85 datasets found
  1. a

    Indicator 3.2.1: Under-five mortality rate by sex (deaths per 1 000 live...

    • sdgs.amerigeoss.org
    • hub.arcgis.com
    Updated Aug 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN DESA Statistics Division (2020). Indicator 3.2.1: Under-five mortality rate by sex (deaths per 1 000 live births) [Dataset]. https://sdgs.amerigeoss.org/datasets/9052901d7f0946eca284218f313f6600
    Explore at:
    Dataset updated
    Aug 17, 2020
    Dataset authored and provided by
    UN DESA Statistics Division
    Area covered
    Description

    Series Name: Under-five mortality rate by sex (deaths per 1 000 live births)Series Code: SH_DYN_MORTRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.2.1: Under-5 mortality rateTarget 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/

  2. Indicator 3.2.2: Neonatal mortality rate (deaths per 1 000 live births)

    • sdgs-amerigeoss.opendata.arcgis.com
    • sdgs.amerigeoss.org
    Updated Aug 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN DESA Statistics Division (2020). Indicator 3.2.2: Neonatal mortality rate (deaths per 1 000 live births) [Dataset]. https://sdgs-amerigeoss.opendata.arcgis.com/datasets/undesa::indicator-3-2-2-neonatal-mortality-rate-deaths-per-1-000-live-births-1/about
    Explore at:
    Dataset updated
    Aug 18, 2020
    Dataset provided by
    United Nations Department of Economic and Social Affairshttps://www.un.org/en/desa
    Authors
    UN DESA Statistics Division
    Area covered
    Description

    Series Name: Neonatal mortality rate (deaths per 1 000 live births)Series Code: SH_DYN_NMRTRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.2.2: Neonatal mortality rateTarget 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/

  3. Indicator 3.2.2: Neonatal deaths (number)

    • ttmay-sdgs.hub.arcgis.com
    • sdgs.amerigeoss.org
    Updated Sep 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN DESA Statistics Division (2021). Indicator 3.2.2: Neonatal deaths (number) [Dataset]. https://ttmay-sdgs.hub.arcgis.com/datasets/undesa::indicator-3-2-2-neonatal-deaths-number
    Explore at:
    Dataset updated
    Sep 9, 2021
    Dataset provided by
    United Nations Department of Economic and Social Affairshttps://www.un.org/en/desa
    Authors
    UN DESA Statistics Division
    Area covered
    Description

    Series Name: Neonatal deaths (number)Series Code: SH_DYN_NMRTNRelease Version: 2021.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.2.2: Neonatal mortality rateTarget 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/

  4. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  5. a

    Indicator 3.2.1: Under-five deaths (number)

    • ttmay-sdgs.hub.arcgis.com
    • sdg.org
    • +3more
    Updated Sep 23, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN DESA Statistics Division (2021). Indicator 3.2.1: Under-five deaths (number) [Dataset]. https://ttmay-sdgs.hub.arcgis.com/items/b64e8998a6104047a749425c76f1e402
    Explore at:
    Dataset updated
    Sep 23, 2021
    Dataset authored and provided by
    UN DESA Statistics Division
    Area covered
    Description

    Series Name: Under-five deaths (number)Series Code: SH_DYN_MORTNRelease Version: 2021.Q2.G.03 This dataset is part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.2.1: Under-5 mortality rateTarget 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/

  6. Child mortality dataset (from the UN Inter-agency Group for Child Mortality...

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Nov 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fatine Ezbakhe; Fatine Ezbakhe; Agustí Pérez-Foguet; Agustí Pérez-Foguet (2020). Child mortality dataset (from the UN Inter-agency Group for Child Mortality Estimation database). June 2019 [Dataset]. http://doi.org/10.5281/zenodo.3369247
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 17, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Fatine Ezbakhe; Fatine Ezbakhe; Agustí Pérez-Foguet; Agustí Pérez-Foguet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset compromises all country data included in the UN Inter-agency Group for Child Mortality Estimation (IGME) database (https://childmortality.org/data, downloaded June 2019).

