100+ datasets found
  1. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  2. Global Data Regulation Diagnostic Survey Dataset 2021 - Afghanistan, Angola,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2023). Global Data Regulation Diagnostic Survey Dataset 2021 - Afghanistan, Angola, Argentina...and 77 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/3866
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    Time period covered
    2020
    Area covered
    Angola, Afghanistan, Argentina...and 77 more
    Description

    Abstract

    The Global Data Regulation Diagnostic provides a comprehensive assessment of the quality of the data governance environment. Diagnostic results show that countries have put in greater effort in adopting enabler regulatory practices than in safeguard regulatory practices. However, for public intent data, enablers for private intent data, safeguards for personal and nonpersonal data, cybersecurity and cybercrime, as well as cross-border data flows. Across all these dimensions, no income group demonstrates advanced regulatory frameworks across all dimensions, indicating significant room for the regulatory development of both enablers and safeguards remains at an intermediate stage: 47 percent of enabler good practices and 41 percent of good safeguard practices are adopted across countries. Under the enabler and safeguard pillars, the diagnostic covers dimensions of e-commerce/e-transactions, enablers further improvement on data governance environment.

    The Global Data Regulation Diagnostic is the first comprehensive assessment of laws and regulations on data governance. It covers enabler and safeguard regulatory practices in 80 countries providing indicators to assess and compare their performance. This Global Data Regulation Diagnostic develops objective and standardized indicators to measure the regulatory environment for the data economy across countries. The indicators aim to serve as a diagnostic tool so countries can assess and compare their performance vis-ĂĄ-vis other countries. Understanding the gap with global regulatory good practices is a necessary first step for governments when identifying and prioritizing reforms.

    Geographic coverage

    80 countries

    Analysis unit

    Country

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    The diagnostic is based on a detailed assessment of domestic laws, regulations, and administrative requirements in 80 countries selected to ensure a balanced coverage across income groups, regions, and different levels of digital technology development. Data are further verified through a detailed desk research of legal texts, reflecting the regulatory status of each country as of June 1, 2020.

    Mode of data collection

    Mail Questionnaire [mail]

    Research instrument

    The questionnaire comprises 37 questions designed to determine if a country has adopted good regulatory practice on data governance. The responses are then scored and assigned a normative interpretation. Related questions fall into seven clusters so that when the scores are averaged, each cluster provides an overall sense of how it performs in its corresponding regulatory and legal dimensions. These seven dimensions are: (1) E-commerce/e-transaction; (2) Enablers for public intent data; (3) Enablers for private intent data; (4) Safeguards for personal data; (5) Safeguards for nonpersonal data; (6) Cybersecurity and cybercrime; (7) Cross-border data transfers.

    Response rate

    100%

  3. T

    GOLD RESERVES by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2014). GOLD RESERVES by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gold-reserves
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    May 26, 2014
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GOLD RESERVES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  4. N

    Town And Country, MO Population Breakdown by Gender and Age Dataset: Male...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Town And Country, MO Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e20538d3-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Town and Country
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Town And Country by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Town And Country. The dataset can be utilized to understand the population distribution of Town And Country by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Town And Country. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Town And Country.

    Key observations

    Largest age group (population): Male # 60-64 years (538) | Female # 45-49 years (537). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Town And Country population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Town And Country is shown in the following column.
    • Population (Female): The female population in the Town And Country is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Town And Country for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Town And Country Population by Gender. You can refer the same here

  5. Data from: OSDG Community Dataset (OSDG-CD)

    • data.niaid.nih.gov
    Updated Jun 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNDP IICPSD SDG AI Lab (2024). OSDG Community Dataset (OSDG-CD) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5550237
    Explore at:
    Dataset updated
    Jun 3, 2024
    Dataset provided by
    United Nations Development Programmehttp://www.undp.org/
    OSDG
    PPMI
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The OSDG Community Dataset (OSDG-CD) is a public dataset of thousands of text excerpts, which were validated by over 1,400 OSDG Community Platform (OSDG-CP) citizen scientists from over 140 countries, with respect to the Sustainable Development Goals (SDGs).

    Dataset Information

    In support of the global effort to achieve the Sustainable Development Goals (SDGs), OSDG is realising a series of SDG-labelled text datasets. The OSDG Community Dataset (OSDG-CD) is the direct result of the work of more than 1,400 volunteers from over 130 countries who have contributed to our understanding of SDGs via the OSDG Community Platform (OSDG-CP). The dataset contains tens of thousands of text excerpts (henceforth: texts) which were validated by the Community volunteers with respect to SDGs. The data can be used to derive insights into the nature of SDGs using either ontology-based or machine learning approaches.

    📘 The file contains 43,0210 (+390) text excerpts and a total of 310,328 (+3,733) assigned labels.

