100+ datasets found
  1. Z

    Global Country Information 2023

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Elgiriyewithana, Nidula
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    Country: Name of the country.

    Density (P/Km2): Population density measured in persons per square kilometer.

    Abbreviation: Abbreviation or code representing the country.

    Agricultural Land (%): Percentage of land area used for agricultural purposes.

    Land Area (Km2): Total land area of the country in square kilometers.

    Armed Forces Size: Size of the armed forces in the country.

    Birth Rate: Number of births per 1,000 population per year.

    Calling Code: International calling code for the country.

    Capital/Major City: Name of the capital or major city.

    CO2 Emissions: Carbon dioxide emissions in tons.

    CPI: Consumer Price Index, a measure of inflation and purchasing power.

    CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

    Currency_Code: Currency code used in the country.

    Fertility Rate: Average number of children born to a woman during her lifetime.

    Forested Area (%): Percentage of land area covered by forests.

    Gasoline_Price: Price of gasoline per liter in local currency.

    GDP: Gross Domestic Product, the total value of goods and services produced in the country.

    Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

    Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

    Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

    Largest City: Name of the country's largest city.

    Life Expectancy: Average number of years a newborn is expected to live.

    Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

    Minimum Wage: Minimum wage level in local currency.

    Official Language: Official language(s) spoken in the country.

    Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

    Physicians per Thousand: Number of physicians per thousand people.

    Population: Total population of the country.

    Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

    Tax Revenue (%): Tax revenue as a percentage of GDP.

    Total Tax Rate: Overall tax burden as a percentage of commercial profits.

    Unemployment Rate: Percentage of the labor force that is unemployed.

    Urban Population: Percentage of the population living in urban areas.

    Latitude: Latitude coordinate of the country's location.

    Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    Analyze population density and land area to study spatial distribution patterns.

    Investigate the relationship between agricultural land and food security.

    Examine carbon dioxide emissions and their impact on climate change.

    Explore correlations between economic indicators such as GDP and various socio-economic factors.

    Investigate educational enrollment rates and their implications for human capital development.

    Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

    Study labor market dynamics through indicators such as labor force participation and unemployment rates.

    Investigate the role of taxation and its impact on economic development.

    Explore urbanization trends and their social and environmental consequences.

  2. Covid-19 Highest City Population Density

    • kaggle.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lookfwd (2020). Covid-19 Highest City Population Density [Dataset]. https://www.kaggle.com/lookfwd/covid19highestcitypopulationdensity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 25, 2020
    Dataset provided by
    Kaggle
    Authors
    lookfwd
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel

    Content

    There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.

    Acknowledgements

    Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.

    Inspiration

    Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.

    After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.

    The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">

    My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.

    Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.

    We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.

  3. Population by Nationality - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2025). Population by Nationality - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/population-by-nationality
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    This dataset shows different breakdowns of London's resident population by their nationality. Data used comes from ONS' Annual Population Survey (APS). The APS has a sample of around 320,000 people in the UK (around 28,000 in London). As such all figures must be treated with some caution. 95% confidence interval levels are provided. Numbers have been rounded to the nearest thousand and figures for smaller populations have been suppressed. Two files are available to download: Nationality - Borough: Shows nationality estimates in their broad groups such as European Union, South East Asia, North Africa, etc. broken down to borough level. Detailed Nationality - London: Shows nationality estimates for specific countries such as France, Bangladesh, Nigeria, etc. available for London as a whole. A Tableau visualisation tool is also available. Country of Birth data can be found here: https://data.london.gov.uk/dataset/country-of-birth Nationality refers to that stated by the respondent during the interview. Country of birth is the country in which they were born. It is possible that an individual’s nationality may change, but the respondent’s country of birth cannot change. This means that country of birth gives a more robust estimate of change over time.

  4. census-bureau-international

    • kaggle.com
    zip
    Updated May 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). census-bureau-international [Dataset]. https://www.kaggle.com/datasets/bigquery/census-bureau-international
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 6, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Context

    The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.

