Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
The Global Data Regulation Diagnostic provides a comprehensive assessment of the quality of the data governance environment. Diagnostic results show that countries have put in greater effort in adopting enabler regulatory practices than in safeguard regulatory practices. However, for public intent data, enablers for private intent data, safeguards for personal and nonpersonal data, cybersecurity and cybercrime, as well as cross-border data flows. Across all these dimensions, no income group demonstrates advanced regulatory frameworks across all dimensions, indicating significant room for the regulatory development of both enablers and safeguards remains at an intermediate stage: 47 percent of enabler good practices and 41 percent of good safeguard practices are adopted across countries. Under the enabler and safeguard pillars, the diagnostic covers dimensions of e-commerce/e-transactions, enablers further improvement on data governance environment.
The Global Data Regulation Diagnostic is the first comprehensive assessment of laws and regulations on data governance. It covers enabler and safeguard regulatory practices in 80 countries providing indicators to assess and compare their performance. This Global Data Regulation Diagnostic develops objective and standardized indicators to measure the regulatory environment for the data economy across countries. The indicators aim to serve as a diagnostic tool so countries can assess and compare their performance vis-ĂĄ-vis other countries. Understanding the gap with global regulatory good practices is a necessary first step for governments when identifying and prioritizing reforms.
80 countries
Country
Observation data/ratings [obs]
The diagnostic is based on a detailed assessment of domestic laws, regulations, and administrative requirements in 80 countries selected to ensure a balanced coverage across income groups, regions, and different levels of digital technology development. Data are further verified through a detailed desk research of legal texts, reflecting the regulatory status of each country as of June 1, 2020.
Mail Questionnaire [mail]
The questionnaire comprises 37 questions designed to determine if a country has adopted good regulatory practice on data governance. The responses are then scored and assigned a normative interpretation. Related questions fall into seven clusters so that when the scores are averaged, each cluster provides an overall sense of how it performs in its corresponding regulatory and legal dimensions. These seven dimensions are: (1) E-commerce/e-transaction; (2) Enablers for public intent data; (3) Enablers for private intent data; (4) Safeguards for personal data; (5) Safeguards for nonpersonal data; (6) Cybersecurity and cybercrime; (7) Cross-border data transfers.
100%
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GOLD RESERVES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Town And Country by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Town And Country. The dataset can be utilized to understand the population distribution of Town And Country by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Town And Country. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Town And Country.
Key observations
Largest age group (population): Male # 60-64 years (538) | Female # 45-49 years (537). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Town And Country Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The OSDG Community Dataset (OSDG-CD) is a public dataset of thousands of text excerpts, which were validated by over 1,400 OSDG Community Platform (OSDG-CP) citizen scientists from over 140 countries, with respect to the Sustainable Development Goals (SDGs).
Dataset Information
In support of the global effort to achieve the Sustainable Development Goals (SDGs), OSDG is realising a series of SDG-labelled text datasets. The OSDG Community Dataset (OSDG-CD) is the direct result of the work of more than 1,400 volunteers from over 130 countries who have contributed to our understanding of SDGs via the OSDG Community Platform (OSDG-CP). The dataset contains tens of thousands of text excerpts (henceforth: texts) which were validated by the Community volunteers with respect to SDGs. The data can be used to derive insights into the nature of SDGs using either ontology-based or machine learning approaches.
đ The file contains 43,0210 (+390) text excerpts and a total of 310,328 (+3,733) assigned labels.
To learn more about the project, please visit the OSDG website and the official GitHub page. Explore a detailed overview of the OSDG methodology in our recent paper "OSDG 2.0: a multilingual tool for classifying text data by UN Sustainable Development Goals (SDGs)".
Source Data
The dataset consists of paragraph-length text excerpts derived from publicly available documents, including reports, policy documents and publication abstracts. A significant number of documents (more than 3,000) originate from UN-related sources such as SDG-Pathfinder and SDG Library. These sources often contain documents that already have SDG labels associated with them. Each text is comprised of 3 to 6 sentences and is about 90 words on average.
Methodology
All the texts are evaluated by volunteers on the OSDG-CP. The platform is an ambitious attempt to bring together researchers, subject-matter experts and SDG advocates from all around the world to create a large and accurate source of textual information on the SDGs. The Community volunteers use the platform to participate in labelling exercises where they validate each text's relevance to SDGs based on their background knowledge.