    To learn more about the project, please visit the OSDG website and the official GitHub page. Explore a detailed overview of the OSDG methodology in our recent paper "OSDG 2.0: a multilingual tool for classifying text data by UN Sustainable Development Goals (SDGs)".

    Source Data

    The dataset consists of paragraph-length text excerpts derived from publicly available documents, including reports, policy documents and publication abstracts. A significant number of documents (more than 3,000) originate from UN-related sources such as SDG-Pathfinder and SDG Library. These sources often contain documents that already have SDG labels associated with them. Each text is comprised of 3 to 6 sentences and is about 90 words on average.

    Methodology

    All the texts are evaluated by volunteers on the OSDG-CP. The platform is an ambitious attempt to bring together researchers, subject-matter experts and SDG advocates from all around the world to create a large and accurate source of textual information on the SDGs. The Community volunteers use the platform to participate in labelling exercises where they validate each text's relevance to SDGs based on their background knowledge.

    In each exercise, the volunteer is shown a text together with an SDG label associated with it – this usually comes from the source – and asked to either accept or reject the suggested label.

    There are 3 types of exercises:

    All volunteers start with the mandatory introductory exercise that consists of 10 pre-selected texts. Each volunteer must complete this exercise before they can access 2 other exercise types. Upon completion, the volunteer reviews the exercise by comparing their answers with the answers of the rest of the Community using aggregated statistics we provide, i.e., the share of those who accepted and rejected the suggested SDG label for each of the 10 texts. This helps the volunteer to get a feel for the platform.

    SDG-specific exercises where the volunteer validates texts with respect to a single SDG, e.g., SDG 1 No Poverty.

    All SDGs exercise where the volunteer validates a random sequence of texts where each text can have any SDG as its associated label.

    After finishing the introductory exercise, the volunteer is free to select either SDG-specific or All SDGs exercises. Each exercise, regardless of its type, consists of 100 texts. Once the exercise is finished, the volunteer can either label more texts or exit the platform. Of course, the volunteer can finish the exercise early. All progress is saved and recorded still.

    To ensure quality, each text is validated by up to 9 different volunteers and all texts included in the public release of the data have been validated by at least 3 different volunteers.

    It is worth keeping in mind that all exercises present the volunteers with a binary decision problem, i.e., either accept or reject a suggested label. The volunteers are never asked to select one or more SDGs that a certain text might relate to. The rationale behind this set-up is that asking a volunteer to select from 17 SDGs is extremely inefficient. Currently, all texts are validated against only one associated SDG label.

    Column Description

    doi - Digital Object Identifier of the original document

    text_id - unique text identifier

    text - text excerpt from the document

    sdg - the SDG the text is validated against

    labels_negative - the number of volunteers who rejected the suggested SDG label

    labels_positive - the number of volunteers who accepted the suggested SDG label

    agreement - agreement score based on the formula (agreement = \frac{|labels_{positive} - labels_{negative}|}{labels_{positive} + labels_{negative}})

    Further Information

    Do not hesitate to share with us your outputs, be it a research paper, a machine learning model, a blog post, or just an interesting observation. All queries can be directed to community@osdg.ai.

  6. 2022 Ray Dalio Country Power Index

    • kaggle.com
    Updated Oct 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alex Caldarone (2022). 2022 Ray Dalio Country Power Index [Dataset]. https://www.kaggle.com/alexcaldarone/2022-ray-dalio-country-power-index/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 9, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Alex Caldarone
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains information gathered from the Ray Dalio Country Power Appendix, where the author displays the tables with the data he used to determine the score of each country.

    The data has been gathered and formatted in a way that makes it easy to analyze.

    This dataset contains 3 files: - country_ z _scores (csv): each column contains the z-score for that measure for each country - country_rankings (csv): each column contains the rank that is assigned to each nation for that measure (based on z-score) - data_description (txt): contains detailed description of what the measures used in the dataset mean.

    All the information is updated as of April 2022.

  7. T

    GDP by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 29, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2011). GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gdp
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jun 29, 2011
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  8. LinkedIn Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2021). LinkedIn Datasets [Dataset]. https://brightdata.com/products/datasets/linkedin
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 17, 2021
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Unlock the full potential of LinkedIn data with our extensive dataset that combines profiles, company information, and job listings into one powerful resource for business decision-making, strategic hiring, competitive analysis, and market trend insights. This all-encompassing dataset is ideal for professionals, recruiters, analysts, and marketers aiming to enhance their strategies and operations across various business functions. Dataset Features

    Profiles: Dive into detailed public profiles featuring names, titles, positions, experience, education, skills, and more. Utilize this data for talent sourcing, lead generation, and investment signaling, with a refresh rate ensuring up to 30 million records per month. Companies: Access comprehensive company data including ID, country, industry, size, number of followers, website details, subsidiaries, and posts. Tailored subsets by industry or region provide invaluable insights for CRM enrichment, competitive intelligence, and understanding the startup ecosystem, updated monthly with up to 40 million records. Job Listings: Explore current job opportunities detailed with job titles, company names, locations, and employment specifics such as seniority levels and employment functions. This dataset includes direct application links and real-time application numbers, serving as a crucial tool for job seekers and analysts looking to understand industry trends and the job market dynamics.

