Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract
In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 24 model zoos with varying hyperparameter combinations are generated and includes 47’360 unique neural network models resulting in over 2’415’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.
Dataset
This dataset is part of a larger collection of model zoos and contains the zoos trained on the labelled samples from USPS. All zoos with extensive information and code can be found at www.modelzoos.cc.
This repository contains two types of files: the raw model zoos as collections of models (file names beginning with "usps_"), as well as preprocessed model zoos wrapped in a custom pytorch dataset class (filenames beginning with "dataset"). Zoos are trained in three configurations varying the seed only (seed), varying hyperparameters with fixed seeds (hyp_fix) or varying hyperparameters with random seeds (hyp_rand). The index_dict.json files contain information on how to read the vectorized models.
For more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Town And Country. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Town And Country population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 81.10% of the total residents in Town And Country. Notably, the median household income for White households is $235,625. Interestingly, despite the White population being the most populous, it is worth noting that Asian households actually reports the highest median household income, with a median income of $250,001. This reveals that, while Whites may be the most numerous in Town And Country, Asian households experience greater economic prosperity in terms of median household income.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Town And Country median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Country Club Hills. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Country Club Hills population by race & ethnicity, the population is predominantly Black or African American. This particular racial category constitutes the majority, accounting for 87.79% of the total residents in Country Club Hills. Notably, the median household income for Black or African American households is $79,215. Interestingly, despite the Black or African American population being the most populous, it is worth noting that Some Other Race households actually reports the highest median household income, with a median income of $158,867. This reveals that, while Black or African Americans may be the most numerous in Country Club Hills, Some Other Race households experience greater economic prosperity in terms of median household income.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Country Club Hills median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract
In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 27 model zoos with varying hyperparameter combinations are generated and includes 50’360 unique neural network models resulting in over 2’585’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.
Dataset
This dataset is part of a larger collection of model zoos and contains the zoos trained on EuroSAT. All zoos with extensive information and code can be found at www.modelzoos.cc.
This repository contains two types of model populations: the base model zoo ("eurosat_cnn_kaiming_uniform.zip"), as well as a collection of sparsified model zoos (filenames ending in "magn_XX.zip" or "ard.zip"). Zoos are trained with CNN models in configurations varying the seed only (seed), and sparsification is done through magnitude-based weight pruning ("magn_XX.zip") or varational dropout ("ard.zip").
For more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract
In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 27 model zoos with varying hyperparameter combinations are generated and includes 50’360 unique neural network models resulting in over 2’585’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.
Dataset
This dataset is part of a larger collection of model zoos and contains the zoo of 1000 ResNet18 models trained on CIFAR100. All zoos with extensive information and code can be found at www.modelzoos.cc.
The complete zoo is 2.6TB large. Due to the size, this repository contains the checkpoints of the last epoch 60. For a link to the full dataset as well as more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de448898https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de448898
Abstract (en): The China Multi-Generational Panel Dataset - Liaoning (CMGPD-LN) is drawn from the population registers compiled by the Imperial Household Agency (neiwufu) in Shengjing, currently the northeast Chinese province of Liaoning, between 1749 and 1909. It provides 1.5 million triennial observations of more than 260,000 residents from 698 communities. The population mainly consists of immigrants from North China who settled in rural Liaoning during the early eighteenth century, and their descendants. The data provide socioeconomic, demographic, and other characteristics for individuals, households, and communities, and record demographic outcomes such as marriage, fertility, and mortality. The data also record specific disabilities for a subset of adult males. Additionally, the collection includes monthly and annual grain price data, custom records for the city of Yingkou, as well as information regarding natural disasters, such as floods, droughts, and earthquakes. This dataset is unique among publicly available population databases because of its time span, volume, detail, and completeness of recording, and because it provides longitudinal data not just on individuals, but on their households, descent groups, and communities. Possible applications of the dataset include the study of relationships between demographic behavior, family organization, and socioeconomic status across the life course and across generations, the influence of region and community on demographic outcomes, and development and assessment of quantitative methods for the analysis of complex longitudinal datasets. