Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
Twitterhttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
There's a story behind every dataset and here's your opportunity to share yours.
This Data consists of some world statistics published by the World Bank since 1961
Variables:
1) Agriculture and Rural development - 42 indicators published on this website. https://data.worldbank.org/topic/agriculture-and-rural-development
2) Access to electricity (% of the population) - Access to electricity is the percentage of the population with access to electricity. Electrification data are collected from industry, national surveys, and international sources.
3) CPIA gender equality rating (1=low to 6=high) - Gender equality assesses the extent to which the country has installed institutions and programs to enforce laws and policies that promote equal access for men and women in education, health, the economy, and protection under law.
4) Mineral rents (% of GDP) - Mineral rents are the difference between the value of production for a stock of minerals at world prices and their total costs of production. Minerals included in the calculation are tin, gold, lead, zinc, iron, copper, nickel, silver, bauxite, and phosphate.
5) GDP per capita (current US$) - GDP per capita is gross domestic product divided by midyear population. GDP is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in current U.S. dollars.
6) Literacy rate, adult total (% of people ages 15 and above)- Adult literacy rate is the percentage of people ages 15 and above who can both read and write with understanding a short simple statement about their everyday life.
7) Net migration - Net migration is the net total of migrants during the period, that is, the total number of immigrants less the annual number of emigrants, including both citizens and noncitizens. Data are five-year estimates.
8) Birth rate, crude (per 1,000 people) - Crude birth rate indicates the number of live births occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.
9) Death rate, crude (per 1,000 people) - Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.
10) Mortality rate, infant (per 1,000 live births) - Infant mortality rate is the number of infants dying before reaching one year of age, per 1,000 live births in a given year.
11) Population, total - Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.
These datasets are publicly available for anyone to use under the following terms provided by the Dataset Source https://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
Banner photo by https://population.un.org/wpp/Maps/
Subsaharan Africa and east Asia record high population total, actually Subsaharan Africa population bypassed Europe and central Asia population by 2010, has this been influenced by crop and food production, large arable land, high crude birth rates(influx), low mortality rates(exits from the population) or Net migration.
Facebook
TwitterData on death rates in the United States in by age and cause of death. At the bottom of the table, some of the columns are a little out of whack but if you download the file, you should be able to make out all the numbers and information
Looking at death rates in the United States can be a sobering experience, but it can also be a helpful way to see where our country needs to focus its efforts in terms of public health. This dataset contains information on death rates in the United States in 2014, by age and cause of death. This can be used to help identify which age groups are most at risk for certain causes of death, and what factors may contribute to those risks
- Find out what age group is dying the most and why.
- Compare death rates from different causes of death.
- Find out which states have the highest death rates
License
Unknown License - Please check the dataset description for more information.
File: 2014 Death Rates by Age & Cause.csv | Column name | Description | |:-------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------| | Cause of death (based on ICD–10) | The cause of death that the row represents. This is given as a code based on the International Classification of Diseases (ICD). (String) | | All ages1 | The number of deaths due to the given cause in the given age group.(Integer) | | Under 1 year2 | The number of deaths due to the given cause in the given age group.(Integer) | | 1–4 | The number of deaths due to the given cause in the given age group.(Integer) | | 5–14 | The number of deaths due to the given cause in the given age group.(Integer) | | 15–24 | The number of deaths due to the given cause in the given age group.(Integer) | | 25–34 | The number of deaths due to the given cause in the given age group.(Integer) | | 35–44 | The number of deaths due to the given cause in the given age group.(Integer) | | 45–54 | The number of deaths due to the given cause in the given age group.(Integer) | | 55–64 | The number of deaths due to the given cause in the given age group.(Integer) | | 65–74 | The number of deaths due to the given cause in the given age group.(Integer) | | 75–84 | The number of deaths due to the given cause in the given age group.(Integer) | | 85 and over | The number of deaths due to the given cause in the given age group.(Integer) |
Facebook
TwitterSeries Name: Under-five mortality rate by sex (deaths per 1 000 live births)Series Code: SH_DYN_MORTRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.2.1: Under-5 mortality rateTarget 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Facebook
TwitterMMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.