    Customizable Subsets for Specific Needs Our LinkedIn dataset offers the flexibility to tailor the dataset according to your specific business requirements. Whether you need comprehensive insights across all data points or are focused on specific segments like job listings, company profiles, or individual professional details, we can customize the dataset to match your needs. This modular approach ensures that you get only the data that is most relevant to your objectives, maximizing efficiency and relevance in your strategic applications. Popular Use Cases

    Strategic Hiring and Recruiting: Track talent movement, identify growth opportunities, and enhance your recruiting efforts with targeted data. Market Analysis and Competitive Intelligence: Gain a competitive edge by analyzing company growth, industry trends, and strategic opportunities. Lead Generation and CRM Enrichment: Enrich your database with up-to-date company and professional data for targeted marketing and sales strategies. Job Market Insights and Trends: Leverage detailed job listings for a nuanced understanding of employment trends and opportunities, facilitating effective job matching and market analysis. AI-Driven Predictive Analytics: Utilize AI algorithms to analyze large datasets for predicting industry shifts, optimizing business operations, and enhancing decision-making processes based on actionable data insights.

    Whether you are mapping out competitive landscapes, sourcing new talent, or analyzing job market trends, our LinkedIn dataset provides the tools you need to succeed. Customize your access to fit specific needs, ensuring that you have the most relevant and timely data at your fingertips.

  9. Scientific JOURNALS Indicators & Info - SCImagoJR

    • kaggle.com
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Jalaali (2025). Scientific JOURNALS Indicators & Info - SCImagoJR [Dataset]. https://www.kaggle.com/datasets/alijalali4ai/scimagojr-scientific-journals-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    Kaggle
    Authors
    Ali Jalaali
    Description


    The SCImago Journal & Country Rank is a publicly available portal that includes the journals and country scientific indicators developed from the information contained in the ScopusÂŽ database (Elsevier B.V.). These indicators can be used to assess and analyze scientific domains. Journals can be compared or analysed separately.


    💬Also have a look at
    💡 COUNTRIES Research & Science Dataset - SCImagoJR
    💡 UNIVERSITIES & Research INSTITUTIONS Rank - SCImagoIR

    • Journals can be grouped by subject area (27 major thematic areas), subject category (309 specific subject categories) or by country.
    • Citation data is drawn from over 34,100 titles from more than 5,000 international publishers
    • This platform takes its name from the SCImago Journal Rank (SJR) indicator , developed by SCImago from the widely known algorithm Google PageRank™. This indicator shows the visibility of the journals contained in the ScopusÂŽ database from 1996.
    • SCImago is a research group from the Consejo Superior de Investigaciones CientĂ­ficas (CSIC), University of Granada, Extremadura, Carlos III (Madrid) and AlcalĂĄ de Henares, dedicated to information analysis, representation and retrieval by means of visualisation techniques.

    ☢️❓The entire dataset is obtained from public and open-access data of ScimagoJR (SCImago Journal & Country Rank)
    ScimagoJR Journal Rank
    SCImagoJR About Us

    Available indicators:

    • SJR (SCImago Journal Rank) indicator: It expresses the average number of weighted citations received in the selected year by the documents published in the selected journal in the three previous years, --i.e. weighted citations received in year X to documents published in the journal in years X-1, X-2 and X-3. See detailed description of SJR (PDF).
    • H Index: The h index expresses the journal's number of articles (h) that have received at least h citations. It quantifies both journal scientific productivity and scientific impact and it is also applicable to scientists, countries, etc. (see H-index wikipedia definition)
    • Total Documents: Output of the selected period. All types of documents are considered, including citable and non citable documents.
    • Total Documents (3years): Published documents in the three previous years (selected year documents are excluded), i.e.when the year X is selected, then X-1, X-2 and X-3 published documents are retrieved. All types of documents are considered, including citable and non citable documents.
    • Citable Documents (3 years): Number of citable documents published by a journal in the three previous years (selected year documents are excluded). Exclusively articles, reviews and conference papers are considered. Non-citable Docs. (Available in the graphics) Non-citable documents ratio in the period being considered.
    • Total Cites (3years): Number of citations received in the seleted year by a journal to the documents published in the three previous years, --i.e. citations received in year X to documents published in years X-1, X-2 and X-3. All types of documents are considered.
    • Cites per Document (2 years): Average citations per document in a 2 year period. It is computed considering the number of citations received by a journal in the current year to the documents published in the two previous years, --i.e. citations received in year X to documents published in years X-1 and X-2.
    • Cites per Document (3 years): Average citations per document in a 3 year period. It is computed considering the number of citations received by a journal in the current year to the documents published in the three previous years, --i.e. citations received in year X to documents published in years X-1, X-2 and X-3.
    • Self Cites: Number of journal's self-citations in the seleted year to its own documents published in the three previous years, --i.e. self-citations in year X to documents published in years X-1, X-2 and X-3. All types of documents are considered.
    • Cited Documents: Number of documents cited at least once in the three previous years, --i.e. years X-1, X-2 and X-3
    • Uncited Documents: Number of uncited documents in the three previous years, --i.e. years X-1, X-2 and X-3
    • Total References: It includes all the bibliographical references in a journal in the selected period.
    • References per Document:Average number of references per document in the selected year.
    • % International Collaboration: Document ratio whose affiliation includes more than one country address.
  10. d