    Sample Query 1

    What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!

    standardSQL

    SELECT age.country_name, age.life_expectancy, size.country_area FROM ( SELECT country_name, life_expectancy FROM bigquery-public-data.census_bureau_international.mortality_life_expectancy WHERE year = 2016) age INNER JOIN ( SELECT country_name, country_area FROM bigquery-public-data.census_bureau_international.country_names_area where country_area > 25000) size ON age.country_name = size.country_name ORDER BY 2 DESC /* Limit removed for Data Studio Visualization */ LIMIT 10

    Sample Query 2

    Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.

    standardSQL

    SELECT age.country_name, SUM(age.population) AS under_25, pop.midyear_population AS total, ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25 FROM ( SELECT country_name, population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population_agespecific WHERE year =2017 AND age < 25) age INNER JOIN ( SELECT midyear_population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population WHERE year = 2017) pop ON age.country_code = pop.country_code GROUP BY 1, 3 ORDER BY 4 DESC /* Remove limit for visualization*/ LIMIT 10

    Sample Query 3

    The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.

    SELECT growth.country_name, growth.net_migration, CAST(area.country_area AS INT64) AS country_area FROM ( SELECT country_name, net_migration, country_code FROM bigquery-public-data.census_bureau_international.birth_death_growth_rates WHERE year = 2017) growth INNER JOIN ( SELECT country_area, country_code FROM bigquery-public-data.census_bureau_international.country_names_area

    Update frequency

    Historic (none)

    Dataset source

    United States Census Bureau

    Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data

  5. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Michigan State University (MSU)
    Institute for Democracy in South Africa (IDASA)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Time period covered
    1999 - 2000
    Area covered
    South Africa, Botswana, Africa, Malawi, Zimbabwe, Namibia, Zambia, Lesotho
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  6. N

    Town And Country, MO Population Breakdown by Gender and Age Dataset: Male...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Town And Country, MO Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e20538d3-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Town and Country
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Town And Country by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Town And Country. The dataset can be utilized to understand the population distribution of Town And Country by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Town And Country. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Town And Country.

    Key observations

    Largest age group (population): Male # 60-64 years (538) | Female # 45-49 years (537). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Town And Country population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Town And Country is shown in the following column.
    • Population (Female): The female population in the Town And Country is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Town And Country for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Town And Country Population by Gender. You can refer the same here

  7. N

    Country Club Hills, MO Age Cohorts Dataset: Children, Working Adults, and...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Country Club Hills, MO Age Cohorts Dataset: Children, Working Adults, and Seniors in Country Club Hills - Population and Percentage Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/country-club-hills-mo-population-by-age/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Country Club Hills, Missouri
    Variables measured
    Population Over 65 Years, Population Under 18 Years, Population Between 18 and 64 Years, Percent of Total Population for Age Groups
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age cohorts. For age cohorts we divided it into three buckets Children ( Under the age of 18 years), working population ( Between 18 and 64 years) and senior population ( Over 65 years). For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Country Club Hills population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Country Club Hills. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.

    Key observations

    The largest age group was 18 to 64 years with a poulation of 633 (62.24% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age cohorts:

    • Under 18 years
    • 18 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Group: This column displays the age cohort for the Country Club Hills population analysis. Total expected values are 3 groups ( Children, Working Population and Senior Population).
    • Population: The population for the age cohort in Country Club Hills is shown in the following column.
    • Percent of Total Population: The population as a percent of total population of the Country Club Hills is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Country Club Hills Population by Age. You can refer the same here

  8. s

    Data from: Coastal proximity of populations in 22 Pacific Island Countries...

    • kiribati-data.sprep.org
    • pacificdata.org
    • +14more
    pdf, xlsx
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pacific Data Hub (2025). Coastal proximity of populations in 22 Pacific Island Countries and Territories [Dataset]. https://kiribati-data.sprep.org/dataset/coastal-proximity-populations-22-pacific-island-countries-and-territories
    Explore at:
    xlsx(21290), pdf(365706)Available download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Data Hub
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region
    Description

    A recently published paper, titled “Coastal proximity of populations in 22 Pacific Island Countries and Territories” details the methodology used to undertake the analysis and presents the findings. Purpose * This analysis aims to estimate populations settled in coastal areas in 22 Pacific Island Countries and Territories (PICTS) using the data currently available. In addition to the coastal population estimates, the study compares the results obtained from the use of national population datasets (census) with those derived from the use of global population grids. * Accuracy and reliability from national and global datasets derived results have been evaluated to identify the most suitable options to estimate size and location of coastal populations in the region. A collaborative project between the Pacific Community (SPC), WorldFish and the University of Wollongong has produced the first detailed population estimates of people living close to the coast in the 22 Pacific Island Countries and Territories (PICTs).

