. Suggest and analyse new suited adaptation strategies, focused on local needs;

    5. Develop a new concept of 10 years monitoring and forecasting warning system, useful for food security, risk management and civil protection in SSA;

    6. Analyse the economic impacts of climate change on agriculture and water resources in SSA and the cost-effectiveness of potential adaptation measures.

    The work of ClimAfrica project was broken down into the following work packages (WPs) closely connected. All the activities described in WP1, WP2, WP3, WP4, WP5 consider the domain of the entire South Sahara Africa region. Only WP6 has a country specific (watershed) spatial scale where models validation and detailed processes analysis are carried out.

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Selvaraju Ramasamy

    Resource constraints:

    copyright

    Online resources:

    Richness index (2010)

    Project deliverable D4.1 - Scenarios of major production systems in Africa

    Climafrica Website - Climate Change Predictions In Sub-Saharan Africa: Impacts And Adaptations

  11. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  12. G

    Political stability by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Apr 7, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2016). Political stability by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/wb_political_stability/
    Explore at:
    xml, excel, csvAvailable download formats
    Dataset updated
    Apr 7, 2016
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1996 - Dec 31, 2023
    Area covered
    World, World
    Description

    The average for 2023 based on 193 countries was -0.07 points. The highest value was in Liechtenstein: 1.61 points and the lowest value was in Syria: -2.75 points. The indicator is available from 1996 to 2023. Below is a chart for all countries where data are available.

  13. a

    COVID-19 and the potential impacts on employment data tables

    • hub.arcgis.com
    • opendata-nzta.opendata.arcgis.com
    Updated Aug 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Waka Kotahi (2020). COVID-19 and the potential impacts on employment data tables [Dataset]. https://hub.arcgis.com/datasets/9703b6055b7a404582884f33efc4cf69
    Explore at:
    Dataset updated
    Aug 26, 2020
    Dataset authored and provided by
    Waka Kotahi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This 6MB download is a zip file containing 5 pdf documents and 2 xlsx spreadsheets. Presentation on COVID-19 and the potential impacts on employment

    May 2020Waka Kotahi wants to better understand the potential implications of the COVID-19 downturn on the land transport system, particularly the potential impacts on regional economies and communities.

    To do this, in May 2020 Waka Kotahi commissioned Martin Jenkins and Infometrics to consider the potential impacts of COVID-19 on New Zealand’s economy and demographics, as these are two key drivers of transport demand. In addition to providing a scan of national and international COVID-19 trends, the research involved modelling the economic impacts of three of the Treasury’s COVID-19 scenarios, to a regional scale, to help us understand where the impacts might be greatest.

    Waka Kotahi studied this modelling by comparing the percentage difference in employment forecasts from the Treasury’s three COVID-19 scenarios compared to the business as usual scenario.

    The source tables from the modelling (Tables 1-40), and the percentage difference in employment forecasts (Tables 41-43), are available as spreadsheets.

    Arataki - potential impacts of COVID-19 Final Report

    Employment modelling - interactive dashboard

    The modelling produced employment forecasts for each region and district over three time periods – 2021, 2025 and 2031. In May 2020, the forecasts for 2021 carried greater certainty as they reflected the impacts of current events, such as border restrictions, reduction in international visitors and students etc. The 2025 and 2031 forecasts were less certain because of the potential for significant shifts in the socio-economic situation over the intervening years. While these later forecasts were useful in helping to understand the relative scale and duration of potential COVID-19 related impacts around the country, they needed to be treated with care recognising the higher levels of uncertainty.

    The May 2020 research suggested that the ‘slow recovery scenario’ (Treasury’s scenario 5) was the most likely due to continuing high levels of uncertainty regarding global efforts to manage the pandemic (and the duration and scale of the resulting economic downturn).

    The updates to Arataki V2 were framed around the ‘Slower Recovery Scenario’, as that scenario remained the most closely aligned with the unfolding impacts of COVID-19 in New Zealand and globally at that time.

