80 datasets found
  1. h

    100-richest-people-in-world

    • huggingface.co
    Updated Aug 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nate Raw (2023). 100-richest-people-in-world [Dataset]. https://huggingface.co/datasets/nateraw/100-richest-people-in-world
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 2, 2023
    Authors
    Nate Raw
    License

    https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/

    Area covered
    World
    Description

    Dataset Card for 100 Richest People In World

      Dataset Summary
    

    This dataset contains the list of Top 100 Richest People in the World Column Information:-

    Name - Person Name NetWorth - His/Her Networth Age - Person Age Country - The country person belongs to Source - Information Source Industry - Expertise Domain

      Join our Community
    
    
    
    
    
    
    
    
    
      Supported Tasks and Leaderboards
    

    [More Information Needed]

      Languages
    

    [More Information Needed]… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/100-richest-people-in-world.

  2. 1000 Richest People in the World

    • kaggle.com
    zip
    Updated Jul 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Waqar Ali (2024). 1000 Richest People in the World [Dataset]. https://www.kaggle.com/datasets/waqi786/1000-richest-people-in-the-world
    Explore at:
    zip(8652 bytes)Available download formats
    Dataset updated
    Jul 28, 2024
    Authors
    Waqar Ali
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset provides a synthetic overview of the 1,000 wealthiest individuals in the world, offering insights into the distribution of wealth across industries and regions. It is designed to help analysts, researchers, and data enthusiasts explore global wealth trends, industry dominance, and regional wealth concentration.

    Whether you're conducting market research, financial analysis, or data modeling, this dataset serves as a valuable resource for understanding the characteristics of the world's top billionaires.

    📊 Key Features: Name 👤: The name of the billionaire. Country 🌍: Country of residence or primary business operation. Industry 🏭: Industry in which the individual has built their wealth. Net Worth (in billions) 💵: Estimated net worth in billions of USD. Company 🏢: The primary company or business associated with the billionaire. ⚠️ Important Note: This dataset is 100% synthetic and does not contain real financial or personal data. It is artificially generated for educational, analytical, and research purposes.

  3. Top 100 Richest People in the World

    • kaggle.com
    zip
    Updated Sep 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ayessa (2022). Top 100 Richest People in the World [Dataset]. https://www.kaggle.com/datasets/ayessa/top-100-richest-people-in-the-world
    Explore at:
    zip(3573 bytes)Available download formats
    Dataset updated
    Sep 18, 2022
    Authors
    Ayessa
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Introduction

    This dataset contains the top 100 richest people in the world based on their net worth. The dataset includes their rank, name, net worth, birthday, age, and nationality.

    Methodology

    This dataset was collected using web scraping (Beautiful Soup) on this website and this "https://en.wikipedia.org/wiki/List_of_countries_by_number_of_billionaires">wikipedia

    Thumbnail Photo

  4. Leading billionaires worldwide 2025

    • statista.com
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading billionaires worldwide 2025 [Dataset]. https://www.statista.com/statistics/272047/top-25-global-billionaires/
    Explore at:
    Dataset updated
    Mar 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2025
    Area covered
    World
    Description

    As of March 2025, Elon Musk had a net worth valued at 328.5 billion U.S. dollars, making him the richest man in the world. Amazon founder Jeff Bezos followed in second, with Marc Zuckerberg, the founder of Facebook, in third. The list is dominated by Americans, and Alice Walton and Francoise Bettencourt Meyers are the only women among the 20 richest people worldwide.

  5. Forbes World's Billionaires List 2024

    • kaggle.com
    Updated Aug 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vincent Campanaro (2025). Forbes World's Billionaires List 2024 [Dataset]. http://doi.org/10.34740/kaggle/dsv/12717950
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 9, 2025
    Dataset provided by
    Kaggle
    Authors
    Vincent Campanaro
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This comprehensive dataset encapsulates a detailed snapshot of the wealthiest individuals globally, as listed by Forbes in 2024. Compiled through meticulous web scraping and data aggregation, the dataset includes a wide range of attributes for each billionaire. Fields encompass basic personal information such as name, age, and gender, alongside financial details including net worth and sources of wealth. The dataset further delves into aspects like industry involvement, organizational affiliations, philanthropic endeavors, and educational backgrounds.

    Key attributes in this dataset include:

    Name: Full legal name of the billionaire. Age: Age of the individual. 2024 Net Worth: Estimated net worth in USD for the year 2024. Industry: Primary industry or sector of operation. Source of Wealth: Origin of the billionaire’s wealth. Title: Professional title or position. Organization: Name of the associated organization. Self-Made: Indicator if the wealth is self-made. Self-Made Score: A quantitative score assessing how self-made their wealth is. Philanthropy Score: A score reflecting the extent of their philanthropic activities. Residence: Main residence of the individual. Citizenship: Legal citizenship. Gender: Gender identity. Marital Status: Current marital status. Children: Number of children. Education: Highest level of education attained.