  9. Anime Quest Dataset

    • kaggle.com
    Updated Jun 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Yasmi Tohabar Evon (2023). Anime Quest Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/6045074
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 28, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Md Yasmi Tohabar Evon
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This dataset contains information about Anime scraped from Anime Planet on 28/06/2023. It contains information about anime (episodes, aired date, rating, genre, etc.), and favorite anime based on the countries and top countries that watch the most anime.

    Content

    The dataset contains 3 files:

    📁 anime_data.csv: 1. Name: Full name of the anime 2. Media Type: TV, Web, Movie, etc. 3. Episodes: Total episodes of the anime 4. Studio: Name of the studios of the anime, from most recent to oldest. 5. Start Year: Release Year of the anime 6. End Year: Last year of the anime airing 7. Ongoing: Is the anime currently airing or not? True or False. 8. Release Season: Spring, Fall, Winter, and Summer 9. Rating: The global rating ranges from 0 to 5. 10. Rank: Global ranking of the anime 11. Members: Total members of the anime 12. Genre: The category of the anime 13. Creator: Creator of the anime

    📁 anime_top_by_country_data.csv: 1. Country: Individual country name 2. Most Popular: The most popular anime in the country 3. 2nd Place: Second-most popular anime in the country 4. 3rd Place: Third-most popular anime in the country 5. 4th Place: Fourth-most popular anime in the country 6. 5th Place: The fifth-most popular anime in the country

    📁 anime_watching_data.csv: 1. Rank: Ranking of countries based on the number of anime viewers 2. Country: Individual country name 3. Population: Total population of the country 4. Percentage of People Watching: Percentage of people watching anime in the country 5. Number of People Watching: Total number of people watching anime in the country

    Acknowledgements

    The website Anime Planet was used to scrape this dataset. Please include citations for this dataset if you use it in your own research.

    Inspiration

    This dataset can be used to find the factors determining an anime's rating and ranking. Additionally, it can be used to make anime recommendations. The pattern can be observed in anime.

  10. OECD Revenue Statistics

    • kaggle.com
    Updated Feb 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira gibin (2024). OECD Revenue Statistics [Dataset]. http://doi.org/10.34740/kaggle/dsv/7620457
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 13, 2024
    Dataset provided by
    Kaggle
    Authors
    willian oliveira gibin
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F8e1630ccacc7fec2f1851ad4ef7c8368%2FSem%20ttulo-1.png?generation=1707857613704062&alt=media" alt="">

    OECD Revenue Statistics: Comparative Tables Introduction

    The OECD Revenue Statistics database provides detailed and internationally comparable data on the taxes and social contributions paid by businesses and individuals in OECD countries. The data is collected annually from national governments and covers a wide range of taxes, including personal income tax, corporate income tax, social security contributions, and value-added tax.

    Data

    The database is divided into two main parts:

    Part 1: Revenue by Level of Government This part of the database provides data on the total revenue collected by each level of government (central, state, and local) in each OECD country. The data is broken down by type of tax and by source of revenue (e.g., taxes on income, profits, and capital gains; taxes on goods and services; social security contributions).

    Part 2: Revenue by Tax Type This part of the database provides data on the revenue collected from each type of tax in each OECD country. The data is broken down by level of government and by source of revenue.

    Uses

    The OECD Revenue Statistics database can be used for a variety of purposes, including:

    Cross-country comparisons of tax levels and structures The database can be used to compare the tax levels and structures of different OECD countries. This information can be used by policymakers to assess the effectiveness of their tax systems and to identify potential areas for reform.

    Analysis of the impact of tax policies The database can be used to analyze the impact of tax policies on economic growth, income distribution, and other outcomes. This information can be used by policymakers to design tax policies that are more effective and efficient.

    Research on tax policy The database can be used by researchers to study the effects of tax policy on a variety of economic outcomes. This research can help to inform the design of tax policy and to improve our understanding of the economic effects of taxation.

    Conclusion

    The OECD Revenue Statistics database is a valuable resource for policymakers, researchers, and anyone interested in the taxation of businesses and individuals in OECD countries. The database provides detailed and internationally comparable data on a wide range of taxes, making it an essential tool for understanding the tax systems of OECD countries.

    Data Access

    The OECD Revenue Statistics database is available online to subscribers. Subscribers can access the data through the OECD's website.