    International Cigarette Consumption Database v1.3

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Poirier, Mathieu JP; Guindon, G Emmanuel; Sritharan, Lathika; Hoffman, Steven J (2023). International Cigarette Consumption Database v1.3 [Dataset]. http://doi.org/10.5683/SP2/AOVUW7
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Poirier, Mathieu JP; Guindon, G Emmanuel; Sritharan, Lathika; Hoffman, Steven J
    Time period covered
    Jan 1, 1970 - Jan 1, 2015
    Description

    This database contains tobacco consumption data from 1970-2015 collected through a systematic search coupled with consultation with country and subject-matter experts. Data quality appraisal was conducted by at least two research team members in duplicate, with greater weight given to official government sources. All data was standardized into units of cigarettes consumed and a detailed accounting of data quality and sourcing was prepared. Data was found for 82 of 214 countries for which searches for national cigarette consumption data were conducted, representing over 95% of global cigarette consumption and 85% of the world’s population. Cigarette consumption fell in most countries over the past three decades but trends in country specific consumption were highly variable. For example, China consumed 2.5 million metric tonnes (MMT) of cigarettes in 2013, more than Russia (0.36 MMT), the United States (0.28 MMT), Indonesia (0.28 MMT), Japan (0.20 MMT), and the next 35 highest consuming countries combined. The US and Japan achieved reductions of more than 0.1 MMT from a decade earlier, whereas Russian consumption plateaued, and Chinese and Indonesian consumption increased by 0.75 MMT and 0.1 MMT, respectively. These data generally concord with modelled country level data from the Institute for Health Metrics and Evaluation and have the additional advantage of not smoothing year-over-year discontinuities that are necessary for robust quasi-experimental impact evaluations. Before this study, publicly available data on cigarette consumption have been limited—either inappropriate for quasi-experimental impact evaluations (modelled data), held privately by companies (proprietary data), or widely dispersed across many national statistical agencies and research organisations (disaggregated data). This new dataset confirms that cigarette consumption has decreased in most countries over the past three decades, but that secular country specific consumption trends are highly variable. The findings underscore the need for more robust processes in data reporting, ideally built into international legal instruments or other mandated processes. To monitor the impact of the WHO Framework Convention on Tobacco Control and other tobacco control interventions, data on national tobacco production, trade, and sales should be routinely collected and openly reported. The first use of this database for a quasi-experimental impact evaluation of the WHO Framework Convention on Tobacco Control is: Hoffman SJ, Poirier MJP, Katwyk SRV, Baral P, Sritharan L. Impact of the WHO Framework Convention on Tobacco Control on global cigarette consumption: quasi-experimental evaluations using interrupted time series analysis and in-sample forecast event modelling. BMJ. 2019 Jun 19;365:l2287. doi: https://doi.org/10.1136/bmj.l2287 Another use of this database was to systematically code and classify longitudinal cigarette consumption trajectories in European countries since 1970 in: Poirier MJ, Lin G, Watson LK, Hoffman SJ. Classifying European cigarette consumption trajectories from 1970 to 2015. Tobacco Control. 2022 Jan. DOI: 10.1136/tobaccocontrol-2021-056627. Statement of Contributions: Conceived the study: GEG, SJH Identified multi-country datasets: GEG, MP Extracted data from multi-country datasets: MP Quality assessment of data: MP, GEG Selection of data for final analysis: MP, GEG Data cleaning and management: MP, GL Internet searches: MP (English, French, Spanish, Portuguese), GEG (English, French), MYS (Chinese), SKA (Persian), SFK (Arabic); AG, EG, BL, MM, YM, NN, EN, HR, KV, CW, and JW (English), GL (English) Identification of key informants: GEG, GP Project Management: LS, JM, MP, SJH, GEG Contacts with Statistical Agencies: MP, GEG, MYS, SKA, SFK, GP, BL, MM, YM, NN, HR, KV, JW, GL Contacts with key informants: GEG, MP, GP, MYS, GP Funding: GEG, SJH SJH: Hoffman, SJ; JM: Mammone J; SRVK: Rogers Van Katwyk, S; LS: Sritharan, L; MT: Tran, M; SAK: Al-Khateeb, S; AG: Grjibovski, A.; EG: Gunn, E; SKA: Kamali-Anaraki, S; BL: Li, B; MM: Mahendren, M; YM: Mansoor, Y; NN: Natt, N; EN: Nwokoro, E; HR: Randhawa, H; MYS: Yunju Song, M; KV: Vercammen, K; CW: Wang, C; JW: Woo, J; MJPP: Poirier, MJP; GEG: Guindon, EG; GP: Paraje, G; GL Gigi Lin Key informants who provided data: Corne van Walbeek (South Africa, Jamaica) Frank Chaloupka (US) Ayda Yurekli (Turkey) Dardo Curti (Uruguay) Bungon Ritthiphakdee (Thailand) Jakub Lobaszewski (Poland) Guillermo Paraje (Chile, Argentina) Key informants who provided useful insights: Carlos Manuel Guerrero López (Mexico) Muhammad Jami Husain (Bangladesh) Nigar Nargis (Bangladesh) Rijo M John (India) Evan Blecher (Nigeria, Indonesia, Philippines, South Africa) Yagya Karki (Nepal) Anne CK Quah (Malaysia) Nery Suarez Lugo (Cuba) Agencies providing assistance: Irani... Visit https://dataone.org/datasets/sha256%3Aaa1b4aae69c3399c96bfbf946da54abd8f7642332d12ccd150c42ad400e9699b for complete metadata about this dataset.