    This dataset is ideal for analysis, offering insights into the distribution of wealth, the influence of education on wealth accumulation, and trends across different industries. It also provides a foundation for exploring the impact of socioeconomic factors on personal wealth. The data were collected and formatted with careful consideration to ensure accuracy, making it a valuable resource for researchers, economists, and anyone interested in the dynamics of wealth and success.

    Please note that some data is missing in this dataset, primarily due to the unavailability of information from Forbes. This issue becomes more prevalent beyond the top 400 entries. Many individuals lack a self-made score, a philanthropy score, or specific details regarding their title or organization as per Forbes' listings. I am currently working to update the dataset with this missing information. However, this update process is quite tedious and time-consuming since it is mostly manual. I appreciate your patience and understanding as I work through these details.

  6. f

    A large and rich EEG dataset for modeling human visual object recognition

    • plus.figshare.com
    • figshare.com
    bin
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alessandro Gifford; Radoslaw Cichy (2024). A large and rich EEG dataset for modeling human visual object recognition [Dataset]. http://doi.org/10.25452/figshare.plus.18470912.v4
    Explore at:
    binAvailable download formats
    Dataset updated
    May 31, 2024
    Dataset provided by
    Figshare+
    Authors
    Alessandro Gifford; Radoslaw Cichy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset motivation and summaryThe human brain achieves visual object recognition through multiple stages of linear and nonlinear transformations operating at a millisecond scale. To predict and explain these rapid transformations, computational neuroscientists employ machine learning modeling techniques. However, state-of-the-art models require massive amounts of data to properly train, and to the present day there is a lack of vast brain datasets which extensively sample the temporal dynamics of visual object recognition. Here we collected a large and rich dataset of high temporal resolution EEG responses to images of objects on a natural background. This dataset includes 10 participants, each with 82,160 trials spanning 16,740 image conditions coming from the THINGS database. We release this dataset as a tool to foster research in visual neuroscience and computer vision.Useful materialAdditional dataset informationFor information regarding the experimental paradigm, the EEG recording protocol and the dataset validation through computational modeling analyses please refer to our paper.Additional dataset resourcesPlease visit the dataset page for the paper, dataset tutorial, code and more.OSFFor additional data and resources visit our OSF project, where you can find:A detailed description of the raw EEG data filesThe preprocessed EEG dataThe stimuli imagesThe EEG resting state dataCitationsIf you use any of our data, please cite our paper.

  7. N

    Income Distribution by Quintile: Mean Household Income in Crystal Lake, IL...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Crystal Lake, IL // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/crystal-lake-il-median-household-income/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Crystal Lake, Illinois
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Crystal Lake, IL, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 29,859, while the mean income for the highest quintile (20% of households with the highest income) is 262,478. This indicates that the top earners earn 9 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 379,997, which is 144.77% higher compared to the highest quintile, and 1272.64% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Crystal Lake median household income. You can refer the same here

  8. N

    Rich Square, NC Population Breakdown By Race (Excluding Ethnicity) Dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Rich Square, NC Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/rich-square-nc-population-by-race/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Carolina, Rich Square
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Rich Square by race. It includes the population of Rich Square across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Rich Square across relevant racial categories.

    Key observations

    The percent distribution of Rich Square population by race (across all racial categories recognized by the U.S. Census Bureau): 39.49% are white, 53.21% are Black or African American, 1.54% are Asian, 1.67% are some other race and 4.10% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Rich Square
    • Population: The population of the racial category (excluding ethnicity) in the Rich Square is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Rich Square total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rich Square Population by Race & Ethnicity. You can refer the same here

  9. F

    English Chain of Thought Prompt & Response Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). English Chain of Thought Prompt & Response Dataset [Dataset]. https://www.futurebeeai.com/dataset/prompt-response-dataset/english-chain-of-thought-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Welcome to the English Chain of Thought prompt-response dataset, a meticulously curated collection containing 3000 comprehensive prompt and response pairs. This dataset is an invaluable resource for training Language Models (LMs) to generate well-reasoned answers and minimize inaccuracies. Its primary utility lies in enhancing LLMs' reasoning skills for solving arithmetic, common sense, symbolic reasoning, and complex problems.