In each exercise, the volunteer is shown a text together with an SDG label associated with it â this usually comes from the source â and asked to either accept or reject the suggested label.
There are 3 types of exercises:
All volunteers start with the mandatory introductory exercise that consists of 10 pre-selected texts. Each volunteer must complete this exercise before they can access 2 other exercise types. Upon completion, the volunteer reviews the exercise by comparing their answers with the answers of the rest of the Community using aggregated statistics we provide, i.e., the share of those who accepted and rejected the suggested SDG label for each of the 10 texts. This helps the volunteer to get a feel for the platform.
SDG-specific exercises where the volunteer validates texts with respect to a single SDG, e.g., SDG 1 No Poverty.
All SDGs exercise where the volunteer validates a random sequence of texts where each text can have any SDG as its associated label.
After finishing the introductory exercise, the volunteer is free to select either SDG-specific or All SDGs exercises. Each exercise, regardless of its type, consists of 100 texts. Once the exercise is finished, the volunteer can either label more texts or exit the platform. Of course, the volunteer can finish the exercise early. All progress is saved and recorded still.
To ensure quality, each text is validated by up to 9 different volunteers and all texts included in the public release of the data have been validated by at least 3 different volunteers.
It is worth keeping in mind that all exercises present the volunteers with a binary decision problem, i.e., either accept or reject a suggested label. The volunteers are never asked to select one or more SDGs that a certain text might relate to. The rationale behind this set-up is that asking a volunteer to select from 17 SDGs is extremely inefficient. Currently, all texts are validated against only one associated SDG label.
Column Description
doi - Digital Object Identifier of the original document
text_id - unique text identifier
text - text excerpt from the document
sdg - the SDG the text is validated against
labels_negative - the number of volunteers who rejected the suggested SDG label
labels_positive - the number of volunteers who accepted the suggested SDG label
agreement - agreement score based on the formula (agreement = \frac{|labels_{positive} - labels_{negative}|}{labels_{positive} + labels_{negative}})
Further Information
Do not hesitate to share with us your outputs, be it a research paper, a machine learning model, a blog post, or just an interesting observation. All queries can be directed to community@osdg.ai.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains information gathered from the Ray Dalio Country Power Appendix, where the author displays the tables with the data he used to determine the score of each country.
The data has been gathered and formatted in a way that makes it easy to analyze.
This dataset contains 3 files: - country_ z _scores (csv): each column contains the z-score for that measure for each country - country_rankings (csv): each column contains the rank that is assigned to each nation for that measure (based on z-score) - data_description (txt): contains detailed description of what the measures used in the dataset mean.
All the information is updated as of April 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
https://brightdata.com/licensehttps://brightdata.com/license
Unlock the full potential of LinkedIn data with our extensive dataset that combines profiles, company information, and job listings into one powerful resource for business decision-making, strategic hiring, competitive analysis, and market trend insights. This all-encompassing dataset is ideal for professionals, recruiters, analysts, and marketers aiming to enhance their strategies and operations across various business functions. Dataset Features
Profiles: Dive into detailed public profiles featuring names, titles, positions, experience, education, skills, and more. Utilize this data for talent sourcing, lead generation, and investment signaling, with a refresh rate ensuring up to 30 million records per month. Companies: Access comprehensive company data including ID, country, industry, size, number of followers, website details, subsidiaries, and posts. Tailored subsets by industry or region provide invaluable insights for CRM enrichment, competitive intelligence, and understanding the startup ecosystem, updated monthly with up to 40 million records. Job Listings: Explore current job opportunities detailed with job titles, company names, locations, and employment specifics such as seniority levels and employment functions. This dataset includes direct application links and real-time application numbers, serving as a crucial tool for job seekers and analysts looking to understand industry trends and the job market dynamics.
Customizable Subsets for Specific Needs Our LinkedIn dataset offers the flexibility to tailor the dataset according to your specific business requirements. Whether you need comprehensive insights across all data points or are focused on specific segments like job listings, company profiles, or individual professional details, we can customize the dataset to match your needs. This modular approach ensures that you get only the data that is most relevant to your objectives, maximizing efficiency and relevance in your strategic applications. Popular Use Cases
Strategic Hiring and Recruiting: Track talent movement, identify growth opportunities, and enhance your recruiting efforts with targeted data. Market Analysis and Competitive Intelligence: Gain a competitive edge by analyzing company growth, industry trends, and strategic opportunities. Lead Generation and CRM Enrichment: Enrich your database with up-to-date company and professional data for targeted marketing and sales strategies. Job Market Insights and Trends: Leverage detailed job listings for a nuanced understanding of employment trends and opportunities, facilitating effective job matching and market analysis. AI-Driven Predictive Analytics: Utilize AI algorithms to analyze large datasets for predicting industry shifts, optimizing business operations, and enhancing decision-making processes based on actionable data insights.