  11. Data from: Family food datasets

    • gov.uk
    Updated Oct 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Environment, Food & Rural Affairs (2024). Family food datasets [Dataset]. https://www.gov.uk/government/statistical-data-sets/family-food-datasets
    Explore at:
    Dataset updated
    Oct 17, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Environment, Food & Rural Affairs
    Description

    These family food datasets contain more detailed information than the ‘Family Food’ report and mainly provide statistics from 2001 onwards. The UK household purchases and the UK household expenditure spreadsheets include statistics from 1974 onwards. These spreadsheets are updated annually when a new edition of the ‘Family Food’ report is published.

    The ‘purchases’ spreadsheets give the average quantity of food and drink purchased per person per week for each food and drink category. The ‘nutrient intake’ spreadsheets give the average nutrient intake (eg energy, carbohydrates, protein, fat, fibre, minerals and vitamins) from food and drink per person per day. The ‘expenditure’ spreadsheets give the average amount spent in pence per person per week on each type of food and drink. Several different breakdowns are provided in addition to the UK averages including figures by region, income, household composition and characteristics of the household reference person.

    UK (updated with new FYE 2023 data)

    countries and regions (CR) (updated with FYE 2022 data)

    equivalised income decile group (EID) (updated with FYE 2022 data)

  12. e

    Global - Roads Open Access Data Set - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Jul 25, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Global - Roads Open Access Data Set - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/global-roads-open-access-data-set-2010
    Explore at:
    Dataset updated
    Jul 25, 2018
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Global Roads Open Access Data Set, Version 1 (gROADSv1) was developed under the auspices of the CODATA Global Roads Data Development Task Group. The data set combines the best available roads data by country into a global roads coverage, using the UN Spatial Data Infrastructure Transport (UNSDI-T) version 2 as a common data model. All country road networks have been joined topologically at the borders, and many countries have been edited for internal topology. Source data for each country are provided in the documentation, and users are encouraged to refer to the readme file for use constraints that apply to a small number of countries. Because the data are compiled from multiple sources, the date range for road network representations ranges from the 1980s to 2010 depending on the country (most countries have no confirmed date), and spatial accuracy varies. The baseline global data set was compiled by the Information Technology Outreach Services (ITOS) of the University of Georgia. Updated data for 27 countries and 6 smaller geographic entities were assembled by Columbia University's Center for International Earth Science Information Network (CIESIN), with a focus largely on developing countries with the poorest data coverage.

