Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Associated with manuscript titled: Fifty Muslim-majority countries have fewer COVID-19 cases and deaths than the 50 richest non-Muslim countriesThe objective of this research was to determine the difference in the total number of COVID-19 cases and deaths between Muslim-majority and non-Muslim countries, and investigate reasons for the disparities. Methods: The 50 Muslim-majority countries had more than 50.0% Muslims with an average of 87.5%. The non-Muslim country sample consisted of 50 countries with the highest GDP while omitting any Muslim-majority countries listed. The non-Muslim countries’ average percentage of Muslims was 4.7%. Data pulled on September 18, 2020 included the percentage of Muslim population per country by World Population Review15 and GDP per country, population count, and total number of COVID-19 cases and deaths by Worldometers.16 The data set was transferred via an Excel spreadsheet on September 23, 2020 and analyzed. To measure COVID-19’s incidence in the countries, three different Average Treatment Methods (ATE) were used to validate the results. Results published as a preprint at https://doi.org/10.31235/osf.io/84zq5(15) Muslim Majority Countries 2020 [Internet]. Walnut (CA): World Population Review. 2020- [Cited 2020 Sept 28]. Available from: http://worldpopulationreview.com/country-rankings/muslim-majority-countries (16) Worldometers.info. Worldometer. Dover (DE): Worldometer; 2020 [cited 2020 Sept 28]. Available from: http://worldometers.info
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The latest population figures produced by the Office for National Statistics (ONS) on 28 June 2018 show that an estimated 534,800 people live in Bradford District – an increase of 2,300 people (0.4%) since the previous year.
Bradford District is the fifth largest metropolitan district (in terms of population) in England, after Birmingham, Leeds, Sheffield and Manchester although the District’s population growth is lower than other major cities.
The increase in the District’s population is largely due to “natural change”- there have been around 3,300 more births than deaths, although this has been balanced by a larger number of people leaving Bradford to live in other parts of the UK than coming to live here and a lower number of international migrants. In 2016/17 the net internal migration was -2,700 and the net international migration was 1,700.
A large proportion of Bradford’s population is dominated by the younger age groups. More than one-quarter (29%) of the District’s population is aged less than 20 and nearly seven in ten people are aged less than 50. Bradford has the highest percentage of the under 16 population in England after the London Borough of Barking and Dagenham, Slough Borough Council and Luton Borough Council.
The population of Bradford is ethnically diverse. The largest proportion of the district’s population (63.9%) identifies themselves as White British. The district has the largest proportion of people of Pakistani ethnic origin (20.3%) in England.
The largest religious group in Bradford is Christian (45.9% of the population). Nearly one quarter of the population (24.7%) are Muslim. Just over one fifth of the district’s population (20.7%) stated that they had no religion.
There are 216,813 households in the Bradford district. Most households own their own home (29.3% outright and 35.7% with a mortgage). The percentage of privately rented households is 18.1%. 29.6% of households were single person households.
Information from the Annual Population Survey in December 2017 found that Bradford has 228,100 people aged 16-64 in employment. At 68% this is significantly lower than the national rate (74.9%). 91,100 (around 1 in 3 people) aged 16-64, are not in work. The claimant count rate is 2.9% which is higher than the regional and national averages.
