Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATH reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Every year the CDC releases the country’s most detailed report on death in the United States under the National Vital Statistics Systems. This mortality dataset is a record of every death in the country for 2005 through 2015, including detailed information about causes of death and the demographic background of the deceased.
It's been said that "statistics are human beings with the tears wiped off." This is especially true with this dataset. Each death record represents somebody's loved one, often connected with a lifetime of memories and sometimes tragically too short.
Putting the sensitive nature of the topic aside, analyzing mortality data is essential to understanding the complex circumstances of death across the country. The US Government uses this data to determine life expectancy and understand how death in the U.S. differs from the rest of the world. Whether you’re looking for macro trends or analyzing unique circumstances, we challenge you to use this dataset to find your own answers to one of life’s great mysteries.
This dataset is a collection of CSV files each containing one year's worth of data and paired JSON files containing the code mappings, plus an ICD 10 code set. The CSVs were reformatted from their original fixed-width file formats using information extracted from the CDC's PDF manuals using this script. Please note that this process may have introduced errors as the text extracted from the pdf is not a perfect match. If you have any questions or find errors in the preparation process, please leave a note in the forums. We hope to publish additional years of data using this method soon.
A more detailed overview of the data can be found here. You'll find that the fields are consistent within this time window, but some of data codes change every few years. For example, the 113_cause_recode entry 069 only covers ICD codes (I10,I12) in 2005, but by 2015 it covers (I10,I12,I15). When I post data from years prior to 2005, expect some of the fields themselves to change as well.
All data comes from the CDC’s National Vital Statistics Systems, with the exception of the Icd10Code, which are sourced from the World Health Organization.
Series Name: Under-five mortality rate by sex (deaths per 1 000 live births)Series Code: SH_DYN_MORTRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.2.1: Under-5 mortality rateTarget 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Series Name: Infant mortality rate (deaths per 1 000 live births)Series Code: SH_DYN_IMRTRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.2.1: Under-5 mortality rateTarget 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Thailand TH: Death Rate: Crude: per 1000 People data was reported at 7.872 Ratio in 2016. This records an increase from the previous number of 7.750 Ratio for 2015. Thailand TH: Death Rate: Crude: per 1000 People data is updated yearly, averaging 7.229 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 13.180 Ratio in 1960 and a record low of 5.663 Ratio in 1989. Thailand TH: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Thailand – Table TH.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
http://www.opendefinition.org/licenses/cc-by-sahttp://www.opendefinition.org/licenses/cc-by-sa
This dataset contains excess mortality data for the period covering the 2020 Covid-19 pandemic.
The data contains the excess mortality data for all known jurisdictions which publish all-cause mortality data meeting the following criteria:
Most countries publish mortality data with a longer periodicity (typically quarterly or even annually), a longer publication lag time, or both. This sort of data is not suitable for ongoing analysis during an epidemic and is therefore not included here.