  13. COVID-19 Cases by Country

    • console.cloud.google.com
    Updated Jul 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:European%20Centre%20for%20Disease%20Prevention%20and%20Control&inv=1&invt=Ab2tgg (2020). COVID-19 Cases by Country [Dataset]. https://console.cloud.google.com/marketplace/product/european-cdc/covid-19-global-cases
    Explore at:
    Dataset updated
    Jul 23, 2020
    Dataset provided by
    Googlehttp://google.com/
    Description

    This dataset is maintained by the European Centre for Disease Prevention and Control (ECDC) and reports on the geographic distribution of COVID-19 cases worldwide. This data includes COVID-19 reported cases and deaths broken out by country. This data can be visualized via ECDC’s Situation Dashboard . More information on ECDC’s response to COVID-19 is available here . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . This dataset is hosted in both the EU and US regions of BigQuery. See the links below for the appropriate dataset copy: US region EU region This dataset has significant public interest in light of the COVID-19 crisis. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate. Users of ECDC public-use data files must comply with data use restrictions to ensure that the information will be used solely for statistical analysis or reporting purposes.

  14. w

    Learning Poverty Global Database

    • data360.worldbank.org
    Updated Apr 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Learning Poverty Global Database [Dataset]. https://data360.worldbank.org/en/dataset/WB_LPGD
    Explore at:
    Dataset updated
    Apr 18, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2001 - 2023
    Description

    Will all children be able to read by 2030? The ability to read with comprehension is a foundational skill that every education system around the world strives to impart by late in primary school—generally by age 10. Moreover, attaining the ambitious Sustainable Development Goals (SDGs) in education requires first achieving this basic building block, and so does improving countries’ Human Capital Index scores. Yet past evidence from many low- and middle-income countries has shown that many children are not learning to read with comprehension in primary school. To understand the global picture better, we have worked with the UNESCO Institute for Statistics (UIS) to assemble a new dataset with the most comprehensive measures of this foundational skill yet developed, by linking together data from credible cross-national and national assessments of reading. This dataset covers 115 countries, accounting for 81% of children worldwide and 79% of children in low- and middle-income countries. The new data allow us to estimate the reading proficiency of late-primary-age children, and we also provide what are among the first estimates (and the most comprehensive, for low- and middle-income countries) of the historical rate of progress in improving reading proficiency globally (for the 2000-17 period). The results show that 53% of all children in low- and middle-income countries cannot read age-appropriate material by age 10, and that at current rates of improvement, this “learning poverty” rate will have fallen only to 43% by 2030. Indeed, we find that the goal of all children reading by 2030 will be attainable only with historically unprecedented progress. The high rate of “learning poverty” and slow progress in low- and middle-income countries is an early warning that all the ambitious SDG targets in education (and likely of social progress) are at risk. Based on this evidence, we suggest a new medium-term target to guide the World Bank’s work in low- and middle- income countries: cut learning poverty by at least half by 2030. This target, together with improved measurement of learning, can be as an evidence-based tool to accelerate progress to get all children reading by age 10.

    For further details, please refer to https://thedocs.worldbank.org/en/doc/e52f55322528903b27f1b7e61238e416-0200022022/original/Learning-poverty-report-2022-06-21-final-V7-0-conferenceEdition.pdf

  15. n

    Data from: Data reuse and the open data citation advantage

    • data.niaid.nih.gov
    • search.dataone.org
    • +2more
    zip
    Updated Oct 1, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heather A. Piwowar; Todd J. Vision (2013). Data reuse and the open data citation advantage [Dataset]. http://doi.org/10.5061/dryad.781pv
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 1, 2013
    Dataset provided by
    National Evolutionary Synthesis Center
    Authors
    Heather A. Piwowar; Todd J. Vision
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Background: Attribution to the original contributor upon reuse of published data is important both as a reward for data creators and to document the provenance of research findings. Previous studies have found that papers with publicly available datasets receive a higher number of citations than similar studies without available data. However, few previous analyses have had the statistical power to control for the many variables known to predict citation rate, which has led to uncertain estimates of the "citation benefit". Furthermore, little is known about patterns in data reuse over time and across datasets. Method and Results: Here, we look at citation rates while controlling for many known citation predictors, and investigate the variability of data reuse. In a multivariate regression on 10,555 studies that created gene expression microarray data, we found that studies that made data available in a public repository received 9% (95% confidence interval: 5% to 13%) more citations than similar studies for which the data was not made available. Date of publication, journal impact factor, open access status, number of authors, first and last author publication history, corresponding author country, institution citation history, and study topic were included as covariates. The citation benefit varied with date of dataset deposition: a citation benefit was most clear for papers published in 2004 and 2005, at about 30%. Authors published most papers using their own datasets within two years of their first publication on the dataset, whereas data reuse papers published by third-party investigators continued to accumulate for at least six years. To study patterns of data reuse directly, we compiled 9,724 instances of third party data reuse via mention of GEO or ArrayExpress accession numbers in the full text of papers. The level of third-party data use was high: for 100 datasets deposited in year 0, we estimated that 40 papers in PubMed reused a dataset by year 2, 100 by year 4, and more than 150 data reuse papers had been published by year 5. Data reuse was distributed across a broad base of datasets: a very conservative estimate found that 20% of the datasets deposited between 2003 and 2007 had been reused at least once by third parties. Conclusion: After accounting for other factors affecting citation rate, we find a robust citation benefit from open data, although a smaller one than previously reported. We conclude there is a direct effect of third-party data reuse that persists for years beyond the time when researchers have published most of the papers reusing their own data. Other factors that may also contribute to the citation benefit are considered.We further conclude that, at least for gene expression microarray data, a substantial fraction of archived datasets are reused, and that the intensity of dataset reuse has been steadily increasing since 2003.