Skill levels are improving with 26.5% of 16 to 74 year olds educated to degree level. 18% of the district’s employed residents work in retail/wholesale. The percentage of people working in manufacturing has continued to decrease from 13.4% in 2009 to 11.9% in 2016. This is still higher than the average for Great Britain (8.1%).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India Census: Population: by Religion: Muslim: Urban data was reported at 68,740,419.000 Person in 2011. This records an increase from the previous number of 49,393,496.000 Person for 2001. India Census: Population: by Religion: Muslim: Urban data is updated yearly, averaging 59,066,957.500 Person from Mar 2001 (Median) to 2011, with 2 observations. The data reached an all-time high of 68,740,419.000 Person in 2011 and a record low of 49,393,496.000 Person in 2001. India Census: Population: by Religion: Muslim: Urban data remains active status in CEIC and is reported by Census of India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE001: Census: Population: by Religion.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IndQNER
IndQNER is a Named Entity Recognition (NER) benchmark dataset that was created by manually annotating 8 chapters in the Indonesian translation of the Quran. The annotation was performed using a web-based text annotation tool, Tagtog, and the BIO (Beginning-Inside-Outside) tagging format. The dataset contains:
3117 sentences
62027 tokens
2475 named entities
18 named entity categories
Named Entity Classes
The named entity classes were initially defined by analyzing the existing Quran concepts ontology. The initial classes were updated based on the information acquired during the annotation process. Finally, there are 20 classes, as follows:
Allah
Allah's Throne
Artifact
Astronomical body
Event
False deity
Holy book
Language
Angel
Person
Messenger
Prophet
Sentient
Afterlife location
Geographical location
Color
Religion
Food
Fruit
The book of Allah
Annotation Stage
There were eight annotators who contributed to the annotation process. They were informatics engineering students at the State Islamic University Syarif Hidayatullah Jakarta.
Anggita Maharani Gumay Putri
Muhammad Destamal Junas
Naufaldi Hafidhigbal
Nur Kholis Azzam Ubaidillah
Puspitasari
Septiany Nur Anggita
Wilda Nurjannah
William Santoso
Verification Stage
We found many named entity and class candidates during the annotation stage. To verify the candidates, we consulted Quran and Tafseer (content) experts who are lecturers at Quran and Tafseer Department at the State Islamic University Syarif Hidayatullah Jakarta.
Dr. Eva Nugraha, M.Ag.
Dr. Jauhar Azizy, MA
Dr. Lilik Ummi Kultsum, MA
Evaluation
We evaluated the annotation quality of IndQNER by performing experiments in two settings: supervised learning (BiLSTM+CRF) and transfer learning (IndoBERT fine-tuning).
Supervised Learning Setting
The implementation of BiLSTM and CRF utilized IndoBERT to provide word embeddings. All experiments used a batch size of 16. These are the results:
Maximum sequence length Number of e-poch Precision Recall F1 score
256 10 0.94 0.92 0.93
256 20 0.99 0.97 0.98
256 40 0.96 0.96 0.96
256 100 0.97 0.96 0.96
512 10 0.92 0.92 0.92
512 20 0.96 0.95 0.96
512 40 0.97 0.95 0.96
512 100 0.97 0.95 0.96
Transfer Learning Setting
We performed several experiments with different parameters in IndoBERT fine-tuning. All experiments used a learning rate of 2e-5 and a batch size of 16. These are the results:
Maximum sequence length Number of e-poch Precision Recall F1 score
256 10 0.67 0.65 0.65
256 20 0.60 0.59 0.59
256 40 0.75 0.72 0.71
256 100 0.73 0.68 0.68
512 10 0.72 0.62 0.64
512 20 0.62 0.57 0.58
512 40 0.72 0.66 0.67
512 100 0.68 0.68 0.67
This dataset is also part of the NusaCrowd project which aims to collect Natural Language Processing (NLP) datasets for Indonesian and its local languages.