Whether you are mapping out competitive landscapes, sourcing new talent, or analyzing job market trends, our LinkedIn dataset provides the tools you need to succeed. Customize your access to fit specific needs, ensuring that you have the most relevant and timely data at your fingertips.
đŹAlso have a look at
đĄ COUNTRIES Research & Science Dataset - SCImagoJR
đĄ UNIVERSITIES & Research INSTITUTIONS Rank - SCImagoIR
â˘ď¸âThe entire dataset is obtained from public and open-access data of ScimagoJR (SCImago Journal & Country Rank)
ScimagoJR Journal Rank
SCImagoJR About Us
This database contains tobacco consumption data from 1970-2015 collected through a systematic search coupled with consultation with country and subject-matter experts. Data quality appraisal was conducted by at least two research team members in duplicate, with greater weight given to official government sources. All data was standardized into units of cigarettes consumed and a detailed accounting of data quality and sourcing was prepared. Data was found for 82 of 214 countries for which searches for national cigarette consumption data were conducted, representing over 95% of global cigarette consumption and 85% of the worldâs population. Cigarette consumption fell in most countries over the past three decades but trends in country specific consumption were highly variable. For example, China consumed 2.5 million metric tonnes (MMT) of cigarettes in 2013, more than Russia (0.36 MMT), the United States (0.28 MMT), Indonesia (0.28 MMT), Japan (0.20 MMT), and the next 35 highest consuming countries combined. The US and Japan achieved reductions of more than 0.1 MMT from a decade earlier, whereas Russian consumption plateaued, and Chinese and Indonesian consumption increased by 0.75 MMT and 0.1 MMT, respectively. These data generally concord with modelled country level data from the Institute for Health Metrics and Evaluation and have the additional advantage of not smoothing year-over-year discontinuities that are necessary for robust quasi-experimental impact evaluations. Before this study, publicly available data on cigarette consumption have been limitedâeither inappropriate for quasi-experimental impact evaluations (modelled data), held privately by companies (proprietary data), or widely dispersed across many national statistical agencies and research organisations (disaggregated data). This new dataset confirms that cigarette consumption has decreased in most countries over the past three decades, but that secular country specific consumption trends are highly variable. The findings underscore the need for more robust processes in data reporting, ideally built into international legal instruments or other mandated processes. To monitor the impact of the WHO Framework Convention on Tobacco Control and other tobacco control interventions, data on national tobacco production, trade, and sales should be routinely collected and openly reported. The first use of this database for a quasi-experimental impact evaluation of the WHO Framework Convention on Tobacco Control is: Hoffman SJ, Poirier MJP, Katwyk SRV, Baral P, Sritharan L. Impact of the WHO Framework Convention on Tobacco Control on global cigarette consumption: quasi-experimental evaluations using interrupted time series analysis and in-sample forecast event modelling. BMJ. 2019 Jun 19;365:l2287. doi: https://doi.org/10.1136/bmj.l2287 Another use of this database was to systematically code and classify longitudinal cigarette consumption trajectories in European countries since 1970 in: Poirier MJ, Lin G, Watson LK, Hoffman SJ. Classifying European cigarette consumption trajectories from 1970 to 2015. Tobacco Control. 