  11. N

    Town And Country, MO Age Group Population Dataset: A Complete Breakdown of...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Town And Country, MO Age Group Population Dataset: A Complete Breakdown of Town And Country Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/aabe1179-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Town and Country
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Town And Country population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Town And Country. The dataset can be utilized to understand the population distribution of Town And Country by age. For example, using this dataset, we can identify the largest age group in Town And Country.

    Key observations

    The largest age group in Town And Country, MO was for the group of age 15 to 19 years years with a population of 969 (8.37%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Town And Country, MO was the 25 to 29 years years with a population of 143 (1.24%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Town And Country is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Town And Country total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Town And Country Population by Age. You can refer the same here

  12. Adult Mortality Rate (2019-2021)

    • kaggle.com
    Updated Jun 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mikhail (2024). Adult Mortality Rate (2019-2021) [Dataset]. https://www.kaggle.com/datasets/mikhail1681/adult-mortality-rate-2019-2021
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Kaggle
    Authors
    Mikhail
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Dear Kaggler! This dataset consists of a main CSV file: Adult mortality rate (2019-2021).csv. This file has been processed, cleaned and prepared for your use. The dataset contains information on mortality rates in different countries of the world and some factors that may affect this rate for 2019-2023.

    The data contains the following columns:

    Countries: Country of study.

    Continent: Continent location of the country.

    Average_Pop(thousands people): Average population of the country under study for 2019-2021 in thousands.

    Average_GDP(M$): Average GDP of the country under study for 2019-2021 in millions of dollars.

    Average_GDP_per_capita: Average GDP per capita of the country under study for 2019-2021 in dollars.

    Average_HEXP($): Health Expenditure Per Capita in the country under study in dollars.

    Development_level: Level of development of the state under study (calculated by GDP per capita of the country). Please note that in this dataset we calculate this indicator only by calculating GDP per capita! Despite the fact that the United Nations (UN) does not have an unambiguous classification of countries into developed, developing and backward based on only one indicator, such as the amount of GDP per capita. It uses a wider range of economic, social and quality indicators to determine the level of development of countries.

    AMR_female(per_1000_female_adults): Average mortality of adult women in the country under study (per 1000 adult women per year) for 2019-2023.

    AMR_male(per_1000_male_adults): Average mortality of adult men in the country under study (per 1000 adult men per year) for 2019-2023.

    Average_CDR: Average crude mortality rate for 2019–2021 in the country under study.

    The dataset also contains additional files: Draft_AMR.csv, Draft_CDR.csv, Draft_Expenses.csv, Draft_GDP.csv, Draft_Population.csv. In fact, the main dataset consists of parts of these files. If you are interested in working more deeply on data cleaning and preparation, you can of course use these files. You can also use these files to create your own dataset. And be careful! Additional files may contain a different number of rows and columns with different names and data types. And of course these files are not cleaned. You will see not only the NaN values, but also other symbols in their place.

    Enjoy your training, my dear Kaggler!

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16192307%2Fc9a98b25b85b43718e5b8109712ba36a%2FDepositphotos_68536025_s-2019.jpg?generation=1711099905559419&alt=media" alt="">

  13. Social Insurance Programs in Richest Quintile

    • kaggle.com
    Updated Jan 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Social Insurance Programs in Richest Quintile [Dataset]. https://www.kaggle.com/datasets/thedevastator/coverage-of-social-insurance-programs-in-richest
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 7, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Coverage of Social Insurance Programs in Richest Quintile

    Percent of Population Eligible

    By data.world's Admin [source]

    About this dataset

    This dataset offers a unique insight into the coverage of social insurance programs for the wealthiest quintile of populations around the world. It reveals how many individuals in each country are receiving support from old age contributory pensions, disability benefits, and social security and health insurance benefits such as occupational injury benefits, paid sick leave, maternity leave, and more. This data provides an invaluable resource to understand the health and well-being of those most financially privileged in society – often having greater impact on decision making than other groups. With up-to-date figures from 2019-05-11 this dataset is invaluable in uncovering where there is work to be done for improved healthcare provision in each country across the world

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    • Understand the context: Before you begin analyzing this dataset, it is important to understand the information that it provides. Take some time to read the description of what is included in the dataset, including a clear understanding of the definitions and scope of coverage provided with each data point.