    Find out more about Arataki, our 10-year plan for the land transport system

    May 2021The May 2021 update to employment modelling used to inform Arataki Version 2 is now available. Employment modelling dashboard - updated 2021Arataki used the May 2020 information to compare how various regions and industries might be impacted by COVID-19. Almost a year later, it is clear that New Zealand fared better than forecast in May 2020.Waka Kotahi therefore commissioned an update to the projections through a high-level review of:the original projections for 2020/21 against performancethe implications of the most recent global (eg International monetary fund world economic Outlook) and national economic forecasts (eg Treasury half year economic and fiscal update)The treasury updated its scenarios in its December half year fiscal and economic update (HYEFU) and these new scenarios have been used for the revised projections.Considerable uncertainty remains about the potential scale and duration of the COVID-19 downturn, for example with regards to the duration of border restrictions, update of immunisation programmes. The updated analysis provides us with additional information regarding which sectors and parts of the country are likely to be most impacted. We continue to monitor the situation and keep up to date with other cross-Government scenario development and COVID-19 related work. The updated modelling has produced employment forecasts for each region and district over three time periods - 2022, 2025, 2031.The 2022 forecasts carry greater certainty as they reflect the impacts of current events. The 2025 and 2031 forecasts are less certain because of the potential for significant shifts over that time.

    Data reuse caveats: as per license.

    Additionally, please read / use this data in conjunction with the Infometrics and Martin Jenkins reports, to understand the uncertainties and assumptions involved in modelling the potential impacts of COVID-19.

    COVID-19’s effect on industry and regional economic outcomes for NZ Transport Agency [PDF 620 KB]

    Data quality statement: while the modelling undertaken is high quality, it represents two point-in-time analyses undertaken during a period of considerable uncertainty. This uncertainty comes from several factors relating to the COVID-19 pandemic, including:

    a lack of clarity about the size of the global downturn and how quickly the international economy might recover differing views about the ability of the New Zealand economy to bounce back from the significant job losses that are occurring and how much of a structural change in the economy is required the possibility of a further wave of COVID-19 cases within New Zealand that might require a return to Alert Levels 3 or 4.

    While high levels of uncertainty remain around the scale of impacts from the pandemic, particularly in coming years, the modelling is useful in indicating the direction of travel and the relative scale of impacts in different parts of the country.

    Data quality caveats: as noted above, there is considerable uncertainty about the potential scale and duration of the COVID-19 downturn. Please treat the specific results of the modelling carefully, particularly in the forecasts to later years (2025, 2031), given the potential for significant shifts in New Zealand's socio-economic situation before then.

    As such, please use the modelling results as a guide to the potential scale of the impacts of the downturn in different locations, rather than as a precise assessment of impacts over the coming decade.

  14. A

    ‘GapMinder - Income Inequality’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘GapMinder - Income Inequality’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-gapminder-income-inequality-7f0b/latest
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘GapMinder - Income Inequality’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/psterk/income-inequality on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Content

    This analysis focuses on income inequailty as measured by the Gini Index* and its association with economic metrics such as GDP per capita, investments as a % of GDP, and tax revenue as a % of GDP. One polical metric, EIU democracy index, is also included.

    The data is for years 2006 - 2016

    This investigation can be considered a starting point for complex questions such as:

    1. Is a higher tax revenue as a % of GDP associated with less income inequality?
    2. Is a higher EIU democracy index associated with less income inequality?
    3. Is higher GDP per capita associated with less income inequality?
    4. Is higher investments as a % of GDP associated with less income inequality?

    This analysis uses the gapminder dataset from the Gapminder Foundation. The Gapminder Foundation is a non-profit venture registered in Stockholm, Sweden, that promotes sustainable global development and achievement of the United Nations Millennium Development Goals by increased use and understanding of statistics and other information about social, economic and environmental development at local, national and global levels.

    *The Gini Index is a measure of statistical dispersion intended to represent the income or wealth distribution of a nation's residents, and is the most commonly used measurement of inequality. It was developed by the Italian statistician and sociologist Corrado Gini and published in his 1912 paper Variability and Mutability.

    The dataset contains data from the following GapMinder datasets:

    EIU Democracy Index:

    "This democracy index is using the data from the Economist Inteligence Unit to express the quality of democracies as a number between 0 and 100. It's based on 60 different aspects of societies that are relevant to democracy universal suffrage for all adults, voter participation, perception of human rights protection and freedom to form organizations and parties. The democracy index is calculated from the 60 indicators, divided into five ""sub indexes"", which are:

    1. Electoral pluralism index;
    2. Government index;
    3. Political participation indexm;
    4. Political culture index;
    5. Civil liberty index.