    It includes:

    Reference area: name of the country

    Indicator: child mortality indicator (neonatal mortality, infant mortality, under-5 mortality and mortality rate age 5 to 14)

    Sex: sex of the child (male, female and total)

    Series name: name of survey/census/VR [note: UN IGME estimates, i.e. not source data, are identified as "UN IGME estimate" in this field]

    Series year: year of survey/census/VR series

    Observation value: value of indicator from survey/census/VR

    Observation status: indicates whether the data point is included or excluded for estimation [status of "normal" indicates UN IGME estimate, i.e. not source data]

    Series Category: category of survey/census/VR, and can be:

    • DHS [Demographic and Health Survey]
    • MIS [Malaria Indicator Survey]
    • AIS [AIDS Indicator Survey]
    • Interim DHS
    • Special DHS
    • NDHS [National DHS]
    • WFS [World Fertility Survey]
    • MICS [Multiple Indicator Cluster Survey]
    • NMICS [National MICS]
    • RHS [Reproductive Health Survey]
    • PAP [Pan Arab Project for Child or Pan Arab Project for Family Health or Gulf Famly Health Survey]
    • LSMS [Living Standard Measurement Survey]
    • Panel [Dual record, multiround/follow-up survey and longitudinal/panel survey]
    • Census
    • VR [Vital Registration]
    • SVR [Sample Vital Registration]
    • Others [e.g. Life Tables]

    Series type: the type of calculation method used to derive the indicator value (direct, indirect, household deaths, life table and vital records)

    Standard error: sampling standard error of the observation value

    Series method: data collection method, and can be:

    • Survey/census with Full Birth Histories
    • Survey/census with Summary Birth Histories
    • Survey/census with Household death
    • Vital Registration
    • Other

    Lower and upper bound: the lower and upper bounds of 90% uncertainty interval of UN IGME estimates (for estimates only, i.e., not source data).

    The dataset is used in the following paper:

    Ezbakhe, F. and Pérez-Foguet, A. (2019) Levels and trends in child mortality: a compositional approach. Demographic Research (Under Review)

  7. Infant mortality rate in India 2023

    • statista.com
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Infant mortality rate in India 2023 [Dataset]. https://www.statista.com/statistics/806931/infant-mortality-in-india/
    Explore at:
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    In 2023, the infant mortality rate in India was at about 24.5 deaths per 1,000 live births, a significant decrease from previous years. Infant mortality as an indicatorThe infant mortality rate is the number of deaths of children under one year of age per 1,000 live births. This rate is an important key indicator for a country’s health and standard of living; a low infant mortality rate indicates a high standard of healthcare. Causes of infant mortality include premature birth, sepsis or meningitis, sudden infant death syndrome, and pneumonia. Globally, the infant mortality rate has shrunk from 63 infant deaths per 1,000 live births to 27 since 1990 and is forecast to drop to 8 infant deaths per 1,000 live births by the year 2100. India’s rural problemWith 32 infant deaths per 1,000 live births, India is neither among the countries with the highest nor among those with the lowest infant mortality rate. Its decrease indicates an increase in medical care and hygiene, as well as a decrease in female infanticide. Increasing life expectancy at birth is another indicator that shows that the living conditions of the Indian population are improving. Still, India’s inhabitants predominantly live in rural areas, where standards of living as well as access to medical care and hygiene are traditionally lower and more complicated than in cities. Public health programs are thus put in place by the government to ensure further improvement.

  8. c

    California Hospital Inpatient Mortality Rates and Quality Ratings

    • data.chhs.ca.gov
    • healthdata.gov
    • +5more
    csv, pdf, xls, zip
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2025). California Hospital Inpatient Mortality Rates and Quality Ratings [Dataset]. https://data.chhs.ca.gov/dataset/california-hospital-inpatient-mortality-rates-and-quality-ratings
    Explore at:
    pdf, xls, pdf(150793), pdf(147517), pdf(451935), pdf(280571), csv(6740988), xls(214016), pdf(729792), xls(172032), pdf(321071), pdf(419645), pdf(100994), pdf(239000), csv(3189182), pdf(83317), pdf(363570), xls(165376), pdf(238223), pdf(445171), pdf(713960), pdf(796065), xls(143872), pdf(1235022), pdf(538945), pdf(730246), xls(163840), xls(141824), pdf(700782), pdf(134270), zip, xls(166400), pdf(254426)Available download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Department of Health Care Access and Information
    Area covered
    California
    Description