    Dataset Content

    This COT dataset comprises a diverse set of instructions and questions paired with corresponding answers and rationales in the English language. These prompts and completions cover a broad range of topics and questions, including mathematical concepts, common sense reasoning, complex problem-solving, scientific inquiries, puzzles, and more.

    Each prompt is meticulously accompanied by a response and rationale, providing essential information and insights to enhance the language model training process. These prompts, completions, and rationales were manually curated by native English people, drawing references from various sources, including open-source datasets, news articles, websites, and other reliable references.

    Our chain-of-thought prompt-completion dataset includes various prompt types, such as instructional prompts, continuations, and in-context learning (zero-shot, few-shot) prompts. Additionally, the dataset contains prompts and completions enriched with various forms of rich text, such as lists, tables, code snippets, JSON, and more, with proper markdown format.

    Prompt Diversity

    To ensure a wide-ranging dataset, we have included prompts from a plethora of topics related to mathematics, common sense reasoning, and symbolic reasoning. These topics encompass arithmetic, percentages, ratios, geometry, analogies, spatial reasoning, temporal reasoning, logic puzzles, patterns, and sequences, among others.

    These prompts vary in complexity, spanning easy, medium, and hard levels. Various question types are included, such as multiple-choice, direct queries, and true/false assessments.

    Response Formats

    To accommodate diverse learning experiences, our dataset incorporates different types of answers depending on the prompt and provides step-by-step rationales. The detailed rationale aids the language model in building reasoning process for complex questions.

    These responses encompass text strings, numerical values, and date and time formats, enhancing the language model's ability to generate reliable, coherent, and contextually appropriate answers.

    Data Format and Annotation Details

    This fully labeled English Chain of Thought Prompt Completion Dataset is available in JSON and CSV formats. It includes annotation details such as a unique ID, prompt, prompt type, prompt complexity, prompt category, domain, response, rationale, response type, and rich text presence.

    Quality and Accuracy

    Our dataset upholds the highest standards of quality and accuracy. Each prompt undergoes meticulous validation, and the corresponding responses and rationales are thoroughly verified. We prioritize inclusivity, ensuring that the dataset incorporates prompts and completions representing diverse perspectives and writing styles, maintaining an unbiased and discrimination-free stance.

    The English version is grammatically accurate without any spelling or grammatical errors. No copyrighted, toxic, or harmful content is used during the construction of this dataset.

    Continuous Updates and Customization

    The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Ongoing efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to gather custom chain of thought prompt completion data tailored to specific needs, providing flexibility and customization options.

    License

    The dataset, created by FutureBeeAI, is now available for commercial use. Researchers, data scientists, and developers can leverage this fully labeled and ready-to-deploy English Chain of Thought Prompt Completion Dataset to enhance the rationale and accurate response generation capabilities of their generative AI models and explore new approaches to NLP tasks.

  10. F

    Filipino Chain of Thought Prompt & Response Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Filipino Chain of Thought Prompt & Response Dataset [Dataset]. https://www.futurebeeai.com/dataset/prompt-response-dataset/filipino-chain-of-thought-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Welcome to the Filipino Chain of Thought prompt-response dataset, a meticulously curated collection containing 3000 comprehensive prompt and response pairs. This dataset is an invaluable resource for training Language Models (LMs) to generate well-reasoned answers and minimize inaccuracies. Its primary utility lies in enhancing LLMs' reasoning skills for solving arithmetic, common sense, symbolic reasoning, and complex problems.

    Dataset Content

    This COT dataset comprises a diverse set of instructions and questions paired with corresponding answers and rationales in the Filipino language. These prompts and completions cover a broad range of topics and questions, including mathematical concepts, common sense reasoning, complex problem-solving, scientific inquiries, puzzles, and more.

    Each prompt is meticulously accompanied by a response and rationale, providing essential information and insights to enhance the language model training process. These prompts, completions, and rationales were manually curated by native Filipino people, drawing references from various sources, including open-source datasets, news articles, websites, and other reliable references.

    Our chain-of-thought prompt-completion dataset includes various prompt types, such as instructional prompts, continuations, and in-context learning (zero-shot, few-shot) prompts. Additionally, the dataset contains prompts and completions enriched with various forms of rich text, such as lists, tables, code snippets, JSON, and more, with proper markdown format.

    Prompt Diversity

    To ensure a wide-ranging dataset, we have included prompts from a plethora of topics related to mathematics, common sense reasoning, and symbolic reasoning. These topics encompass arithmetic, percentages, ratios, geometry, analogies, spatial reasoning, temporal reasoning, logic puzzles, patterns, and sequences, among others.

    These prompts vary in complexity, spanning easy, medium, and hard levels. Various question types are included, such as multiple-choice, direct queries, and true/false assessments.