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Created variable labels and/or value labels.; Standardized missing values.; Created online analysis version with question text.; Checked for undocumented or out-of-range codes.. Smallest Geographic Unit: Chinese banners (8) The data are from 725 surviving triennial registers from 29 distinct populations. Each of the 29 register series corresponded to a specific rural population concentrated in a small number of neighboring villages. These populations were affiliated with the Eight Banner civil and military administration that the Qing state used to govern northeast China as well as some other parts of the country. 16 of the 29 populations are regular bannermen. In these populations adult males had generous allocations of land from the state, and in return paid an annual fixed tax to the Imperial Household Agency, and provided to the Imperial Household Agency such home products as homespun fabric and preserved meat, and/or such forest products as mushrooms. In addition, as regular bannermen they were liable for military service as artisans and soldiers which, while in theory an obligation, was actually an important source of personal revenue and therefore a political privilege. 8 of the 29 populations are special duty banner populations. As in the regular banner population, the adult males in the special duty banner populations also enjoyed state allocated land free of rent. These adult males were also assigned to provide special services, including collecting honey, raising bees, fishing, picking cotton, and tanning and dyeing. The remaining populations were a diverse mixture of estate banner and servile populations. The populations covered by the registers, like much of the population of rural Liaoning in the eighteenth and nineteenth centuries, were mostly descendants of Han Chinese settlers who came from Shandong and other nearby provinces in the late seventeenth and early eighteenth centuries in response to an effort by the Chinese state to repopulate the region. 2016-09-06 2016-09-06 The Training Guide has been updated to version 3.60. Additionally, the Principal Investigator affiliation has been corrected, and cover sheets for all PDF documents have been revised.2014-07-10 Releasing new study level documentation that contains the tables found in the appendix of the Analytic dataset codebook.2014-06-10 The data and documentation have been updated following re-evaluation.2014-01-29 Fixing variable format issues. Some variables that were supposed to be s...
Access this data on Dryad (DOI: 10.5061/dryad.280gb5mxx)
This Dryad entry contains data files and scripts used for analyses in Thompson et al. 2024 (Evolutionary Applications). Briefly, the study examines outmigration characteristics of juvenile Chinook salmon collecte d at Chipps Island in the Sacramento/San Joaquine Delta by assigning each sample to a population of origin. The analysis is broken down into three parts: 1) leave-one-out analyses to develop a population assignme nt method and evaluate its expected efficacy; 2) validation of the assignment method using an independent dataset of known-origin samples; 3) population assignment of unknown-origin juvenile samples collected at Chipps Island (and obtained from a tissue archive). This Dryad entry contains files and scripts necessary for that analysis, as well as the resulting output files.
The following are descriptions of all data files uploaded here.
(Note: the sin...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract
In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 24 model zoos with varying hyperparameter combinations are generated and includes 47’360 unique neural network models resulting in over 2’415’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.
Dataset
This dataset is part of a larger collection of model zoos and contains the zoos trained on the labelled samples from Fashion-MNIST. All zoos with extensive information and code can be found at www.modelzoos.cc.
This repository contains two types of files: the raw model zoos as collections of models (file names beginning with "fmnist_"), as well as preprocessed model zoos wrapped in a custom pytorch dataset class (filenames beginning with "dataset"). Zoos are trained in three configurations varying the seed only (seed), varying hyperparameters with fixed seeds (hyp_fix) or varying hyperparameters with random seeds (hyp_rand). The index_dict.json files contain information on how to read the vectorized models.
For more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The latest population figures produced by the Office for National Statistics (ONS) on 28 June 2018 show that an estimated 534,800 people live in Bradford District – an increase of 2,300 people (0.4%) since the previous year.
Bradford District is the fifth largest metropolitan district (in terms of population) in England, after Birmingham, Leeds, Sheffield and Manchester although the District’s population growth is lower than other major cities.
The increase in the District’s population is largely due to “natural change”- there have been around 3,300 more births than deaths, although this has been balanced by a larger number of people leaving Bradford to live in other parts of the UK than coming to live here and a lower number of international migrants. In 2016/17 the net internal migration was -2,700 and the net international migration was 1,700.
A large proportion of Bradford’s population is dominated by the younger age groups. More than one-quarter (29%) of the District’s population is aged less than 20 and nearly seven in ten people are aged less than 50. Bradford has the highest percentage of the under 16 population in England after the London Borough of Barking and Dagenham, Slough Borough Council and Luton Borough Council.
The population of Bradford is ethnically diverse. The largest proportion of the district’s population (63.9%) identifies themselves as White British. The district has the largest proportion of people of Pakistani ethnic origin (20.3%) in England.
The largest religious group in Bradford is Christian (45.9% of the population). Nearly one quarter of the population (24.7%) are Muslim. Just over one fifth of the district’s population (20.7%) stated that they had no religion.