Facebook
TwitterThis dataset describes drug poisoning deaths at the U.S. and state level by selected demographic characteristics, and includes age-adjusted death rates for drug poisoning. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Drug poisoning death rates may be underestimated in those instances. REFERENCES 1. National Center for Health Statistics. National Vital Statistics System: Mortality data. Available from: http://www.cdc.gov/nchs/deaths.htm. CDC. CDC Wonder: Underlying cause of death 1999–2016. Available from: http://wonder.cdc.gov/wonder/help/ucd.html.
Facebook
TwitterSeries Name: Infant mortality rate (deaths per 1 000 live births)Series Code: SH_DYN_IMRTRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.2.1: Under-5 mortality rateTarget 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Facebook
TwitterThis dataset describes drug poisoning deaths at the U.S. and state level by selected demographic characteristics, and includes age-adjusted death rates for drug poisoning. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Drug poisoning death rates may be underestimated in those instances. REFERENCES 1. National Center for Health Statistics. National Vital Statistics System: Mortality data. Available from: http://www.cdc.gov/nchs/deaths.htm. CDC. CDC Wonder: Underlying cause of death 1999–2016. Available from: http://wonder.cdc.gov/wonder/help/ucd.html.
Facebook
TwitterSeries Name: Neonatal mortality rate (deaths per 1 000 live births)Series Code: SH_DYN_NMRTRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.2.2: Neonatal mortality rateTarget 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual data on death registrations by area of usual residence in the UK. Summary tables including age-standardised mortality rates.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vital Statistics: Death Rate: per 1000 Population: Rajasthan: Rural data was reported at 5.800 NA in 2020. This records a decrease from the previous number of 6.000 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: Rajasthan: Rural data is updated yearly, averaging 7.000 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 9.300 NA in 1998 and a record low of 5.800 NA in 2020. Vital Statistics: Death Rate: per 1000 Population: Rajasthan: Rural data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.
Facebook
TwitterSeries Name: Under-five deaths (number)Series Code: SH_DYN_MORTNRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.2.1: Under-5 mortality rateTarget 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Facebook
TwitterNumber of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Time series data for the statistic Mortality rate, under-5 (per 1,000 live births) and country Sudan. Indicator Definition:Under-five mortality rate is the probability per 1,000 that a newborn baby will die before reaching age five, if subject to age-specific mortality rates of the specified year.The indicator "Mortality rate, under-5 (per 1,000 live births)" stands at 50.10 as of 12/31/2023, the lowest value at least since 12/31/1961, the period currently displayed. Regarding the One-Year-Change of the series, the current value constitutes a decrease of -3.28 percent compared to the value the year prior.The 1 year change in percent is -3.28.The 3 year change in percent is -9.40.The 5 year change in percent is -14.94.The 10 year change in percent is -26.65.The Serie's long term average value is 120.60. It's latest available value, on 12/31/2023, is 58.46 percent lower, compared to it's long term average value.The Serie's change in percent from it's minimum value, on 12/31/2023, to it's latest available value, on 12/31/2023, is +0.0%.The Serie's change in percent from it's maximum value, on 12/31/1983, to it's latest available value, on 12/31/2023, is -72.50%.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Time series data for the statistic Suicide mortality rate (per 100,000 population) and country Denmark. Indicator Definition:Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).The indicator "Suicide mortality rate (per 100,000 population)" stands at 10.46 as of 12/31/2021, the lowest value at least since 12/31/2001, the period currently displayed. Regarding the One-Year-Change of the series, the current value constitutes a decrease of -4.04 percent compared to the value the year prior.The 1 year change in percent is -4.04.The 3 year change in percent is -6.61.The 5 year change in percent is -3.33.The 10 year change in percent is -15.85.The Serie's long term average value is 12.74. It's latest available value, on 12/31/2021, is 17.88 percent lower, compared to it's long term average value.The Serie's change in percent from it's minimum value, on 12/31/2021, to it's latest available value, on 12/31/2021, is +0.0%.The Serie's change in percent from it's maximum value, on 12/31/2001, to it's latest available value, on 12/31/2021, is -33.71%.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