  16. N

    Median Household Income Variation by Family Size in Country Club, MO:...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Median Household Income Variation by Family Size in Country Club, MO: Comparative analysis across 7 household sizes [Dataset]. https://www.neilsberg.com/research/datasets/23f7cf74-f81d-11ef-a994-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Country Club Village
    Variables measured
    Household size, Median Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across 7 household sizes (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out how household income varies with the size of the family unit. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median household incomes for various household sizes in Country Club, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.

    Key observations

    • Of the 7 household sizes (1 person to 7-or-more person households) reported by the census bureau, Country Club did not include 7-person households. Across the different household sizes in Country Club the mean income is $77,320, and the standard deviation is $32,313. The coefficient of variation (CV) is 41.79%. This high CV indicates high relative variability, suggesting that the incomes vary significantly across different sizes of households.
    • In the most recent year, 2023, The smallest household size for which the bureau reported a median household income was 1-person households, with an income of $33,125. It then further increased to $41,750 for 6-person households, the largest household size for which the bureau reported a median household income.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Household Sizes:

    • 1-person households
    • 2-person households
    • 3-person households
    • 4-person households
    • 5-person households
    • 6-person households
    • 7-or-more-person households

    Variables / Data Columns

    • Household Size: This column showcases 7 household sizes ranging from 1-person households to 7-or-more-person households (As mentioned above).
    • Median Household Income: Median household income, in 2023 inflation-adjusted dollars for the specific household size.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Country Club median household income. You can refer the same here

  17. N

    Income Distribution by Quintile: Mean Household Income in Town And Country,...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Town And Country, MO [Dataset]. https://www.neilsberg.com/research/datasets/9509be8d-7479-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Town and Country
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Town And Country, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 39,198, while the mean income for the highest quintile (20% of households with the highest income) is 800,926. This indicates that the top earners earn 20 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 1,201,036, which is 149.96% higher compared to the highest quintile, and 3064.02% higher compared to the lowest quintile.

    Mean household income by quintiles in Town And Country, MO (in 2022 inflation-adjusted dollars))

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Town And Country median household income. You can refer the same here