There are 216,813 households in the Bradford district. Most households own their own home (29.3% outright and 35.7% with a mortgage). The percentage of privately rented households is 18.1%. 29.6% of households were single person households.
Information from the Annual Population Survey in December 2017 found that Bradford has 228,100 people aged 16-64 in employment. At 68% this is significantly lower than the national rate (74.9%). 91,100 (around 1 in 3 people) aged 16-64, are not in work. The claimant count rate is 2.9% which is higher than the regional and national averages.
Skill levels are improving with 26.5% of 16 to 74 year olds educated to degree level. 18% of the district’s employed residents work in retail/wholesale. The percentage of people working in manufacturing has continued to decrease from 13.4% in 2009 to 11.9% in 2016. This is still higher than the average for Great Britain (8.1%).
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Data includes: board and school information, grade 3 and 6 EQAO student achievements for reading, writing and mathematics, and grade 9 mathematics EQAO and OSSLT. Data excludes private schools, Education and Community Partnership Programs (ECPP), summer, night and continuing education schools.
How Are We Protecting Privacy?
Results for OnSIS and Statistics Canada variables are suppressed based on school population size to better protect student privacy. In order to achieve this additional level of protection, the Ministry has used a methodology that randomly rounds a percentage either up or down depending on school enrolment. In order to protect privacy, the ministry does not publicly report on data when there are fewer than 10 individuals represented.
The information in the School Information Finder is the most current available to the Ministry of Education at this time, as reported by schools, school boards, EQAO and Statistics Canada. The information is updated as frequently as possible.
This information is also available on the Ministry of Education's School Information Finder website by individual school.
Descriptions for some of the data types can be found in our glossary.
School/school board and school authority contact information are updated and maintained by school boards and may not be the most current version. For the most recent information please visit: https://data.ontario.ca/dataset/ontario-public-school-contact-information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Twentynine Palms. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Twentynine Palms population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 65.52% of the total residents in Twentynine Palms. Notably, the median household income for White households is $53,956. Interestingly, despite the White population being the most populous, it is worth noting that Native Hawaiian and Other Pacific Islander households actually reports the highest median household income, with a median income of $117,935. This reveals that, while Whites may be the most numerous in Twentynine Palms, Native Hawaiian and Other Pacific Islander households experience greater economic prosperity in terms of median household income.
https://i.neilsberg.com/ch/twentynine-palms-ca-median-household-income-by-race.jpeg" alt="Twentynine Palms median household income diversity across racial categories">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Twentynine Palms median household income by race. You can refer the same here
We observe that satellite imagery is a powerful source of information as it contains more structured and uniform data, compared to traditional images. Although computer vision community has been accomplishing hard tasks on everyday image datasets using deep learning, satellite images are only recently gaining attention for maps and population analysis. This workshop aims at bringing together a diverse set of researchers to advance the state-of-the-art in satellite image analysis.
To direct more attention to such approaches, we propose DeepGlobe Satellite Image Understanding Challenge, structured around three different satellite image understanding tasks. The datasets created and released for this competition may serve as reference benchmarks for future research in satellite image analysis. Furthermore, since the challenge tasks will involve "in the wild" forms of classic computer vision problems, these datasets have the potential to become valuable testbeds for the design of robust vision algorithms, beyond the area of remote sensing.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Studying the population structure and genetic diversity of historical datasets is a proposed use for association analysis. This is particularly important when the dataset contains traits that are time-consuming or costly to measure. A set of 96 elite barley genotypes, developed from eight breeding programs of the Western Canadian Cooperative Trials were used in the current study. Genetic diversity, allelic variation, and linkage disequilibrium (LD) were investigated using 5063 high-quality SNP markers via the Illumina 9K Barley Infinium iSelect SNP assay. The distribution of SNPs markers across the barley genome ranged from 449 markers on chromosome 1H to 1111 markers on chromosome 5H. The average polymorphism information content (PIC) per locus was 0.275 and ranged from 0.094 to 0.375. Bayesian clustering in STRUCTURE and principal coordinate analysis revealed that the populations are differentiated primarily due to the different breeding program origins and ear-row type into five subpopulations. Analysis of molecular variance based on PhiPT values suggested that high values of genetic diversity were observed within populations and accounted for 90% of the total variance. Subpopulation 5 exhibited the most diversity with the highest values of the diversity indices, which represent the breeding program gene pool of AFC, AAFRD, AU, and BARI. With increasing genetic distance, the LD values, expressed as r2, declined to below the critical r2 = 0.18 after 3.91 cM, and the same pattern was observed on each chromosome. Our results identified an important pattern of genetic diversity among the Canadian barley panel that was proposed to be representative of target breeding programs and may have important implications for association mapping in the future. This highlight, that efforts to identify novel variability underlying this diversity may present practical breeding opportunities to develop new barley genotypes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Middlefield town by race. It includes the distribution of the Non-Hispanic population of Middlefield town across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Middlefield town across relevant racial categories.