    The dataset contains risk-adjusted mortality rates, quality ratings, and number of deaths and cases for 6 medical conditions treated (Acute Stroke, Acute Myocardial Infarction, Heart Failure, Gastrointestinal Hemorrhage, Hip Fracture and Pneumonia) and 3 procedures performed (Carotid Endarterectomy, Pancreatic Resection, and Percutaneous Coronary Intervention) in California hospitals. The 2023 IMIs were generated using AHRQ Version 2024, while previous years' IMIs were generated with older versions of AHRQ software (2022 IMIs by Version 2023, 2021 IMIs by Version 2022, 2020 IMIs by Version 2021, 2019 IMIs by Version 2020, 2016-2018 IMIs by Version 2019, 2014 and 2015 IMIs by Version 5.0, and 2012 and 2013 IMIs by Version 4.5). The differences in the statistical method employed and inclusion and exclusion criteria using different versions can lead to different results. Users should not compare trends of mortality rates over time. However, many hospitals showed consistent performance over years; “better” performing hospitals may perform better and “worse” performing hospitals may perform worse consistently across years. This dataset does not include conditions treated or procedures performed in outpatient settings. Please refer to statewide table for California overall rates: https://data.chhs.ca.gov/dataset/california-hospital-inpatient-mortality-rates-and-quality-ratings/resource/af88090e-b6f5-4f65-a7ea-d613e6569d96

  9. NCHS - Potentially Excess Deaths from the Five Leading Causes of Death

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Potentially Excess Deaths from the Five Leading Causes of Death [Dataset]. https://catalog.data.gov/dataset/nchs-potentially-excess-deaths-from-the-five-leading-causes-of-death
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.

  10. B

    Belarus BY: Mortality Rate: Infant: per 1000 Live Births

    • ceicdata.com
    • dr.ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Belarus BY: Mortality Rate: Infant: per 1000 Live Births [Dataset]. https://www.ceicdata.com/en/belarus/social-health-statistics/by-mortality-rate-infant-per-1000-live-births
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    Belarus
    Description

    Belarus BY: Mortality Rate: Infant: per 1000 Live Births data was reported at 1.900 Ratio in 2023. This records a decrease from the previous number of 2.000 Ratio for 2022. Belarus BY: Mortality Rate: Infant: per 1000 Live Births data is updated yearly, averaging 12.350 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 36.900 Ratio in 1960 and a record low of 1.900 Ratio in 2023. Belarus BY: Mortality Rate: Infant: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Belarus – Table BY.World Bank.WDI: Social: Health Statistics. Infant mortality rate is the number of infants dying before reaching one year of age, per 1,000 live births in a given year.;Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.;Weighted average;Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys. Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.

  11. a

    Data from: All-Cause Mortality

    • egis-lacounty.hub.arcgis.com
    • data.lacounty.gov
    • +2more
    Updated Dec 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). All-Cause Mortality [Dataset]. https://egis-lacounty.hub.arcgis.com/datasets/all-cause-mortality
    Explore at:
    Dataset updated
    Dec 21, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Death rate has been age-adjusted by the 2000 U.S. standard populaton. All-cause mortality is an important measure of community health. All-cause mortality is heavily driven by the social determinants of health, with significant inequities observed by race and ethnicity and socioeconomic status. Black residents have consistently experienced the highest all-cause mortality rate compared to other racial and ethnic groups. During the COVID-19 pandemic, Latino residents also experienced a sharp increase in their all-cause mortality rate compared to White residents, demonstrating a reversal in the previously observed mortality advantage, in which Latino individuals historically had higher life expectancy and lower mortality than White individuals despite having lower socioeconomic status on average. The disproportionately high all-cause mortality rates observed among Black and Latino residents, especially since the onset of the COVID-19 pandemic, are due to differences in social and economic conditions and opportunities that unfairly place these groups at higher risk of developing and dying from a wide range of health conditions, including COVID-19.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  12. A

    ‘Death Cause by Country’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Death Cause by Country’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-death-cause-by-country-3051/00ae526f/?iid=001-918&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Death Cause by Country’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/majyhain/death-cause-by-country on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Across low- and middle-income countries, mortality from infectious disease, malnutrition, nutritional deficiencies, neonatal and maternal deaths are common – and in some cases, dominant. In Kenya, for example, diarrheal infections are still the primary cause of death. HIV/AIDS is the major cause of death in South Africa and Botswana. However, in high-income countries, the proportion of deaths due by these causes is quite low.

    Content

    The dataset contains thirty two columns and contains the death causes by All Genders (Male, Female) and by all age group.