"Excess mortality" refers to the difference between deaths from all causes during the pandemic and the historic seasonal average. For many of the jurisdictions shown here, this figure is higher than the official Covid-19 fatalities that are published by national governments each day. While not all of these deaths are necessarily attributable to the disease, it does leave a number of unexplained deaths that suggests that the official figures of deaths attributed may significant undercounts of the pandemic's impact.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Death Rate: Crude: per 1000 People data was reported at 8.400 Ratio in 2016. This records a decrease from the previous number of 8.440 Ratio for 2015. United States US: Death Rate: Crude: per 1000 People data is updated yearly, averaging 8.700 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 9.800 Ratio in 1968 and a record low of 7.900 Ratio in 2009. United States US: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Italy IT: Death Rate: Crude: per 1000 People data was reported at 10.100 Ratio in 2016. This records a decrease from the previous number of 10.700 Ratio for 2015. Italy IT: Death Rate: Crude: per 1000 People data is updated yearly, averaging 9.800 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 10.700 Ratio in 2015 and a record low of 9.300 Ratio in 1961. Italy IT: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Italy – Table IT.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dominican Republic DO: Death Rate: Crude: per 1000 People data was reported at 6.102 Ratio in 2016. This records an increase from the previous number of 6.081 Ratio for 2015. Dominican Republic DO: Death Rate: Crude: per 1000 People data is updated yearly, averaging 6.560 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 16.053 Ratio in 1960 and a record low of 5.957 Ratio in 1996. Dominican Republic DO: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Dominican Republic – Table DO.World Bank: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ireland IE: Death Rate: Crude: per 1000 People data was reported at 6.400 Ratio in 2016. This records a decrease from the previous number of 6.500 Ratio for 2015. Ireland IE: Death Rate: Crude: per 1000 People data is updated yearly, averaging 9.000 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 12.300 Ratio in 1961 and a record low of 6.100 Ratio in 2010. Ireland IE: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ireland – Table IE.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Yemen YE: Death Rate: Crude: per 1000 People data was reported at 6.456 Ratio in 2016. This records a decrease from the previous number of 6.543 Ratio for 2015. Yemen YE: Death Rate: Crude: per 1000 People data is updated yearly, averaging 12.089 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 30.562 Ratio in 1960 and a record low of 6.456 Ratio in 2016. Yemen YE: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Yemen – Table YE.World Bank: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
This dataset describes drug poisoning deaths at the U.S. and state level by selected demographic characteristics, and includes age-adjusted death rates for drug poisoning. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Drug poisoning death rates may be underestimated in those instances. REFERENCES 1. National Center for Health Statistics. National Vital Statistics System: Mortality data. Available from: http://www.cdc.gov/nchs/deaths.htm. CDC. CDC Wonder: Underlying cause of death 1999–2016. Available from: http://wonder.cdc.gov/wonder/help/ucd.html.
Series Name: Under-five deaths (number)Series Code: SH_DYN_MORTNRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.2.1: Under-5 mortality rateTarget 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Series Name: Neonatal deaths (number)Series Code: SH_DYN_NMRTNRelease Version: 2021.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.2.2: Neonatal mortality rateTarget 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
This dataset describes drug poisoning deaths at the U.S. and state level by selected demographic characteristics, and includes age-adjusted death rates for drug poisoning from 1999 to 2015. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Estimate does not meet standards of reliability or precision. Death rates are flagged as “Unreliable” in the chart when the rate is calculated with a numerator of 20 or less. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Estimates should be interpreted with caution. Smoothed county age-adjusted death rates (deaths per 100,000 population) were obtained according to methods described elsewhere (3–5). Briefly, two-stage hierarchical models were used to generate empirical Bayes estimates of county age-adjusted death rates due to drug poisoning for each year during 1999–2015. These annual county-level estimates “borrow strength” across counties to generate stable estimates of death rates where data are sparse due to small population size (3,5). Estimates are unavailable for Broomfield County, Colo., and Denali County, Alaska, before 2003 (6,7). Additionally, Bedford City, Virginia was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. County boundaries are consistent with the vintage 2005-2007 bridged-race population file geographies (6).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual data on death registrations by area of usual residence in the UK. Summary tables including age-standardised mortality rates.
MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.
Note: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org. This dataset contains the cumulative number of deaths, average number of deaths annually, average annual crude and adjusted death rates with corresponding 95% confidence intervals, and average annual years of potential life lost per 100,000 residents aged 75 and younger due to selected causes of death, by Chicago community area, for the years 2006 – 2010. A ranking for each measure is also provided, with the highest value indicated with a ranking of 1. See the full description at: https://data.cityofchicago.org/api/views/6vw3-8p6f/files/CqPqfHSv8UUAoXCBjn4_tLqcQHhb36Ih4-meM-4zNzs?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\MORTALITY\Dataset_Description_06_10_PORTAL_ONLY.pdf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATH reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.