When analyzing the ratio of homelessness to state population, New York, Vermont, and Oregon had the highest rates in 2023. However, Washington, D.C. had an estimated ** homeless individuals per 10,000 people, which was significantly higher than any of the 50 states. Homeless people by race The U.S. Department of Housing and Urban Development performs homeless counts at the end of January each year, which includes people in both sheltered and unsheltered locations. The estimated number of homeless people increased to ******* in 2023 – the highest level since 2007. However, the true figure is likely to be much higher, as some individuals prefer to stay with family or friends - making it challenging to count the actual number of homeless people living in the country. In 2023, nearly half of the people experiencing homelessness were white, while the number of Black homeless people exceeded *******. How many veterans are homeless in America? The number of homeless veterans in the United States has halved since 2010. The state of California, which is currently suffering a homeless crisis, accounted for the highest number of homeless veterans in 2022. There are many causes of homelessness among veterans of the U.S. military, including post-traumatic stress disorder (PTSD), substance abuse problems, and a lack of affordable housing.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">309 KB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
For quarterly local authority-level tables prior to the latest financial year, see the Statutory homelessness release pages.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">1.19 MB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundOpioid use disorder (OUD) is a growing public health crisis, with opioids involved in an overwhelming majority of drug overdose deaths in the United States in recent years. While medications for opioid use disorder (MOUD) effectively reduce overdose mortality, only a minority of patients are able to access MOUD; additionally, those with unstable housing receive MOUD at even lower rates.ObjectiveBecause MOUD access is a multifactorial issue, we leverage machine learning techniques to assess and rank the variables most important in predicting whether any individual receives MOUD. We also seek to explain why persons experiencing homelessness have lower MOUD access and identify potential targets for action.MethodsWe utilize a gradient boosted decision tree algorithm (specifically, XGBoost) to train our model on SAMHSA’s Treatment Episode Data Set-Admissions, using anonymized demographic and clinical information for over half a million opioid admissions to treatment facilities across the United States. We use Shapley values to quantify and interpret the predictive power and influencing direction of individual features (i.e., variables).ResultsOur model is effective in predicting access to MOUD with an accuracy of 85.97% and area under the ROC curve of 0.9411. Notably, roughly half of the model’s predictive power emerges from facility type (23.34%) and geographic location (18.71%); other influential factors include referral source (6.74%), history of prior treatment (4.41%), and frequency of opioid use (3.44%). We also find that unhoused patients go to facilities that overall have lower MOUD treatment rates; furthermore, relative to housed (i.e., independent living) patients at these facilities, unhoused patients receive MOUD at even lower rates. However, we hypothesize that if unhoused patients instead went to the facilities that housed patients enter at an equal percent (but still received MOUD at the lower unhoused rates), 89.50% of the disparity in MOUD access would be eliminated.ConclusionThis study demonstrates the utility of a model that predicts MOUD access and both ranks the influencing variables and compares their individual positive or negative contribution to access. Furthermore, we examine the lack of MOUD treatment among persons with unstable housing and consider approaches for improving access.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction: Despite the growing efforts to standardize coding for social determinants of health (SDOH), they are infrequently captured in electronic health records (EHRs). Most SDOH variables are still captured in the unstructured fields (i.e., free-text) of EHRs. In this study we attempt to evaluate a practical text mining approach (i.e., advanced pattern matching techniques) in identifying phrases referring to housing issues, an important SDOH domain affecting value-based healthcare providers, using EHR of a large multispecialty medical group in the New England region, United States. To present how this approach would help the health systems to address the SDOH challenges of their patients we assess the demographic and clinical characteristics of patients with and without housing issues and briefly look into the patterns of healthcare utilization among the study population and for those with and without housing challenges.Methods: We identified five categories of housing issues [i.e., homelessness current (HC), homelessness history (HH), homelessness addressed (HA), housing instability (HI), and building quality (BQ)] and developed several phrases addressing each one through collaboration with SDOH experts, consulting the literature, and reviewing existing coding standards. We developed pattern-matching algorithms (i.e., advanced regular expressions), and then applied them in the selected EHR. We assessed the text mining approach for recall (sensitivity) and precision (positive predictive value) after comparing the identified phrases with manually annotated free-text for different housing issues.Results: The study dataset included EHR structured data for a total of 20,342 patients and 2,564,344 free-text clinical notes. The mean (SD) age in the study population was 75.96 (7.51). Additionally, 58.78% of the cohort were female. BQ and HI were the most frequent housing issues documented in EHR free-text notes and HH was the least frequent one. The regular expression methodology, when compared to manual annotation, had a high level of precision (positive predictive value) at phrase, note, and patient levels (96.36, 95.00, and 94.44%, respectively) across different categories of housing issues, but the recall (sensitivity) rate was relatively low (30.11, 32.20, and 41.46%, respectively).Conclusion: Results of this study can be used to advance the research in this domain, to assess the potential value of EHR's free-text in identifying patients with a high risk of housing issues, to improve patient care and outcomes, and to eventually mitigate socioeconomic disparities across individuals and communities.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
When analyzing the ratio of homelessness to state population, New York, Vermont, and Oregon had the highest rates in 2023. However, Washington, D.C. had an estimated ** homeless individuals per 10,000 people, which was significantly higher than any of the 50 states. Homeless people by race The U.S. Department of Housing and Urban Development performs homeless counts at the end of January each year, which includes people in both sheltered and unsheltered locations. The estimated number of homeless people increased to ******* in 2023 – the highest level since 2007. However, the true figure is likely to be much higher, as some individuals prefer to stay with family or friends - making it challenging to count the actual number of homeless people living in the country. In 2023, nearly half of the people experiencing homelessness were white, while the number of Black homeless people exceeded *******. How many veterans are homeless in America? The number of homeless veterans in the United States has halved since 2010. The state of California, which is currently suffering a homeless crisis, accounted for the highest number of homeless veterans in 2022. There are many causes of homelessness among veterans of the U.S. military, including post-traumatic stress disorder (PTSD), substance abuse problems, and a lack of affordable housing.