    Acknowledgements

    Users are allowed to use, copy, distribute and cite the dataset as follows: “Majyhain, Death Causes by Country, Kaggle Dataset, February 04, 2022.”

    Inspiration

    The ideas for this data is to: • The amount of people dying by various diseases.

    • What is the death cause reasons by country.

    • Number of People dying by various diseases.

    • Which disease is causing more deaths by country.

    • Which disease is causing more deaths by world.

    References:

    The Data is collected from the following sites:

    https://www.who.int/

    --- Original source retains full ownership of the source dataset ---

  13. County Cancer Death Rates

    • kaggle.com
    Updated Dec 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). County Cancer Death Rates [Dataset]. https://www.kaggle.com/datasets/thedevastator/county-cancer-death-rates
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    County Cancer Death Rates

    County-level cancer death rates with related variables

    By Noah Rippner [source]

    About this dataset

    This dataset provides comprehensive information on county-level cancer death and incidence rates, as well as various related variables. It includes data on age-adjusted death rates, average deaths per year, recent trends in cancer death rates, recent 5-year trends in death rates, and average annual counts of cancer deaths or incidence. The dataset also includes the federal information processing standards (FIPS) codes for each county.

    Additionally, the dataset indicates whether each county met the objective of a targeted death rate of 45.5. The recent trend in cancer deaths or incidence is also captured for analysis purposes.

    The purpose of the death.csv file within this dataset is to offer detailed information specifically concerning county-level cancer death rates and related variables. On the other hand, the incd.csv file contains data on county-level cancer incidence rates and additional relevant variables.

    To provide more context and understanding about the included data points, there is a separate file named cancer_data_notes.csv. This file serves to provide informative notes and explanations regarding the various aspects of the cancer data used in this dataset.

    Please note that this particular description provides an overview for a linear regression walkthrough using this dataset based on Python programming language. It highlights how to source and import the data properly before moving into data preparation steps such as exploratory analysis. The walkthrough further covers model selection and important model diagnostics measures.

    It's essential to bear in mind that this example serves as an initial attempt at creating a multivariate Ordinary Least Squares regression model using these datasets from various sources like cancer.gov along with US Census American Community Survey data. This baseline model allows easy comparisons with future iterations intended for improvements or refinements.

    Important columns found within this extensively documented Kaggle dataset include County names along with their corresponding FIPS codes—a standardized coding system by Federal Information Processing Standards (FIPS). Moreover,Met Objective of 45.5? (1) column denotes whether a specific county achieved the targeted objective of a death rate of 45.5 or not.

    Overall, this dataset aims to offer valuable insights into county-level cancer death and incidence rates across various regions, providing policymakers, researchers, and healthcare professionals with essential information for analysis and decision-making purposes

    How to use the dataset

    • Familiarize Yourself with the Columns:

      • County: The name of the county.
      • FIPS: The Federal Information Processing Standards code for the county.
      • Met Objective of 45.5? (1): Indicates whether the county met the objective of a death rate of 45.5 (Boolean).
      • Age-Adjusted Death Rate: The age-adjusted death rate for cancer in the county.
      • Average Deaths per Year: The average number of deaths per year due to cancer in the county.
      • Recent Trend (2): The recent trend in cancer death rates/incidence in the county.
      • Recent 5-Year Trend (2) in Death Rates: The recent 5-year trend in cancer death rates/incidence in the county.
      • Average Annual Count: The average annual count of cancer deaths/incidence in the county.
    • Determine Counties Meeting Objective: Use this dataset to identify counties that have met or not met an objective death rate threshold of 45.5%. Look for entries where Met Objective of 45.5? (1) is marked as True or False.

    • Analyze Age-Adjusted Death Rates: Study and compare age-adjusted death rates across different counties using Age-Adjusted Death Rate values provided as floats.

    • Explore Average Deaths per Year: Examine and compare average annual counts and trends regarding deaths caused by cancer, using Average Deaths per Year as a reference point.

    • Investigate Recent Trends: Assess recent trends related to cancer deaths or incidence by analyzing data under columns such as Recent Trend, Recent Trend (2), and Recent 5-Year Trend (2) in Death Rates. These columns provide information on how cancer death rates/incidence have changed over time.