    The sub-indexes are based on the sum of scores on roughly 12 indicators per sub-index, converted into a score between 0 and 100. (The Economist publishes the index with a scale from 0 to 10, but Gapminder has converted it to 0 to 100 to make it easier to communicate as a percentage.)" https://docs.google.com/spreadsheets/d/1d0noZrwAWxNBTDSfDgG06_aLGWUz4R6fgDhRaUZbDzE/edit#gid=935776888

    Income: GDP per capita, constant PPP dollars

    GDP per capita measures the value of everything produced in a country during a year, divided by the number of people. The unit is in international dollars, fixed 2011 prices. The data is adjusted for inflation and differences in the cost of living between countries, so-called PPP dollars. The end of the time series, between 1990 and 2016, uses the latest GDP per capita data from the World Bank, from their World Development Indicators. To go back in time before the World Bank series starts in 1990, we have used several sources, such as Angus Maddison. https://www.gapminder.org/data/documentation/gd001/

    Investments (% of GDP)

    Capital formation is a term used to describe the net capital accumulation during an accounting period for a particular country. The term refers to additions of capital goods, such as equipment, tools, transportation assets, and electricity. Countries need capital goods to replace the older ones that are used to produce goods and services. If a country cannot replace capital goods as they reach the end of their useful lives, production declines. Generally, the higher the capital formation of an economy, the faster an economy can grow its aggregate income.

    Tax revenue (% of GDP)

    refers to compulsory transfers to the central governement for public purposes. Does not include social security. https://data.worldbank.org/indicator/GC.TAX.TOTL.GD.ZS

    Context

    Gapminder is an independent Swedish foundation with no political, religious or economic affiliations. Gapminder is a fact tank, not a think tank. Gapminder fights devastating misconceptions about global development. Gapminder produces free teaching resources making the world understandable based on reliable statistics. Gapminder promotes a fact-based worldview everyone can understand. Gapminder collaborates with universities, UN, public agencies and non-governmental organizations. All Gapminder activities are governed by the board. We do not award grants. Gapminder Foundation is registered at Stockholm County Administration Board. Our constitution can be found here.

    Acknowledgements

    Thanks to gapminder.org for organizing the above datasets.

    Inspiration

    Below are some research questions associated with the data and some initial conclusions:

    Research Question 1 - Is Income Inequality Getting Worse or Better in the Last 10 Years?

    Answer:

    Yes, it is getting better, improving from 38.7 to 37.3

    On a continent basis, all were either declining or mostly flat, except for Africa.

    Research Question 2 - What Top 10 Countries Have the Lowest and Highest Income Inequality?

    Answer:

    Lowest: Slovenia, Ukraine, Czech Republic, Norway, Slovak Republic, Denmark, Kazakhstan, Finland, Belarus,Kyrgyz Republic

    Highest: Colombia, Lesotho, Honduras, Bolivia, Central African Republic, Zambia, Suriname, Namibia, Botswana, South Africa

    Research Question 3 Is a higher tax revenue as a % of GDP associated with less income inequality?

    Answer: No

    Research Question 4 - Is Higher Income Per Person - GDP Per Capita associated with less income inequality?

    Answer: No, but weak negative correlation.

    Research Question 5 - Is Higher Investment as % GDP associated with less income inequality?

    Answer: No

    Research Question 6 - Is Higher EIU Democracy Index associated with less income inequality?

    Answer: No, but weak negative correlation.

    The above results suggest that there are other drivers for the overall reduction in income inequality. Futher analysis of additional factors should be undertaken.

    --- Original source retains full ownership of the source dataset ---

  15. T

    GDP by Country in AFRICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). GDP by Country in AFRICA [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=africa
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Africa
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  16. T

    GDP FROM MINING by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Feb 3, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2016). GDP FROM MINING by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gdp-from-mining
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Feb 3, 2016
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GDP FROM MINING reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  17. d

    Import/Export Trade Data in North America

    • datarade.ai
    Updated Mar 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2020). Import/Export Trade Data in North America [Dataset]. https://datarade.ai/data-products/import-export-trade-data-in-north-america-techsalerator
    Explore at:
    .json, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Mar 13, 2020
    Dataset authored and provided by
    Techsalerator
    Area covered
    El Salvador, Nicaragua, Honduras, Bermuda, Greenland, Mexico, Costa Rica, Saint Pierre and Miquelon, Panama, Belize, North America
    Description

    Techsalerator’s Import/Export Trade Data for North America

    Techsalerator’s Import/Export Trade Data for North America delivers an exhaustive and nuanced analysis of trade activities across the North American continent. This extensive dataset provides detailed insights into import and export transactions involving companies across various sectors within North America.