2018 2020, county-level U.S. heart disease death rates. Dataset developed by the Centers for Disease Control and Prevention, Division for Heart Disease and Stroke Prevention.Create maps of U.S. heart disease death rates by county. Data can be stratified by age, race/ethnicity, and sex.Visit the CDC/DHDSP Atlas of Heart Disease and Stroke for additional data and maps. Atlas of Heart Disease and StrokeData SourceMortality data were obtained from the National Vital Statistics System. Bridged-Race Postcensal Population Estimates were obtained from the National Center for Health Statistics. International Classification of Diseases, 10th Revision (ICD-10) codes: I00-I09, I11, I13, I20-I51; underlying cause of death.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC/DHDSP excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.'Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., API_M_35UP) RRR: 3 digits represent race/ethnicity All - Overall AIA - American Indian and Alaska Native, non-Hispanic API - Asian and Pacific Islander, non-Hispanic BLK - Black, non-Hispanic HIS - Hispanic WHT - White, non-Hispanic S: 1 digit represents sex A - All F - Female M - Male aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound. Example: The column 'BLK_M_65UP' displays rates per 100,000 black men aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 100,000 population. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and sex).At least one of the following 3 criteria:At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods
Facebook
TwitterSeries Name: Countries with death registration data that are at least 75 percent complete (1 = YES; 0 = NO)Series Code: SG_REG_DETH75NRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 17.19.2: Proportion of countries that (a) have conducted at least one population and housing census in the last 10 years; and (b) have achieved 100 per cent birth registration and 80 per cent death registrationTarget 17.19: By 2030, build on existing initiatives to develop measurements of progress on sustainable development that complement gross domestic product, and support statistical capacity-building in developing countriesGoal 17: Strengthen the means of implementation and revitalize the Global Partnership for Sustainable DevelopmentFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Method
The dataset contains several confirmed COVID-19 cases, number of deaths, and death rate in six regions. The objective of the study is to compare the number of confirmed cases in Africa to other regions.
Death rate = Total number of deaths from COVID-19 divided by the Total Number of infected patients.
The study provides evidence for the country-level in six regions by the World Health Organisation's classification.
Findings
Based on the descriptive data provided above, we conclude that the lack of tourism is one of the key reasons why COVID-19 reported cases are low in Africa compared to other regions. We also justified this claim by providing evidence from the economic freedom index, which indicates that the vast majority of African countries recorded a low index for a business environment. On the other hand, we conclude that the death rate is higher in the African region compared to other regions. This points to issues concerning health-care expenditure, low capacity for testing for COVID-19, and poor infrastructure in the region.
Apart from COVID-19, there are significant pre-existing diseases, namely; Malaria, Flu, HIV/AIDS, and Ebola in the continent. This study, therefore, invites the leaders to invest massively in the health-care system, infrastructure, and human capital in order to provide a sustainable environment for today and future generations. Lastly, policy uncertainty has been a major issue in determining a sustainable development goal on the continent. This uncertainty has differentiated Africa to other regions in terms of stepping up in the time of global crisis.
Facebook
TwitterRank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Time series data for the statistic Suicide mortality rate (per 100,000 population) and country Kyrgyz Republic. Indicator Definition:Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).The indicator "Suicide mortality rate (per 100,000 population)" stands at 6.80 as of 12/31/2021, the lowest value at least since 12/31/2001, the period currently displayed. Regarding the One-Year-Change of the series, the current value constitutes a decrease of -1.88 percent compared to the value the year prior.The 1 year change in percent is -1.88.The 3 year change in percent is -22.90.The 5 year change in percent is -24.86.The 10 year change in percent is -40.71.The Serie's long term average value is 10.83. It's latest available value, on 12/31/2021, is 37.22 percent lower, compared to it's long term average value.The Serie's change in percent from it's minimum value, on 12/31/2021, to it's latest available value, on 12/31/2021, is +0.0%.The Serie's change in percent from it's maximum value, on 12/31/2000, to it's latest available value, on 12/31/2021, is -49.44%.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.