    • Compare Counties: Utilize this dataset to compare counties based on their cancer death rates and related variables. Identify counties with lower or higher average annual counts, age-adjusted death rates, or recent trends to analyze and understand the factors contributing ...

  14. d

    National Longitudinal Mortality Study

    • dknet.org
    • rrid.site
    • +2more
    Updated Jul 2, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). National Longitudinal Mortality Study [Dataset]. http://identifiers.org/RRID:SCR_008946
    Explore at:
    Dataset updated
    Jul 2, 2011
    Description

    A database based on a random sample of the noninstitutionalized population of the United States, developed for the purpose of studying the effects of demographic and socio-economic characteristics on differentials in mortality rates. It consists of data from 26 U.S. Current Population Surveys (CPS) cohorts, annual Social and Economic Supplements, and the 1980 Census cohort, combined with death certificate information to identify mortality status and cause of death covering the time interval, 1979 to 1998. The Current Population Surveys are March Supplements selected from the time period from March 1973 to March 1998. The NLMS routinely links geographical and demographic information from Census Bureau surveys and censuses to the NLMS database, and other available sources upon request. The Census Bureau and CMS have approved the linkage protocol and data acquisition is currently underway. The plan for the NLMS is to link information on mortality to the NLMS every two years from 1998 through 2006 with research on the resulting database to continue, at least, through 2009. The NLMS will continue to incorporate data from the yearly Annual Social and Economic Supplement into the study as the data become available. Based on the expected size of the Annual Social and Economic Supplements to be conducted, the expected number of deaths to be added to the NLMS through the updating process will increase the mortality content of the study to nearly 500,000 cases out of a total number of approximately 3.3 million records. This effort would also include expanding the NLMS population base by incorporating new March Supplement Current Population Survey data into the study as they become available. Linkages to the SEER and CMS datasets are also available. Data Availability: Due to the confidential nature of the data used in the NLMS, the public use dataset consists of a reduced number of CPS cohorts with a fixed follow-up period of five years. NIA does not make the data available directly. Research access to the entire NLMS database can be obtained through the NIA program contact listed. Interested investigators should email the NIA contact and send in a one page prospectus of the proposed project. NIA will approve projects based on their relevance to NIA/BSR''s areas of emphasis. Approved projects are then assigned to NLMS statisticians at the Census Bureau who work directly with the researcher to interface with the database. A modified version of the public use data files is available also through the Census restricted Data Centers. However, since the database is quite complex, many investigators have found that the most efficient way to access it is through the Census programmers. * Dates of Study: 1973-2009 * Study Features: Longitudinal * Sample Size: ~3.3 Million Link: *ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/00134

  15. M

    Financial Times - Excess mortality during COVID-19 pandemic

    • catalog.midasnetwork.us
    csv
    Updated Jul 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MIDAS Coordination Center (2023). Financial Times - Excess mortality during COVID-19 pandemic [Dataset]. https://catalog.midasnetwork.us/collection/64
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 6, 2023
    Dataset authored and provided by
    MIDAS Coordination Center
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Time period covered
    Jan 7, 2000 - May 2, 2021
    Variables measured
    disease, COVID-19, pathogen, case counts, Homo sapiens, host organism, mortality data, infectious disease, excess mortality dataset, Severe acute respiratory syndrome coronavirus 2
    Dataset funded by
    National Institute of General Medical Sciences
    Description

    This dataset contains excess mortality data for the period covering the 2020 Covid-19 pandemic. The data contains the excess mortality data for all known jurisdictions which publish all-cause mortality data meeting the following criteria: daily, weekly or monthly level of granularity; includes equivalent historical data for at least one full year before 2020, and preferably at least five years (2015-2019) and; includes data up to at least April 1, 2020

  16. Indicator 17.19.2: Proportion of countries with death registration data that...

    • sdgs-amerigeoss.opendata.arcgis.com
    • sdgs.amerigeoss.org
    • +1more
    Updated Aug 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN DESA Statistics Division (2020). Indicator 17.19.2: Proportion of countries with death registration data that are at least 75 percent complete (percent) [Dataset]. https://sdgs-amerigeoss.opendata.arcgis.com/datasets/undesa::indicator-17-19-2-proportion-of-countries-with-death-registration-data-that-are-at-least-75-percent-complete-percent-1/data
    Explore at:
    Dataset updated
    Aug 18, 2020
    Dataset provided by
    United Nations Department of Economic and Social Affairshttps://www.un.org/en/desa
    Authors
    UN DESA Statistics Division
    Area covered
    Description