    • Examine the data: Once you have a general understanding of this dataset's contents, take some time to explore its contents in more depth. What specific questions does this dataset help answer? What kind of insights does it provide? Are there any missing pieces?

    • Clean & Prepare Data: After you've preliminarily examined its content, start preparing your data for further analysis and visualization. Clean up any formatting issues or irregularities present in your data set by correcting typos and eliminating unnecessary rows or columns before working with your chosen programming language (I prefer R for data manipulation tasks). Additionally, consider performing necessary transformations such as sorting or averaging values if appropriate for the findings you wish to draw from your analysis.

    • Visualize Results: Once you've cleaned and prepared your data, use visualizations such as charts, graphs or tables to reveal patterns within it that support specific conclusions about how insurance coverage under social programs vary among different groups within society's quintiles - based on age groups etc.. This type of visualization allows those who aren't familiar with programming to process complex information quickly and accurately than when displayed numerically in tabular form only!

    5 Final Analysis & Export Results: Finally export your visuals into presentation-ready formats (e.g., PDFs) which can be shared with colleagues! Additionally use these results as part of a narrative conclusion report providing an accurate assessment and meaningful interpretation about how social insurance programs vary between different members within society's quintiles (i..e., accordingest vs poorest), along with potential policy implications relevant for implementing effective strategies that improve access accordingly!

    Research Ideas

    • Analyzing the effectiveness of social insurance programs by comparing the coverage levels across different geographic areas or socio-economic groups;
    • Estimating the economic impact of social insurance programs on local and national economies by tracking spending levels and revenues generated;
    • Identifying potential problems with access to social insurance benefits, such as racial or gender disparities in benefit coverage

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: coverage-of-social-insurance-programs-in-richest-quintile-of-population-1.csv

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit data.world's Admin.

  14. Gridded Population of the World, Version 3 (GPWv3): Population Density Grid...

    • data.nasa.gov
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Gridded Population of the World, Version 3 (GPWv3): Population Density Grid - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/gridded-population-of-the-world-version-3-gpwv3-population-density-grid
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    World
    Description

    The Gridded Population of the World, Version 3 (GPWv3): Population Density Grid consists of estimates of human population for the years 1990, 1995, and 2000 by 2.5 arc-minute grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative Units, is used to assign population values to grid cells. The population density grids are derived by dividing the population count grids by the land area grid and represent persons per square kilometer. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).

  15. p

    ABS - Census of Population and Housing - Country of birth of person by age -...

    • data.peclet.com.au
    • data.cumberland.nsw.gov.au
    csv, excel, json
    Updated Jul 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). ABS - Census of Population and Housing - Country of birth of person by age - LGA Level - G09 [Dataset]. https://data.peclet.com.au/explore/dataset/abs-g09-lga-level-by-state/
    Explore at:
    csv, excel, jsonAvailable download formats
    Dataset updated
    Jul 31, 2024
    Description

    ABS Census data extract - G09 COUNTRY OF BIRTH OF PERSON BY AGE providing a breakdown of population at LGA level and by:age groupscountry of birth of person(a)Australia(b)China (excludes SARs and Taiwan)(c)Hong Kong (SAR of China)(c)Born elsewhere(d)This data is based on place of usual residence.(a) This list consists of the most common 50 Country of Birth responses reported in the 2016 Census and 2011 Census.(b) Includes 'Australia', 'Australia (includes External Territories), nfd', 'Norfolk Island' and 'Australian External Territories, nec'.(c) Special Administrative Regions (SARs) comprise 'Hong Kong (SAR of China)' and 'Macau (SAR of China)'. (d) Includes countries not identified individually, 'Inadequately described', and 'At sea'. Excludes not stated.Please note that there are small random adjustments made to all cell values to protect the confidentiality of data. These adjustments may cause the sum of rows or columns to differ by small amounts from table totals.

  16. 2023 CEV Data: Current Population Survey Civic Engagement and Volunteering...