    Coverage Across All North American Countries

    The dataset encompasses all key countries within North America, including:

    1. United States

    The dataset provides detailed trade information for the United States, the largest economy in the region. It includes extensive data on trade volumes, product categories, and the key trading partners of the U.S. 2. Canada

    Data for Canada covers a wide range of trade activities, including import and export transactions, product classifications, and trade relationships with major global and regional partners. 3. Mexico

    Comprehensive data for Mexico includes detailed records on its trade activities, including exports and imports, key sectors, and trade agreements affecting its trade dynamics. 4. Central American Countries:

    Belize Costa Rica El Salvador Guatemala Honduras Nicaragua Panama The dataset covers these countries with information on their trade flows, key products, and trade relations with North American and international partners. 5. Caribbean Countries:

    Bahamas Barbados Cuba Dominica Dominican Republic Grenada Haiti Jamaica Saint Kitts and Nevis Saint Lucia Saint Vincent and the Grenadines Trinidad and Tobago Trade data for these Caribbean nations includes detailed transaction records, sector-specific trade information, and their interactions with North American trade partners. Comprehensive Data Features

    Transaction Details: The dataset includes precise details on each trade transaction, such as product descriptions, quantities, values, and dates. This allows for an accurate understanding of trade flows and patterns across North America.

    Company Information: It provides data on companies involved in trade, including names, locations, and industry sectors, enabling targeted business analysis and competitive intelligence.

    Categorization: Transactions are categorized by industry sectors, product types, and trade partners, offering insights into market dynamics and sector-specific trends within North America.

    Trade Trends: Historical data helps users analyze trends over time, identify emerging markets, and assess the impact of economic or political events on trade flows in the region.

    Geographical Insights: The data offers insights into regional trade flows and cross-border dynamics between North American countries and their global trade partners, including significant international trade relationships.

    Regulatory and Compliance Data: Information on trade regulations, tariffs, and compliance requirements is included, helping businesses navigate the complex regulatory environments within North America.

    Applications and Benefits

    Market Research: Companies can leverage the data to discover new market opportunities, analyze competitive landscapes, and understand demand for specific products across North American countries.

    Strategic Planning: Insights from the data enable companies to refine trade strategies, optimize supply chains, and manage risks associated with international trade in North America.

    Economic Analysis: Analysts and policymakers can monitor economic performance, evaluate trade balances, and make informed decisions on trade policies and economic development strategies.

    Investment Decisions: Investors can assess trade trends and market potentials to make informed decisions about investments in North America's diverse economies.

    Techsalerator’s Import/Export Trade Data for North America offers a vital resource for organizations involved in international trade, providing a thorough, reliable, and detailed view of trade activities across the continent.

  18. A

    ‘Life Expectancy vs GDP, 1950-2018’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Life Expectancy vs GDP, 1950-2018’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-life-expectancy-vs-gdp-1950-2018-00c5/88f28a02/?iid=004-308&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Life Expectancy vs GDP, 1950-2018’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/luxoloshilofunde/life-expectancy-vs-gdp-19502018 on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Life expectancy at birth is defined as the average number of years that a newborn could expect to live if he or she were to pass through life subject to the age-specific mortality rates of a given period. The years are from 1950 to 2018.

    Content

    For regional- and global-level data pre-1950, data from a study by Riley was used, which draws from over 700 sources to estimate life expectancy at birth from 1800 to 2001.

    Riley estimated life expectancy before 1800, which he calls "the pre-health transition period". "Health transitions began in different countries in different periods, as early as the 1770s in Denmark and as late as the 1970s in some countries of sub-Saharan Africa". As such, for the sake of consistency, we have assigned the period before the health transition to the year 1770. "The life expectancy values employed are averages of estimates for the period before the beginning of the transitions for countries within that region. ... This period has presumably the weakest basis, the largest margin of error, and the simplest method of deriving an estimate."