2022 Jan. DOI: 10.1136/tobaccocontrol-2021-056627. Statement of Contributions: Conceived the study: GEG, SJH Identified multi-country datasets: GEG, MP Extracted data from multi-country datasets: MP Quality assessment of data: MP, GEG Selection of data for final analysis: MP, GEG Data cleaning and management: MP, GL Internet searches: MP (English, French, Spanish, Portuguese), GEG (English, French), MYS (Chinese), SKA (Persian), SFK (Arabic); AG, EG, BL, MM, YM, NN, EN, HR, KV, CW, and JW (English), GL (English) Identification of key informants: GEG, GP Project Management: LS, JM, MP, SJH, GEG Contacts with Statistical Agencies: MP, GEG, MYS, SKA, SFK, GP, BL, MM, YM, NN, HR, KV, JW, GL Contacts with key informants: GEG, MP, GP, MYS, GP Funding: GEG, SJH SJH: Hoffman, SJ; JM: Mammone J; SRVK: Rogers Van Katwyk, S; LS: Sritharan, L; MT: Tran, M; SAK: Al-Khateeb, S; AG: Grjibovski, A.; EG: Gunn, E; SKA: Kamali-Anaraki, S; BL: Li, B; MM: Mahendren, M; YM: Mansoor, Y; NN: Natt, N; EN: Nwokoro, E; HR: Randhawa, H; MYS: Yunju Song, M; KV: Vercammen, K; CW: Wang, C; JW: Woo, J; MJPP: Poirier, MJP; GEG: Guindon, EG; GP: Paraje, G; GL Gigi Lin Key informants who provided data: Corne van Walbeek (South Africa, Jamaica) Frank Chaloupka (US) Ayda Yurekli (Turkey) Dardo Curti (Uruguay) Bungon Ritthiphakdee (Thailand) Jakub Lobaszewski (Poland) Guillermo Paraje (Chile, Argentina) Key informants who provided useful insights: Carlos Manuel Guerrero LĂłpez (Mexico) Muhammad Jami Husain (Bangladesh) Nigar Nargis (Bangladesh) Rijo M John (India) Evan Blecher (Nigeria, Indonesia, Philippines, South Africa) Yagya Karki (Nepal) Anne CK Quah (Malaysia) Nery Suarez Lugo (Cuba) Agencies providing assistance: Irani... Visit https://dataone.org/datasets/sha256%3Aaa1b4aae69c3399c96bfbf946da54abd8f7642332d12ccd150c42ad400e9699b for complete metadata about this dataset.
These family food datasets contain more detailed information than the âFamily Foodâ report and mainly provide statistics from 2001 onwards. The UK household purchases and the UK household expenditure spreadsheets include statistics from 1974 onwards. These spreadsheets are updated annually when a new edition of the âFamily Foodâ report is published.
The âpurchasesâ spreadsheets give the average quantity of food and drink purchased per person per week for each food and drink category. The ânutrient intakeâ spreadsheets give the average nutrient intake (eg energy, carbohydrates, protein, fat, fibre, minerals and vitamins) from food and drink per person per day. The âexpenditureâ spreadsheets give the average amount spent in pence per person per week on each type of food and drink. Several different breakdowns are provided in addition to the UK averages including figures by region, income, household composition and characteristics of the household reference person.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Global Roads Open Access Data Set, Version 1 (gROADSv1) was developed under the auspices of the CODATA Global Roads Data Development Task Group. The data set combines the best available roads data by country into a global roads coverage, using the UN Spatial Data Infrastructure Transport (UNSDI-T) version 2 as a common data model. All country road networks have been joined topologically at the borders, and many countries have been edited for internal topology. Source data for each country are provided in the documentation, and users are encouraged to refer to the readme file for use constraints that apply to a small number of countries. Because the data are compiled from multiple sources, the date range for road network representations ranges from the 1980s to 2010 depending on the country (most countries have no confirmed date), and spatial accuracy varies. The baseline global data set was compiled by the Information Technology Outreach Services (ITOS) of the University of Georgia. Updated data for 27 countries and 6 smaller geographic entities were assembled by Columbia University's Center for International Earth Science Information Network (CIESIN), with a focus largely on developing countries with the poorest data coverage.