    • catalog.data.gov
    • data.americorps.gov
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriCorps Office of Research and Evaluation (2025). 2023 CEV Data: Current Population Survey Civic Engagement and Volunteering Supplement [Dataset]. https://catalog.data.gov/dataset/2023-cev-data-current-population-survey-civic-engagement-and-volunteering-supplement
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset provided by
    AmeriCorpshttp://www.americorps.gov/
    Description

    The Current Population Survey Civic Engagement and Volunteering (CEV) Supplement is the most robust longitudinal survey about volunteerism and other forms of civic engagement in the United States. Produced by AmeriCorps in partnership with the U.S. Census Bureau, the CEV takes the pulse of our nation’s civic health every two years. The data on this page was collected in September 2023. The next wave of the CEV will be administered in September 2025. The CEV can generate reliable estimates at the national level, within states and the District of Columbia, and in the largest twelve Metropolitan Statistical Areas to support evidence-based decision making and efforts to understand how people make a difference in communities across the country. Click on "Export" to download and review an excerpt from the 2023 CEV Analytic Codebook that shows the variables available in the analytic CEV datasets produced by AmeriCorps. Click on "Show More" to download and review the following 2023 CEV data and resources provided as attachments: 1) 2023 CEV Dataset Fact Sheet – brief summary of technical aspects of the 2023 CEV dataset. 2) CEV FAQs – answers to frequently asked technical questions about the CEV 3) Constructs and measures in the CEV 4) 2023 CEV Analytic Data and Setup Files – analytic dataset in Stata (.dta), R (.rdata), SPSS (.sav), and Excel (.csv) formats, codebook for analytic dataset, and Stata code (.do) to convert raw dataset to analytic formatting produced by AmeriCorps. These files were updated on January 16, 2025 to correct erroneous missing values for the ssupwgt variable. 5) 2023 CEV Technical Documentation – codebook for raw dataset and full supplement documentation produced by U.S. Census Bureau 6) 2023 CEV Raw Data and Read In Files – raw dataset in Stata (.dta) format, Stata code (.do) and dictionary file (.dct) to read ASCII dataset (.dat) into Stata using layout files (.lis)

  17. e

    The United Nations Population Statistics Database

    • knb.ecoinformatics.org
    • search.dataone.org
    • +1more
    Updated Oct 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    K. Kovacs; E. Horvath (2022). The United Nations Population Statistics Database [Dataset]. http://doi.org/10.15485/1464266
    Explore at:
    Dataset updated
    Oct 27, 2022
    Dataset provided by
    ESS-DIVE
    Authors
    K. Kovacs; E. Horvath
    Time period covered
    Jan 1, 1950 - Dec 31, 2004
    Area covered
    United Nations
    Description

    The United Nations Energy Statistics Database (UNSTAT) is a comprehensive collection of international energy and demographic statistics prepared by the United Nations Statistics Division. The 2004 version represents the latest in the series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The database contains comprehensive energy statistics for more than 215 countries or areas for production, trade and intermediate and final consumption (end-use) for primary and secondary conventional, non-conventional and new and renewable sources of energy. Mid-year population estimates are included to enable the computation of per capita data. Annual questionnaires sent to national statistical offices serve as the primary source of information. Supplementary data are also compiled from national, regional and international statistical publications. The Statistics Division prepares estimates where official data are incomplete or inconsistent. The database is updated on a continuous basis as new information and revisions are received. This metadata file represents the population statistics during the expressed time. For more information about the country site codes, click this link to the United Nations "Standard country or area codes for statistical use": https://unstats.un.org/unsd/methodology/m49/overview/

  18. w

    Global Financial Inclusion (Global Findex) Database 2021 - France

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Dec 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - France [Dataset]. https://microdata.worldbank.org/index.php/catalog/4642
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    France
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for France is 1000.

    Mode of data collection

    Landline and mobile telephone

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  19. e

    Annual Population Survey, January - December, 2007 - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Dec 15, 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2007). Annual Population Survey, January - December, 2007 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/6ed31f08-a5bd-52b9-b190-c153bfa3ff1c
    Explore at:
    Dataset updated
    Dec 15, 2007
    Description