How to Cite
@InProceedings{10.1007/978-3-031-35320-8_12,author="Gusmita, Ria Hariand Firmansyah, Asep Fajarand Moussallem, Diegoand Ngonga Ngomo, Axel-Cyrille",editor="M{\'e}tais, Elisabethand Meziane, Faridand Sugumaran, Vijayanand Manning, Warrenand Reiff-Marganiec, Stephan",title="IndQNER: Named Entity Recognition Benchmark Dataset from the Indonesian Translation of the Quran",booktitle="Natural Language Processing and Information Systems",year="2023",publisher="Springer Nature Switzerland",address="Cham",pages="170--185",abstract="Indonesian is classified as underrepresented in the Natural Language Processing (NLP) field, despite being the tenth most spoken language in the world with 198 million speakers. The paucity of datasets is recognized as the main reason for the slow advancements in NLP research for underrepresented languages. Significant attempts were made in 2020 to address this drawback for Indonesian. The Indonesian Natural Language Understanding (IndoNLU) benchmark was introduced alongside IndoBERT pre-trained language model. The second benchmark, Indonesian Language Evaluation Montage (IndoLEM), was presented in the same year. These benchmarks support several tasks, including Named Entity Recognition (NER). However, all NER datasets are in the public domain and do not contain domain-specific datasets. To alleviate this drawback, we introduce IndQNER, a manually annotated NER benchmark dataset in the religious domain that adheres to a meticulously designed annotation guideline. Since Indonesia has the world's largest Muslim population, we build the dataset from the Indonesian translation of the Quran. The dataset includes 2475 named entities representing 18 different classes. To assess the annotation quality of IndQNER, we perform experiments with BiLSTM and CRF-based NER, as well as IndoBERT fine-tuning. The results reveal that the first model outperforms the second model achieving 0.98 F1 points. This outcome indicates that IndQNER may be an acceptable evaluation metric for Indonesian NER tasks in the aforementioned domain, widening the research's domain range.",isbn="978-3-031-35320-8"}
Contact
If you have any questions or feedback, feel free to contact us at ria.hari.gusmita@uni-paderborn.de or ria.gusmita@uinjkt.ac.id
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionAlthough the number of people receiving antiretroviral therapy (ART) in Indonesia has increased in recent years, little is known about the specific characteristics affecting adherence in this population. Indonesia is different from most of its neighbors given that it is a geographically and culturally diverse country, with a large Muslim population. We aimed to identify the current rate of adherence and explore factors that influence ART adherence.MethodsData were collected from ART-prescribed outpatients on an HIV registry at a North Jakarta hospital in 2012. Socio-demographic and behavioral characteristics were explored as factors associated with adherence using logistics regression analyses. Chi squared test was used to compare the difference between proportions. Reasons for missing medication were analyzed descriptively.ResultsTwo hundred and sixty-one patients participated, of whom 77% reported ART adherence in the last 3 months. The level of social support experienced was independently associated with adherence where some social support (p = 0.018) and good social support (p = 0.039) improved adherence compared to poor social support. Frequently cited reasons for not taking ART medication included forgetting to take medication (67%), busy with something else (63%) and asleep at medication time (60%).DiscussionThis study identified that an increase in the level of social support experienced by ART-prescribed patients was positively associated with adherence. Social support may minimize the impact of stigma among ART prescribed patients. Based on these findings, if social support is not available, alternative support through community-based organizations is recommended to maximize treatment success.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census: Population: by Religion: Muslim: Uttarakhand data was reported at 1,406,825.000 Person in 03-01-2011. This records an increase from the previous number of 1,012,141.000 Person for 03-01-2001. Census: Population: by Religion: Muslim: Uttarakhand data is updated decadal, averaging 1,209,483.000 Person from Mar 2001 (Median) to 03-01-2011, with 2 observations. The data reached an all-time high of 1,406,825.000 Person in 03-01-2011 and a record low of 1,012,141.000 Person in 03-01-2001. Census: Population: by Religion: Muslim: Uttarakhand data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE003: Census: Population: by Religion: Muslim.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Census 2021 data on religion by highest qualification level, by sex, by age, England and Wales combined. This dataset provides Census 2021 estimates that classify usual residents in England and Wales by ethnic group. The estimates are as at Census Day, 21 March 2021.
The religion people connect or identify with (their religious affiliation), whether or not they practise or have belief in it.
This question was voluntary and the variable includes people who answered the question, including “No religion”, alongside those who chose not to answer this question.
Total counts for some population groups may not match between published tables. This is to protect the confidentiality of individuals' data. Population counts have been rounded to the nearest 5 and any counts below 10 are suppressed, this is signified by a 'c' in the data tables.