  18. a

    ACLED Conflict and Demonstrations Event Data

    • hub.arcgis.com
    • cacgeoportal.com
    Updated May 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). ACLED Conflict and Demonstrations Event Data [Dataset]. https://hub.arcgis.com/maps/1bacc9e3d30f4383af61c12cbf0401d8
    Explore at:
    Dataset updated
    May 23, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    The Armed Conflict Location & Event Data Project (ACLED) is a US-registered non-profit whose mission is to provide the highest quality real-time data on political violence and demonstrations globally. The information collected includes the type of event, its date, the location, the actors involved, a brief narrative summary, and any reported fatalities. ACLED users rely on our robust global dataset to support decision-making around policy and programming, accurately analyze political and country risk, support operational security planning, and improve supply chain management.ACLED’s transparent methodology, expert team composed of 250 individuals speaking more than 70 languages, real-time coding system, and weekly update schedule are unrivaled in the field of data collection on conflict and disorder. Global Coverage: We track political violence, demonstrations, and strategic developments around the world, covering more than 240 countries and territories.Published Weekly: Our data are collected in real time and published weekly. It is the only dataset of its kind to provide such a high update frequency, with peer datasets most often updating monthly or yearly.Historical Data: Our dataset contains at least two full years of data for all countries and territories, with more extensive coverage available for multiple regions.Experienced Researchers: Our data are coded by experienced researchers with local, country, and regional expertise and language skills.Thorough Data Collection and Sourcing: Pulling from traditional media, reports, local partner data, and verified new media, ACLED uses a tailor-made sourcing methodology for individual regions/countries.Extensive Review Process: Our data go through an exhaustive multi-stage quality assurance process to ensure their accuracy and reliability. This process includes both manual and automated error checking and contextual review.Clean, Standardized, and Validated: Our data can be easily connected with internal dashboards through our API or downloaded through the Data Export Tool on our website.Resources Available on ESRI’s Living AtlasACLED data are available through the Living Atlas for the most recent 12 month period. The data are mapped to the centroid of first administrative divisions (“admin1”) within countries (e.g., states, districts, provinces) and aggregated by month. Variables in the data include:The number of events per admin1-month, disaggregated by event type (protests, riots, battles, violence against civilians, explosions/remote violence, and strategic developments)A conservative estimate of reported fatalities per admin1-monthThe total number of distinct violent actors active in the corresponding admin1 for each monthThis Living Atlas item is a Web Map, which provides a pre-configured view of ACLED event data in a few layers:ACLED Event Counts layer: events per admin1-month, styled by predominant event type for each location.ACLED Violent Actors layer: the number of distinct violent actors per admin1-month.ACLED Fatality Estimates layer: the estimated number of fatalities from political violence per admin1-month.These layers are based on the ACLED Conflict and Demonstrations Event Data Feature Layer, which has the same data but only a basic default styling that is similar to the Event Counts layer. The Web Map layers are configured with a time-slider component to account for the multiple months of data per admin1 unit. These indicators are also available in the ACLED Conflict and Demonstrations Data Key Indicators Group Layer, which includes the same preconfigured layers but without the time-slider component or background layers.Resources Available on the ACLED WebsiteThe fully disaggregated dataset is available for download on ACLED's website including:Date (day, month, year)Actors, associated actors, and actor typesLocation information (ADMIN1, ADMIN2, ADMIN3, location and geo coordinates)A conservative fatality estimateDisorder type, event types, and sub-event typesTags further categorizing the data A notes column providing a narrative of the event For more information, please see the ACLED Codebook.To explore ACLED’s full dataset, please register on the ACLED Access Portal, following the instructions available in this Access Guide. Upon registration, you’ll receive access to ACLED data on a limited basis. Commercial users have access to 3 free data downloads company-wide with access to up to one year of historical data. Public sector users have access to 6 downloads of up to three years of historical data organization-wide. To explore options for extended access, please reach out to our Access Team (access@acleddata.com).With an ACLED license, users can also leverage ACLED’s interactive Global Dashboard and check in for weekly data updates and analysis tracking key political violence and protest trends around the world. ACLED also has several analytical tools available such as our Early Warning Dashboard, Conflict Alert System (CAST), and Conflict Index Dashboard.

  19. World Bank: Education Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). World Bank: Education Data [Dataset]. https://www.kaggle.com/datasets/theworldbank/world-bank-intl-education
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank

    Content

    This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.

    For more information, see the World Bank website.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population

    http://data.worldbank.org/data-catalog/ed-stats

    https://cloud.google.com/bigquery/public-data/world-bank-education

    Citation: The World Bank: Education Statistics

    Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by @till_indeman from Unplash.

    Inspiration

    Of total government spending, what percentage is spent on education?

  20. d

    Shopping Malls Database by Country

    • datarade.ai
    .csv, .xls, .txt
    Updated Mar 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geodatindustry (2022). Shopping Malls Database by Country [Dataset]. https://datarade.ai/data-products/shopping-malls-database-by-country-geodataindustry
    Explore at:
    .csv, .xls, .txtAvailable download formats
    Dataset updated
    Mar 9, 2022
    Dataset authored and provided by
    Geodatindustry
    Area covered
    France, Canada, United States
    Description

    To this day, the Geodatindustry database is the world's most complete and accurate in the retail, commercial and industry area, with 25 years of experience and a qualified teams.

    Geodatindustry Database is the perfect tool to lead your decision making, market analytics, strategy building, prospecting, advertizing compaigns, etc.

    By purchasing this dataset, you gain access to more than 18,000 shopping malls all over the World, hosting millions of stores and welcoming millions of visitors each year.

    Included Points of Interest in this dataset : -Shopping Malls and Centers -Outlets -Big Supermakets and Hypermarkets.

    Information (if known) : shopping mall's name, physical address, number of shops, x,y coordinates, annual visitors counts (in millions), owner and managers, global area and GLA (in ranges), the website.

    Global area and GLA Ranges : A = 0-2 500 m² B = 2 500-5 000 m² C = 5 000-10 000 m² D = 10 000-25 000 m²
    E = 25 000-50 000 m² F = 50 000-75 000 m² G = 75 000-100 000 m² H = 100 000-1M m² I = 1M-10M m² J = 10M m² and +

    Prices depend on the amount of Shopping Malls for each country. It goes from 59€ to 3990€ per country.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/

Geonames - All Cities with a population > 1000

Explore at:
15 scholarly articles cite this dataset (View in Google Scholar)
csv, json, geojson, excelAvailable download formats
Dataset updated
Mar 10, 2024
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

Search
Clear search
Close search
Google apps
Main menu