    Abstract copyright UK Data Service and data collection copyright owner.The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at the local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost. The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.Occupation data for 2021 and 2022The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022APS Well-Being DatasetsFrom 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.APS disability variablesOver time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage. End User Licence and Secure Access APS dataUsers should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to: age: single year of age, year and month of birth, age completed full-time education and age obtained highest qualification, age of oldest dependent child and age of youngest dependent child family unit and household: including a number of variables concerning the number of dependent children in the family according to their ages, relationship to head of household and relationship to head of family nationality and country of origin geography: including county, unitary/local authority, place of work, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions, and whether lives and works in same local authority district health: including main health problem, and current and past health problems education and apprenticeship: including numbers and subjects of various qualifications and variables concerning apprenticeships industry: including industry, industry class and industry group for main, second and last job, and industry made redundant from occupation: including 4-digit Standard Occupational Classification (SOC) for main, second and last job and job made redundant from system variables: including week number when interview took place and number of households at address The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements. The Special Licence version of the APS January - December, 2007 is held at the UK Data Archive under SN 5990. For the fourth edition (May 2015) an updated version of the data was deposited, weighted to 2014 population figures (based on Census 2011). The new weighting variable is PWTA14. An updated APS user guide is also available. Main Topics:Topics covered include: household composition and relationships, housing tenure, nationality, ethnicity and residential history, employment and training (including government schemes), workplace and location, job hunting, educational background and qualifications. Many of the variables included in the survey are the same as those in the LFS. Multi-stage stratified random sample Face-to-face interview Telephone interview 2007 ACADEMIC ACHIEVEMENT ADVANCED LEVEL EXAM... ADVANCED SUPPLEMENT... AGE APPLICATION FOR EMP... APPOINTMENT TO JOB ATTITUDES BONUS PAYMENTS BUSINESS AND TECHNO... BUSINESSES CARDIOVASCULAR DISE... CARE OF DEPENDANTS CERTIFICATE OF SECO... CERTIFICATE OF SIXT... CHILDREN CHRONIC ILLNESS CITY AND GUILDS OF ... COHABITATION CONDITIONS OF EMPLO... DEBILITATIVE ILLNESS DEGREES DEPRESSION DIABETES DIGESTIVE SYSTEM DI... DISABILITIES Demography population ECONOMIC ACTIVITY EDUCATIONAL BACKGROUND EDUCATIONAL CERTIFI... EDUCATIONAL COURSES EMPLOYEES EMPLOYER SPONSORED ... EMPLOYMENT EMPLOYMENT HISTORY EMPLOYMENT PROGRAMMES ENDOCRINE DISORDERS EPILEPSY ETHNIC GROUPS FAMILIES FAMILY MEMBERS FIELDS OF STUDY FULL TIME EMPLOYMENT FURNISHED ACCOMMODA... GENDER GENERAL CERTIFICATE... GENERAL NATIONAL VO... GENERAL SCOTTISH VO... HEADS OF HOUSEHOLD HEALTH HEARING IMPAIRMENTS HIGHER EDUCATION HIGHER NATIONAL CER... HOME BUYING HOME OWNERSHIP HOURS OF WORK HOUSEHOLDS HOUSING HOUSING TENURE INCOME INDUSTRIES JOB CHANGING JOB HUNTING JOB SEEKER S ALLOWANCE LANDLORDS LEARNING DISABILITIES Labour and employment MANAGERS MARITAL STATUS MENTAL DISORDERS MUSCULOSKELETAL DIS... NATIONAL IDENTITY NATIONAL VOCATIONAL... NATIONALITY NERVOUS SYSTEM DISE... OCCUPATIONAL QUALIF... OCCUPATIONS ORDINARY LEVEL EXAM... ORDINARY NATIONAL C... OVERTIME PART TIME COURSES PART TIME EMPLOYMENT PLACE OF RESIDENCE PRIVATE SECTOR PUBLIC SECTOR QUALIFICATIONS RECRUITMENT REDUNDANCY REDUNDANCY PAY RELIGIOUS AFFILIATION RENTED ACCOMMODATION RESIDENTIAL MOBILITY RESPIRATORY TRACT D... ROYAL SOCIETY OF AR... SCOTTISH CERTIFICAT... SCOTTISH VOCATIONAL... SCOTTISH VOCATIONAL... SELF EMPLOYED SICK LEAVE SKIN DISEASES SOCIAL HOUSING SOCIAL SECURITY BEN... SOCIO ECONOMIC STATUS SPEECH IMPAIRMENTS STATE RETIREMENT PE... STUDENTS SUBSIDIARY EMPLOYMENT SUPERVISORS SUPERVISORY STATUS TAX RELIEF TEMPORARY EMPLOYMENT TERMINATION OF SERVICE TIED HOUSING TRAINING TRAINING COURSES UNEMPLOYED UNEMPLOYMENT UNFURNISHED ACCOMMO... VISION IMPAIRMENTS VOCATIONAL EDUCATIO... WAGES WELSH LANGUAGE WORKING CONDITIONS WORKPLACE vital statistics an...