This dataset is maintained by the European Centre for Disease Prevention and Control (ECDC) and reports on the geographic distribution of COVID-19 cases worldwide. This data includes COVID-19 reported cases and deaths broken out by country. This data can be visualized via ECDCâs Situation Dashboard . More information on ECDCâs response to COVID-19 is available here . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . This dataset is hosted in both the EU and US regions of BigQuery. See the links below for the appropriate dataset copy: US region EU region This dataset has significant public interest in light of the COVID-19 crisis. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate. Users of ECDC public-use data files must comply with data use restrictions to ensure that the information will be used solely for statistical analysis or reporting purposes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Will all children be able to read by 2030? The ability to read with comprehension is a foundational skill that every education system around the world strives to impart by late in primary schoolâgenerally by age 10. Moreover, attaining the ambitious Sustainable Development Goals (SDGs) in education requires first achieving this basic building block, and so does improving countriesâ Human Capital Index scores. Yet past evidence from many low- and middle-income countries has shown that many children are not learning to read with comprehension in primary school. To understand the global picture better, we have worked with the UNESCO Institute for Statistics (UIS) to assemble a new dataset with the most comprehensive measures of this foundational skill yet developed, by linking together data from credible cross-national and national assessments of reading. This dataset covers 115 countries, accounting for 81% of children worldwide and 79% of children in low- and middle-income countries. The new data allow us to estimate the reading proficiency of late-primary-age children, and we also provide what are among the first estimates (and the most comprehensive, for low- and middle-income countries) of the historical rate of progress in improving reading proficiency globally (for the 2000-17 period). The results show that 53% of all children in low- and middle-income countries cannot read age-appropriate material by age 10, and that at current rates of improvement, this âlearning povertyâ rate will have fallen only to 43% by 2030. Indeed, we find that the goal of all children reading by 2030 will be attainable only with historically unprecedented progress. The high rate of âlearning povertyâ and slow progress in low- and middle-income countries is an early warning that all the ambitious SDG targets in education (and likely of social progress) are at risk. Based on this evidence, we suggest a new medium-term target to guide the World Bankâs work in low- and middle- income countries: cut learning poverty by at least half by 2030. This target, together with improved measurement of learning, can be as an evidence-based tool to accelerate progress to get all children reading by age 10.
For further details, please refer to https://thedocs.worldbank.org/en/doc/e52f55322528903b27f1b7e61238e416-0200022022/original/Learning-poverty-report-2022-06-21-final-V7-0-conferenceEdition.pdf
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background: Attribution to the original contributor upon reuse of published data is important both as a reward for data creators and to document the provenance of research findings. Previous studies have found that papers with publicly available datasets receive a higher number of citations than similar studies without available data. However, few previous analyses have had the statistical power to control for the many variables known to predict citation rate, which has led to uncertain estimates of the "citation benefit". Furthermore, little is known about patterns in data reuse over time and across datasets. Method and Results: Here, we look at citation rates while controlling for many known citation predictors, and investigate the variability of data reuse. In a multivariate regression on 10,555 studies that created gene expression microarray data, we found that studies that made data available in a public repository received 9% (95% confidence interval: 5% to 13%) more citations than similar studies for which the data was not made available. Date of publication, journal impact factor, open access status, number of authors, first and last author publication history, corresponding author country, institution citation history, and study topic were included as covariates. The citation benefit varied with date of dataset deposition: a citation benefit was most clear for papers published in 2004 and 2005, at about 30%. Authors published most papers using their own datasets within two years of their first publication on the dataset, whereas data reuse papers published by third-party investigators continued to accumulate for at least six years. To study patterns of data reuse directly, we compiled 9,724 instances of third party data reuse via mention of GEO or ArrayExpress accession numbers in the full text of papers. The level of third-party data use was high: for 100 datasets deposited in year 0, we estimated that 40 papers in PubMed reused a dataset by year 2, 100 by year 4, and more than 150 data reuse papers had been published by year 5. Data reuse was distributed across a broad base of datasets: a very conservative estimate found that 20% of the datasets deposited between 2003 and 2007 had been reused at least once by third parties. Conclusion: After accounting for other factors affecting citation rate, we find a robust citation benefit from open data, although a smaller one than previously reported. We conclude there is a direct effect of third-party data reuse that persists for years beyond the time when researchers have published most of the papers reusing their own data. Other factors that may also contribute to the citation benefit are considered.We further conclude that, at least for gene expression microarray data, a substantial fraction of archived datasets are reused, and that the intensity of dataset reuse has been steadily increasing since 2003.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Country Club, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Country Club median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Town And Country, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Town And Country median household income. You can refer the same here