This dataset shows population counts for usual residents aged 16 years and over. Some people aged 16 years old will not have completed key stage 4 yet on census day, and so did not have the opportunity to record any qualifications on the census.
These estimates are not comparable to Department of Education figures on highest level of attainment because they include qualifications obtained outside England and Wales.
Quality notes can be found here
Quality information about Education can be found here
Religion
The 8 ‘tickbox’ religious groups are as follows:
No qualifications
No qualifications
Level 1
Level 1 and entry level qualifications: 1 to 4 GCSEs grade A* to C , Any GCSEs at other grades, O levels or CSEs (any grades), 1 AS level, NVQ level 1, Foundation GNVQ, Basic or Essential Skills
Level 2
5 or more GCSEs (A* to C or 9 to 4), O levels (passes), CSEs (grade 1), School Certification, 1 A level, 2 to 3 AS levels, VCEs, Intermediate or Higher Diploma, Welsh Baccalaureate Intermediate Diploma, NVQ level 2, Intermediate GNVQ, City and Guilds Craft, BTEC First or General Diploma, RSA Diploma
Apprenticeship
Apprenticeship
Level 3
2 or more A levels or VCEs, 4 or more AS levels, Higher School Certificate, Progression or Advanced Diploma, Welsh Baccalaureate Advance Diploma, NVQ level 3; Advanced GNVQ, City and Guilds Advanced Craft, ONC, OND, BTEC National, RSA Advanced Diploma
Level 4 +
Degree (BA, BSc), higher degree (MA, PhD, PGCE), NVQ level 4 to 5, HNC, HND, RSA Higher Diploma, BTEC Higher level, professional qualifications (for example, teaching, nursing, accountancy)
Other
Vocational or work-related qualifications, other qualifications achieved in England or Wales, qualifications achieved outside England or Wales (equivalent not stated or unknown)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Recent issues on politics have been dominant in Indonesia that people are divided and become more intolerant of each other. Indonesia has the biggest Muslim population in the world and the role of Islam in Indonesian politics is significant. The current Indonesian government claim that moderate Muslims are loyal to the present political system while the opposing rivals who are often labelled’intolerant and radical Muslims’ by Indonesian mass media often disagree with the central interpretation of democracy in Indonesia. Studies on contributing factors and discourse strategies used in news and articles in secular and Islamic mass media which play a vital role in the construction of Muslim and Islamic identities in Indonesia are, therefore, recommended.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The second National Family Health Survey (NFHS-2), conducted in 1998-99, provides information on fertility, mortality, family planning, and important aspects of nutrition, health, and health care. The International Institute for Population Sciences (IIPS) coordinated the survey, which collected information from a nationally representative sample of more than 90,000 ever-married women age 15-49. The NFHS-2 sample covers 99 percent of India's population living in all 26 states. This report is based on the survey data for 25 of the 26 states, however, since data collection in Tripura was delayed due to local problems in the state. IIPS also coordinated the first National Family Health Survey (NFHS-1) in 1992-93. Most of the types of information collected in NFHS-2 were also collected in the earlier survey, making it possible to identify trends over the intervening period of six and one-half years. In addition, the NFHS-2 questionnaire covered a number of new or expanded topics with important policy implications, such as reproductive health, women's autonomy, domestic violence, women's nutrition, anaemia, and salt iodization. The NFHS-2 survey was carried out in two phases. Ten states were surveyed in the first phase which began in November 1998 and the remaining states (except Tripura) were surveyed in the second phase which began in March 1999. The field staff collected information from 91,196 households in these 25 states and interviewed 89,199 eligible women in these households. In addition, the survey collected information on 32,393 children born in the three years preceding the survey. One health investigator on each survey team measured the height and weight of eligible women and children and took blood samples to assess the prevalence of anaemia. SUMMARY OF FINDINGS POPULATION CHARACTERISTICS Three-quarters (73 percent) of the population lives in rural areas. The age distribution is typical of populations that have recently experienced a fertility decline, with relatively low proportions in the younger and older age groups. Thirty-six percent