  20. 2

    APS

    • datacatalogue.ukdataservice.ac.uk
    Updated Oct 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). APS [Dataset]. http://doi.org/10.5255/UKDA-SN-8861-2
    Explore at:
    Dataset updated
    Oct 31, 2022
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Office for National Statistics
    Area covered
    United Kingdom
    Description
    The Annual Population Survey (APS) household datasets are produced annually and are available from 2004 (Special Licence) and 2006 (End User Licence). They allow production of family and household labour market statistics at local areas and for small sub-groups of the population across the UK. The household data comprise key variables from the Labour Force Survey (LFS) and the APS 'person' datasets. The APS household datasets include all the variables on the LFS and APS person datasets, except for the income variables. They also include key family and household-level derived variables. These variables allow for an analysis of the combined economic activity status of the family or household. In addition, they also include more detailed geographical, industry, occupation, health and age variables.

    For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.

    Occupation data for 2021 and 2022
    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022

    End User Licence and Secure Access APS data
    Users should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to:

    • age: single year of age, year and month of birth, age completed full-time education and age obtained highest qualification, age of oldest dependent child and age of youngest dependent child
    • family unit and household: including a number of variables concerning the number of dependent children in the family according to their ages, relationship to head of household and relationship to head of family
    • nationality and country of origin
    • geography: including county, unitary/local authority, place of work, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions, and whether lives and works in same local authority district
    • health: including main health problem, and current and past health problems
    • education and apprenticeship: including numbers and subjects of various qualifications and variables concerning apprenticeships
    • industry: including industry, industry class and industry group for main, second and last job, and industry made redundant from
    • occupation: including 4-digit Standard Occupational Classification (SOC) for main, second and last job and job made redundant from
    • system variables: including week number when interview took place and number of households at address
    The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements.

    Latest edition information

    For the second edition (October 2022), the 2022 weighting variable was added and the previous 2020 weight was removed.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228

Global Country Information 2023

Explore at:
Dataset updated
Jun 15, 2024
Dataset authored and provided by
Elgiriyewithana, Nidula
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Description

This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

Key Features

Country: Name of the country.

Density (P/Km2): Population density measured in persons per square kilometer.

Abbreviation: Abbreviation or code representing the country.

Agricultural Land (%): Percentage of land area used for agricultural purposes.

Land Area (Km2): Total land area of the country in square kilometers.

Armed Forces Size: Size of the armed forces in the country.

Birth Rate: Number of births per 1,000 population per year.

Calling Code: International calling code for the country.

Capital/Major City: Name of the capital or major city.

CO2 Emissions: Carbon dioxide emissions in tons.

CPI: Consumer Price Index, a measure of inflation and purchasing power.

CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

Currency_Code: Currency code used in the country.

Fertility Rate: Average number of children born to a woman during her lifetime.

Forested Area (%): Percentage of land area covered by forests.

Gasoline_Price: Price of gasoline per liter in local currency.

GDP: Gross Domestic Product, the total value of goods and services produced in the country.

Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

Largest City: Name of the country's largest city.

Life Expectancy: Average number of years a newborn is expected to live.

Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

Minimum Wage: Minimum wage level in local currency.

Official Language: Official language(s) spoken in the country.

Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

Physicians per Thousand: Number of physicians per thousand people.

Population: Total population of the country.

Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

Tax Revenue (%): Tax revenue as a percentage of GDP.

Total Tax Rate: Overall tax burden as a percentage of commercial profits.

Unemployment Rate: Percentage of the labor force that is unemployed.

Urban Population: Percentage of the population living in urban areas.

Latitude: Latitude coordinate of the country's location.

Longitude: Longitude coordinate of the country's location.

Potential Use Cases

Analyze population density and land area to study spatial distribution patterns.

Investigate the relationship between agricultural land and food security.

Examine carbon dioxide emissions and their impact on climate change.

Explore correlations between economic indicators such as GDP and various socio-economic factors.

Investigate educational enrollment rates and their implications for human capital development.

Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

Study labor market dynamics through indicators such as labor force participation and unemployment rates.

Investigate the role of taxation and its impact on economic development.

Explore urbanization trends and their social and environmental consequences.

Search
Clear search
Close search
Google apps
Main menu