The Armed Conflict Location & Event Data Project (ACLED) is a US-registered non-profit whose mission is to provide the highest quality real-time data on political violence and demonstrations globally. The information collected includes the type of event, its date, the location, the actors involved, a brief narrative summary, and any reported fatalities. ACLED users rely on our robust global dataset to support decision-making around policy and programming, accurately analyze political and country risk, support operational security planning, and improve supply chain management.ACLEDâs transparent methodology, expert team composed of 250 individuals speaking more than 70 languages, real-time coding system, and weekly update schedule are unrivaled in the field of data collection on conflict and disorder. Global Coverage: We track political violence, demonstrations, and strategic developments around the world, covering more than 240 countries and territories.Published Weekly: Our data are collected in real time and published weekly. It is the only dataset of its kind to provide such a high update frequency, with peer datasets most often updating monthly or yearly.Historical Data: Our dataset contains at least two full years of data for all countries and territories, with more extensive coverage available for multiple regions.Experienced Researchers: Our data are coded by experienced researchers with local, country, and regional expertise and language skills.Thorough Data Collection and Sourcing: Pulling from traditional media, reports, local partner data, and verified new media, ACLED uses a tailor-made sourcing methodology for individual regions/countries.Extensive Review Process: Our data go through an exhaustive multi-stage quality assurance process to ensure their accuracy and reliability. This process includes both manual and automated error checking and contextual review.Clean, Standardized, and Validated: Our data can be easily connected with internal dashboards through our API or downloaded through the Data Export Tool on our website.Resources Available on ESRIâs Living AtlasACLED data are available through the Living Atlas for the most recent 12 month period. The data are mapped to the centroid of first administrative divisions (âadmin1â) within countries (e.g., states, districts, provinces) and aggregated by month. Variables in the data include:The number of events per admin1-month, disaggregated by event type (protests, riots, battles, violence against civilians, explosions/remote violence, and strategic developments)A conservative estimate of reported fatalities per admin1-monthThe total number of distinct violent actors active in the corresponding admin1 for each monthThis Living Atlas item is a Web Map, which provides a pre-configured view of ACLED event data in a few layers:ACLED Event Counts layer: events per admin1-month, styled by predominant event type for each location.ACLED Violent Actors layer: the number of distinct violent actors per admin1-month.ACLED Fatality Estimates layer: the estimated number of fatalities from political violence per admin1-month.These layers are based on the ACLED Conflict and Demonstrations Event Data Feature Layer, which has the same data but only a basic default styling that is similar to the Event Counts layer. The Web Map layers are configured with a time-slider component to account for the multiple months of data per admin1 unit. These indicators are also available in the ACLED Conflict and Demonstrations Data Key Indicators Group Layer, which includes the same preconfigured layers but without the time-slider component or background layers.Resources Available on the ACLED WebsiteThe fully disaggregated dataset is available for download on ACLED's website including:Date (day, month, year)Actors, associated actors, and actor typesLocation information (ADMIN1, ADMIN2, ADMIN3, location and geo coordinates)A conservative fatality estimateDisorder type, event types, and sub-event typesTags further categorizing the data A notes column providing a narrative of the event For more information, please see the ACLED Codebook.To explore ACLEDâs full dataset, please register on the ACLED Access Portal, following the instructions available in this Access Guide. Upon registration, youâll receive access to ACLED data on a limited basis. Commercial users have access to 3 free data downloads company-wide with access to up to one year of historical data. Public sector users have access to 6 downloads of up to three years of historical data organization-wide. To explore options for extended access, please reach out to our Access Team (access@acleddata.com).With an ACLED license, users can also leverage ACLEDâs interactive Global Dashboard and check in for weekly data updates and analysis tracking key political violence and protest trends around the world. ACLED also has several analytical tools available such as our Early Warning Dashboard, Conflict Alert System (CAST), and Conflict Index Dashboard.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population
http://data.worldbank.org/data-catalog/ed-stats
https://cloud.google.com/bigquery/public-data/world-bank-education
Citation: The World Bank: Education Statistics
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @till_indeman from Unplash.
Of total government spending, what percentage is spent on education?
To this day, the Geodatindustry database is the world's most complete and accurate in the retail, commercial and industry area, with 25 years of experience and a qualified teams.
Geodatindustry Database is the perfect tool to lead your decision making, market analytics, strategy building, prospecting, advertizing compaigns, etc.
By purchasing this dataset, you gain access to more than 18,000 shopping malls all over the World, hosting millions of stores and welcoming millions of visitors each year.
Included Points of Interest in this dataset : -Shopping Malls and Centers -Outlets -Big Supermakets and Hypermarkets.
Information (if known) : shopping mall's name, physical address, number of shops, x,y coordinates, annual visitors counts (in millions), owner and managers, global area and GLA (in ranges), the website.
Global area and GLA Ranges :
A = 0-2 500 m²
B = 2 500-5 000 m²
C = 5 000-10 000 m²
D = 10 000-25 000 m²
E = 25 000-50 000 m²
F = 50 000-75 000 m²
G = 75 000-100 000 m²
H = 100 000-1M m²
I = 1M-10M m²
J = 10M m² and +
Prices depend on the amount of Shopping Malls for each country. It goes from 59⏠to 3990⏠per country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name