of the population is below age 15, and 5 percent is age 65 and above. The sex ratio is 957 females for every 1,000 males in rural areas but only 928 females for every 1,000 males in urban areas, suggesting that more men than women have migrated to urban areas. The survey provides a variety of demographic and socioeconomic background information. In the country as a whole, 82 percent of household heads are Hindu, 12 percent are Muslim, 3 percent are Christian, and 2 percent are Sikh. Muslims live disproportionately in urban areas, where they comprise 15 percent of household heads. Nineteen percent of household heads belong to scheduled castes, 9 percent belong to scheduled tribes, and 32 percent belong to other backward classes (OBCs). Two-fifths of household heads do not belong to any of these groups. Questions about housing conditions and the standard of living of households indicate some improvements since the time of NFHS-1. Sixty percent of households in India now have electricity and 39 percent have piped drinking water compared with 51 percent and 33 percent, respectively, at the time of NFHS-1. Sixty-four percent of households have no toilet facility compared with 70 percent at the time of NFHS-1. About three-fourths (75 percent) of males and half (51 percent) of females age six and above are literate, an increase of 6-8 percentage points from literacy rates at the time of NFHS-1. The percentage of illiterate males varies from 6-7 percent in Mizoram and Kerala to 37 percent in Bihar and the percentage of illiterate females varies from 11 percent in Mizoram and 15 percent in Kerala to 65 percent in Bihar. Seventy-nine percent of children age 6-14 are attending school, up from 68 percent in NFHS-1. The proportion of children attending school has increased for all ages, particularly for girls, but girls continue to lag behind boys in school attendance. Moreover, the disparity in school attendance by sex grows with increasing age of children. At age 6-10, 85 percent of boys attend school compared with 78 percent of girls. By age 15-17, 58 percent of boys attend school compared with 40 percent of girls. The percentage of girls 6-17 attending school varies from 51 percent in Bihar and 56 percent in Rajasthan to over 90 percent in Himachal Pradesh and Kerala. Women in India tend to marry at an early age. Thirty-four percent of women age 15-19 are already married including 4 percent who are married but gauna has yet to be performed. These proportions are even higher in the rural areas. Older women are more likely than younger women to have married at an early age: 39 percent of women currently age 45-49 married before age 15 compared with 14 percent of women currently age 15-19. Although this indicates that the proportion of women who marry young is declining rapidly, half the women even in the age group 20-24 have married before reaching the legal minimum age of 18 years. On average, women are five years younger than the men they marry. The median age at marriage varies from about 15 years in Madhya Pradesh, Bihar, Uttar Pradesh, Rajasthan, and Andhra Pradesh to 23 years in Goa. As part of an increasing emphasis on gender issues, NFHS-2 asked women about their participation in household decisionmaking. In India, 91 percent of women are involved in decision-making on at least one of four selected topics. A much lower proportion (52 percent), however, are involved in making decisions about their own health care. There are large variations among states in India with regard to women's involvement in household decisionmaking. More than three out of four women are involved in decisions about their own health care in Himachal Pradesh, Meghalaya, and Punjab compared with about two out of five or less in Madhya Pradesh, Orissa, and Rajasthan. Thirty-nine percent of women do work other than housework, and more than two-thirds of these women work for cash. Only 41 percent of women who earn cash can decide independently how to spend the money that they earn. Forty-three percent of working women report that their earnings constitute at least half of total family earnings, including 18 percent who report that the family is entirely dependent on their earnings. Women's work-participation rates vary from 9 percent in Punjab and 13 percent in Haryana to 60-70 percent in Manipur, Nagaland, and Arunachal Pradesh. FERTILITY AND FAMILY PLANNING Fertility continues to decline in India. At current fertility levels, women will have an average of 2.9 children each throughout their childbearing years. The total fertility rate (TFR) is down from 3.4 children per woman at the time of NFHS-1, but is still well above the replacement level of just over two children per