Key observations
Of the Non-Hispanic population in Middlefield town, the largest racial group is White alone with a population of 3,885 (93.91% of the total Non-Hispanic population).
https://i.neilsberg.com/ch/middlefield-ct-population-by-race-and-ethnicity.jpeg" alt="Middlefield town Non-Hispanic population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Middlefield town Population by Race & Ethnicity. You can refer the same here
Maintaining genetic diversity and variation in livestock populations is critical for natural and artificial selection promoting genetic improvement while avoiding problems due to inbreeding. In Laos, there are concerns that there has been a decline in genetic diversity and a rise in inbreeding among native goats in their village-based smallholder system. In this study, we investigated the genetic diversity of Lao native goats in Phin, Songkhone and Sepon districts in Central Laos for the first time using Illumina's Goat SNP50 BeadChip. We also explored the genetic relationships between Lao goats with 163 global goat populations from 36 countries. Our results revealled a close genetic relationship between Lao native goats and Chinese, Mongolian and Pakistani goats, sharing ancestries with Guangfen, Jining Grey and Luoping Yellow breeds (China) and Teddi goats (Pakistan). The observed (Ho) and expected (He) heterozygosity were 0.292 and 0.303 (Laos), 0.288 and 0.288 (Sepon), 0.299 and 0.308 (Phin) and 0.289 and 0.305 (Songkhone), respectively. There was low to moderate genetic differentiation (FST: 0.011–0.043) and negligible inbreeding coefficients (FIS: −0.001 to 0.052) between goat districts. The runs of homozygosity (ROH) had an average length of 5.92–6.85 Mb, with short ROH segments (1–5 Mb length) being the most prevalent (66.34%). Longer ROH segments (20–40 and >40 Mb length categories) were less common, comprising only 4.81% and 1.01%, respectively. Lao goats exhibit moderate genetic diversity, low-inbreeding levels and adequate effective population size. Some genetic distinctions between Lao goats may be explained by geographic and cultural features.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Moorpark. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Moorpark population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 69.36% of the total residents in Moorpark. Notably, the median household income for White households is $131,746. Interestingly, despite the White population being the most populous, it is worth noting that Black or African American households actually reports the highest median household income, with a median income of $223,409. This reveals that, while Whites may be the most numerous in Moorpark, Black or African American households experience greater economic prosperity in terms of median household income.
https://i.neilsberg.com/ch/moorpark-ca-median-household-income-by-race.jpeg" alt="Moorpark median household income diversity across racial categories">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Moorpark median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Hill Country Village. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Hill Country Village population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 72.82% of the total residents in Hill Country Village. Notably, the median household income for White households is $244,375. Interestingly, despite the White population being the most populous, it is worth noting that Some Other Race households actually reports the highest median household income, with a median income of $250,001. This reveals that, while Whites may be the most numerous in Hill Country Village, Some Other Race households experience greater economic prosperity in terms of median household income.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hill Country Village median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Mississippi. The dataset can be utilized to gain insights into gender-based income distribution within the Mississippi population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Mississippi median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within State Center. The dataset can be utilized to gain insights into gender-based income distribution within the State Center population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Center median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract
In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 24 model zoos with varying hyperparameter combinations are generated and includes 47’360 unique neural network models resulting in over 2’415’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.
Dataset
This dataset is part of a larger collection of model zoos and contains the zoos trained on the labelled samples from USPS. All zoos with extensive information and code can be found at www.modelzoos.cc.
This repository contains two types of files: the raw model zoos as collections of models (file names beginning with "usps_"), as well as preprocessed model zoos wrapped in a custom pytorch dataset class (filenames beginning with "dataset"). Zoos are trained in three configurations varying the seed only (seed), varying hyperparameters with fixed seeds (hyp_fix) or varying hyperparameters with random seeds (hyp_rand). The index_dict.json files contain information on how to read the vectorized models.
For more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.