    For country-level data pre-1950, Clio Infra's dataset was used, compiled by Zijdeman and Ribeira da Silva (2015).

    For country-, regional- and global-level data post-1950, data published by the United Nations Population Division was used, since they are updated every year. This is possible because Riley writes that "for 1950-2001, I have drawn life expectancy estimates chiefly from various sources provided by the United Nations, the World Bank’s World Development Indicators, and the Human Mortality Database".

    For the Americas from 1950-2015, the population-weighted average of Northern America and Latin America and the Caribbean was taken, using UN Population Division estimates of population size.

    Acknowledgements

    Life expectancy:

    Data publisher's source: https://www.lifetable.de/RileyBib.pdf Data published by: James C. Riley (2005) – Estimates of Regional and Global Life Expectancy, 1800–2001. Issue Population and Development Review. Population and Development Review. Volume 31, Issue 3, pages 537–543, September 2005., Zijdeman, Richard; Ribeira da Silva, Filipa, 2015, "Life Expectancy at Birth (Total)", http://hdl.handle.net/10622/LKYT53, IISH Dataverse, V1, and UN Population Division (2019) Link: https://datasets.socialhistory.org/dataset.xhtml?persistentId=hdl:10622/LKYT53, http://onlinelibrary.wiley.com/doi/10.1111/j.1728-4457.2005.00083.x/epdf, https://population.un.org/wpp/Download/Standard/Population/ Dataset: https://ourworldindata.org/life-expectancy

    GDP per capita:

    Data publisher's source: The Maddison Project Database is based on the work of many researchers that have produced estimates of economic growth for individual countries. Data published by: Bolt, Jutta and Jan Luiten van Zanden (2020), “Maddison style estimates of the evolution of the world economy. A new 2020 update”. Link: https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2020 Dataset: https://ourworldindata.org/life-expectancy

    Inspiration

    The life expectancy vs GDP per capita analysis.

    --- Original source retains full ownership of the source dataset ---

  19. F

    Gross Domestic Product

    • fred.stlouisfed.org
    • trends.sourcemedium.com
    json
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Gross Domestic Product [Dataset]. https://fred.stlouisfed.org/series/GDP
    Explore at:
    jsonAvailable download formats
    Dataset updated
    May 29, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    View economic output, reported as the nominal value of all new goods and services produced by labor and property located in the U.S.

  20. Remittances - Inward and Outward Flows (World Bank)

    • sdgstoday-sdsn.hub.arcgis.com
    Updated Nov 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sustainable Development Solutions Network (2022). Remittances - Inward and Outward Flows (World Bank) [Dataset]. https://sdgstoday-sdsn.hub.arcgis.com/datasets/remittances-inward-and-outward-flows-world-bank
    Explore at:
    Dataset updated
    Nov 2, 2022
    Dataset authored and provided by
    Sustainable Development Solutions Networkhttps://www.unsdsn.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dashboard is part of SDGs Today. Please see sdgstoday.orgInternational migration has significant implications for countries’ economic growth, and remittances are an important factor on the economy. Typically sent by migrant workers to family and friends in their home countries, remittances are transfers of money that are often a large source of income for recipients. Remittances are comparable to international aid and represent one of the largest financial flows to developing countries, impacting both economic development and poverty alleviation. Compiled by the World Bank, this dataset measures officially-recorded remittance inflows (remittances received) per country in 2020. In 2020, the global remittance inflow was $666,223,000,000. Data is based off of the International Monetary Fund’s (IMF) Balance of Payment Statistics, which are updated annually. Remittance amounts are calculated as the sum of personal transfers, compensation of employees, and migrants’ transfers from IMF data. For some countries, remittance figures may come from central banks or other official sources.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2011). GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gdp

GDP by Country Dataset

GDP by Country Dataset (2025)

Explore at:
268 scholarly articles cite this dataset (View in Google Scholar)
csv, json, xml, excelAvailable download formats
Dataset updated
Jun 29, 2011
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
2025
Area covered
World
Description

This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

Search
Clear search
Close search
Google apps
Main menu