woman. There are large variations in fertility among the states in India. Goa and Kerala have attained below replacement level fertility and Karnataka, Himachal Pradesh, Tamil Nadu, and Punjab are at or close to replacement level fertility. By contrast, fertility is 3.3 or more children per woman in Meghalaya, Uttar Pradesh, Rajasthan, Nagaland, Bihar, and Madhya Pradesh. More than one-third to less than half of all births in these latter states are fourth or higher-order births compared with 7-9 percent of births in Kerala, Goa, and Tamil Nadu. Efforts to encourage the trend towards lower fertility might usefully focus on groups within the population that have higher fertility than average. In India, rural women and women from scheduled tribes and scheduled castes have somewhat higher fertility than other women, but fertility is particularly high for illiterate women, poor women, and Muslim women. Another striking feature is the high level of childbearing among young women. More than half of women age 20-49 had their first birth before reaching age 20, and women age 15-19 account for almost one-fifth of total fertility. Studies in India and elsewhere have shown that health and mortality risks increase when women give birth at such young ages?both for the women themselves and for their children. Family planning programmes focusing on women in this age group could make a significant impact on maternal and child health and help to reduce fertility. INFANT AND CHILD MORTALITY NFHS-2 provides estimates of infant and child mortality and examines factors associated with the survival of young children. During the five years preceding the survey, the infant mortality rate was 68 deaths at age 0-11 months per 1,000 live births, substantially lower than 79 per 1,000 in the five years preceding the NFHS-1 survey. The child mortality rate, 29 deaths at age 1-4 years per 1,000 children reaching age one, also declined from the corresponding rate of 33 per 1,000 in NFHS-1. Ninety-five children out of 1,000 born do not live to age five years. Expressed differently, 1 in 15 children die in the first year of life, and 1 in 11 die before reaching age five. Child-survival programmes might usefully focus on specific groups of children with particularly high infant and child mortality rates, such as children who live in rural areas, children whose mothers are illiterate, children belonging to scheduled castes or scheduled tribes, and children from poor households. Infant mortality rates are more than two and one-half times as high for women who did not receive any of the recommended types of maternity related medical care than for mothers who did receive all recommended types of care. HEALTH, HEALTH CARE, AND NUTRITION Promotion of maternal and child health has been one of the most important components of the Family Welfare Programme of the Government of India. One goal is for each pregnant woman to receive at least three antenatal check-ups plus two tetanus toxoid injections and a full course of iron and folic acid supplementation. In India, mothers of 65 percent of the children born in the three years preceding NFHS-2 received at least one antenatal
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Associated with manuscript titled: Fifty Muslim-majority countries have fewer COVID-19 cases and deaths than the 50 richest non-Muslim countriesThe objective of this research was to determine the difference in the total number of COVID-19 cases and deaths between Muslim-majority and non-Muslim countries, and investigate reasons for the disparities. Methods: The 50 Muslim-majority countries had more than 50.0% Muslims with an average of 87.5%. The non-Muslim country sample consisted of 50 countries with the highest GDP while omitting any Muslim-majority countries listed. The non-Muslim countries’ average percentage of Muslims was 4.7%. Data pulled on September 18, 2020 included the percentage of Muslim population per country by World Population Review15 and GDP per country, population count, and total number of COVID-19 cases and deaths by Worldometers.16 The data set was transferred via an Excel spreadsheet on September 23, 2020 and analyzed. To measure COVID-19’s incidence in the countries, three different Average Treatment Methods (ATE) were used to validate the results. Results published as a preprint at https://doi.org/10.31235/osf.io/84zq5(15) Muslim Majority Countries 2020 [Internet]. Walnut (CA): World Population Review. 2020- [Cited 2020 Sept 28]. Available from: http://worldpopulationreview.com/country-rankings/muslim-majority-countries (16) Worldometers.info. Worldometer. Dover (DE): Worldometer; 2020 [cited 2020 Sept 28]. Available from: http://worldometers.info