    Series Name: Proportion of countries with death registration data that are at least 75 percent complete (percent)Series Code: SG_REG_DETH75Release Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 17.19.2: Proportion of countries that (a) have conducted at least one population and housing census in the last 10 years; and (b) have achieved 100 per cent birth registration and 80 per cent death registrationTarget 17.19: By 2030, build on existing initiatives to develop measurements of progress on sustainable development that complement gross domestic product, and support statistical capacity-building in developing countriesGoal 17: Strengthen the means of implementation and revitalize the Global Partnership for Sustainable DevelopmentFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/

  17. Deaths registered by area of usual residence, UK

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Feb 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths registered by area of usual residence, UK [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsregisteredbyareaofusualresidenceenglandandwales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 24, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Annual data on death registrations by area of usual residence in the UK. Summary tables including age-standardised mortality rates.

  18. f

    Table1_Different Trends in Excess Mortality in a Central European Country...

    • frontiersin.figshare.com
    • figshare.com
    xlsx
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Krisztina Bogos; Zoltan Kiss; Anna Kerpel Fronius; Gabriella Temesi; Jenő Elek; Ildikó Madurka; Zsuzsanna Cselkó; Péter Csányi; Zsolt Abonyi-Tóth; György Rokszin; Zsófia Barcza; Judit Moldvay (2023). Table1_Different Trends in Excess Mortality in a Central European Country Compared to Main European Regions in the Year of the COVID-19 Pandemic (2020): a Hungarian Analysis.XLSX [Dataset]. http://doi.org/10.3389/pore.2021.1609774.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Frontiers
    Authors
    Krisztina Bogos; Zoltan Kiss; Anna Kerpel Fronius; Gabriella Temesi; Jenő Elek; Ildikó Madurka; Zsuzsanna Cselkó; Péter Csányi; Zsolt Abonyi-Tóth; György Rokszin; Zsófia Barcza; Judit Moldvay
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hungary
    Description

    Objective: This study examined cumulative excess mortality in European countries in the year of the Covid-19 pandemic and characterized the dynamics of the pandemic in different countries, focusing on Hungary and the Central and Eastern European region.Methods: Age-standardized cumulative excess mortality was calculated based on weekly mortality data from the EUROSTAT database, and was compared between 2020 and the 2016–2019 reference period in European countries.Results: Cumulate weekly excess mortality in Hungary was in the negative range until week 44. By week 52, it reached 9,998 excess deaths, corresponding to 7.73% cumulative excess mortality vs. 2016–2019 (p-value = 0.030 vs. 2016–2019). In Q1, only Spain and Italy reported excess mortality compared to the reference period. Significant increases in excess mortality were detected between weeks 13 and 26 in Spain, United Kingdom, Belgium, Netherland and Sweden. Romania and Portugal showed the largest increases in age-standardized cumulative excess mortality in the Q3. The majority of Central and Eastern European countries experienced an outstandingly high impact of the pandemic in Q4 in terms of excess deaths. Hungary ranked 11th in cumulative excess mortality based on the latest available data of from the EUROSTAT database.Conclusion: Hungary experienced a mortality deficit in the first half of 2020 compared to previous years, which was followed by an increase in mortality during the second wave of the COVID-19 pandemic, reaching 7.7% cumulative excess mortality by the end of 2020. The excess was lower than in neighboring countries with similar dynamics of the pandemic.

  19. Japan JP: Mortality Rate: Under-5: Male: per 1000 Live Births

    • ceicdata.com
    Updated May 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Japan JP: Mortality Rate: Under-5: Male: per 1000 Live Births [Dataset]. https://www.ceicdata.com/en/japan/health-statistics
    Explore at:
    Dataset updated
    May 15, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2016
    Area covered
    Japan
    Description

    JP: Mortality Rate: Under-5: Male: per 1000 Live Births data was reported at 2.700 Ratio in 2017. This records a decrease from the previous number of 3.200 Ratio for 2015. JP: Mortality Rate: Under-5: Male: per 1000 Live Births data is updated yearly, averaging 3.400 Ratio from Dec 1990 (Median) to 2017, with 5 observations. The data reached an all-time high of 6.900 Ratio in 1990 and a record low of 2.700 Ratio in 2017. JP: Mortality Rate: Under-5: Male: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Japan – Table JP.World Bank: Health Statistics. Under-five mortality rate, male is the probability per 1,000 that a newborn male baby will die before reaching age five, if subject to male age-specific mortality rates of the specified year.; ; Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted average; Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys.

  20. A

    ‘Life Expectancy (WHO)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2018). ‘Life Expectancy (WHO)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-life-expectancy-who-bd27/702433a1/?iid=007-429&v=presentation
    Explore at:
    Dataset updated
    Feb 26, 2018
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Life Expectancy (WHO)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/kumarajarshi/life-expectancy-who on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Although there have been lot of studies undertaken in the past on factors affecting life expectancy considering demographic variables, income composition and mortality rates. It was found that affect of immunization and human development index was not taken into account in the past. Also, some of the past research was done considering multiple linear regression based on data set of one year for all the countries. Hence, this gives motivation to resolve both the factors stated previously by formulating a regression model based on mixed effects model and multiple linear regression while considering data from a period of 2000 to 2015 for all the countries. Important immunization like Hepatitis B, Polio and Diphtheria will also be considered. In a nutshell, this study will focus on immunization factors, mortality factors, economic factors, social factors and other health related factors as well. Since the observations this dataset are based on different countries, it will be easier for a country to determine the predicting factor which is contributing to lower value of life expectancy. This will help in suggesting a country which area should be given importance in order to efficiently improve the life expectancy of its population.

    Content

    The project relies on accuracy of data. The Global Health Observatory (GHO) data repository under World Health Organization (WHO) keeps track of the health status as well as many other related factors for all countries The data-sets are made available to public for the purpose of health data analysis. The data-set related to life expectancy, health factors for 193 countries has been collected from the same WHO data repository website and its corresponding economic data was collected from United Nation website. Among all categories of health-related factors only those critical factors were chosen which are more representative. It has been observed that in the past 15 years , there has been a huge development in health sector resulting in improvement of human mortality rates especially in the developing nations in comparison to the past 30 years. Therefore, in this project we have considered data from year 2000-2015 for 193 countries for further analysis. The individual data files have been merged together into a single data-set. On initial visual inspection of the data showed some missing values. As the data-sets were from WHO, we found no evident errors. Missing data was handled in R software by using Missmap command. The result indicated that most of the missing data was for population, Hepatitis B and GDP. The missing data were from less known countries like Vanuatu, Tonga, Togo, Cabo Verde etc. Finding all data for these countries was difficult and hence, it was decided that we exclude these countries from the final model data-set. The final merged file(final dataset) consists of 22 Columns and 2938 rows which meant 20 predicting variables. All predicting variables was then divided into several broad categories:​Immunization related factors, Mortality factors, Economical factors and Social factors.

    Acknowledgements

    The data was collected from WHO and United Nations website with the help of Deeksha Russell and Duan Wang.

    Inspiration

    The data-set aims to answer the following key questions: 1. Does various predicting factors which has been chosen initially really affect the Life expectancy? What are the predicting variables actually affecting the life expectancy? 2. Should a country having a lower life expectancy value(<65) increase its healthcare expenditure in order to improve its average lifespan? 3. How does Infant and Adult mortality rates affect life expectancy? 4. Does Life Expectancy has positive or negative correlation with eating habits, lifestyle, exercise, smoking, drinking alcohol etc. 5. What is the impact of schooling on the lifespan of humans? 6. Does Life Expectancy have positive or negative relationship with drinking alcohol? 7. Do densely populated countries tend to have lower life expectancy? 8. What is the impact of Immunization coverage on life Expectancy?

    --- Original source retains full ownership of the source dataset ---

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
UN DESA Statistics Division (2020). Indicator 3.2.1: Under-five mortality rate by sex (deaths per 1 000 live births) [Dataset]. https://sdgs.amerigeoss.org/datasets/9052901d7f0946eca284218f313f6600

Indicator 3.2.1: Under-five mortality rate by sex (deaths per 1 000 live births)

Explore at:
Dataset updated
Aug 17, 2020
Dataset authored and provided by
UN DESA Statistics Division
Area covered
Description

Series Name: Under-five mortality rate by sex (deaths per 1 000 live births)Series Code: SH_DYN_MORTRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.2.1: Under-5 mortality rateTarget 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/

Search
Clear search
Close search
Google apps
Main menu