    Response Formats

    To accommodate diverse learning experiences, our dataset incorporates different types of answers depending on the prompt and provides step-by-step rationales. The detailed rationale aids the language model in building reasoning process for complex questions.

    These responses encompass text strings, numerical values, and date and time formats, enhancing the language model's ability to generate reliable, coherent, and contextually appropriate answers.

    Data Format and Annotation Details

    This fully labeled Filipino Chain of Thought Prompt Completion Dataset is available in JSON and CSV formats. It includes annotation details such as a unique ID, prompt, prompt type, prompt complexity, prompt category, domain, response, rationale, response type, and rich text presence.

    Quality and Accuracy

    Our dataset upholds the highest standards of quality and accuracy. Each prompt undergoes meticulous validation, and the corresponding responses and rationales are thoroughly verified. We prioritize inclusivity, ensuring that the dataset incorporates prompts and completions representing diverse perspectives and writing styles, maintaining an unbiased and discrimination-free stance.

    The Filipino version is grammatically accurate without any spelling or grammatical errors. No copyrighted, toxic, or harmful content is used during the construction of this dataset.

    Continuous Updates and Customization

    The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Ongoing efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to gather custom chain of thought prompt completion data tailored to specific needs, providing flexibility and customization options.

    License

    The dataset, created by FutureBeeAI, is now available for commercial use. Researchers, data scientists, and developers can leverage this fully labeled and ready-to-deploy Filipino Chain of Thought Prompt Completion Dataset to enhance the rationale and accurate response generation capabilities of their generative AI models and explore new approaches to NLP tasks.

  11. F

    Urdu Chain of Thought Prompt & Response Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Urdu Chain of Thought Prompt & Response Dataset [Dataset]. https://www.futurebeeai.com/dataset/prompt-response-dataset/urdu-chain-of-thought-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Welcome to the Urdu Chain of Thought prompt-response dataset, a meticulously curated collection containing 3000 comprehensive prompt and response pairs. This dataset is an invaluable resource for training Language Models (LMs) to generate well-reasoned answers and minimize inaccuracies. Its primary utility lies in enhancing LLMs' reasoning skills for solving arithmetic, common sense, symbolic reasoning, and complex problems.

    Dataset Content

    This COT dataset comprises a diverse set of instructions and questions paired with corresponding answers and rationales in the Urdu language. These prompts and completions cover a broad range of topics and questions, including mathematical concepts, common sense reasoning, complex problem-solving, scientific inquiries, puzzles, and more.

    Each prompt is meticulously accompanied by a response and rationale, providing essential information and insights to enhance the language model training process. These prompts, completions, and rationales were manually curated by native Urdu people, drawing references from various sources, including open-source datasets, news articles, websites, and other reliable references.

    Our chain-of-thought prompt-completion dataset includes various prompt types, such as instructional prompts, continuations, and in-context learning (zero-shot, few-shot) prompts. Additionally, the dataset contains prompts and completions enriched with various forms of rich text, such as lists, tables, code snippets, JSON, and more, with proper markdown format.

    Prompt Diversity

    To ensure a wide-ranging dataset, we have included prompts from a plethora of topics related to mathematics, common sense reasoning, and symbolic reasoning. These topics encompass arithmetic, percentages, ratios, geometry, analogies, spatial reasoning, temporal reasoning, logic puzzles, patterns, and sequences, among others.

    These prompts vary in complexity, spanning easy, medium, and hard levels. Various question types are included, such as multiple-choice, direct queries, and true/false assessments.

    Response Formats

    To accommodate diverse learning experiences, our dataset incorporates different types of answers depending on the prompt and provides step-by-step rationales. The detailed rationale aids the language model in building reasoning process for complex questions.

    These responses encompass text strings, numerical values, and date and time formats, enhancing the language model's ability to generate reliable, coherent, and contextually appropriate answers.

    Data Format and Annotation Details

    This fully labeled Urdu Chain of Thought Prompt Completion Dataset is available in JSON and CSV formats. It includes annotation details such as a unique ID, prompt, prompt type, prompt complexity, prompt category, domain, response, rationale, response type, and rich text presence.

    Quality and Accuracy

    Our dataset upholds the highest standards of quality and accuracy. Each prompt undergoes meticulous validation, and the corresponding responses and rationales are thoroughly verified. We prioritize inclusivity, ensuring that the dataset incorporates prompts and completions representing diverse perspectives and writing styles, maintaining an unbiased and discrimination-free stance.

    The Urdu version is grammatically accurate without any spelling or grammatical errors. No copyrighted, toxic, or harmful content is used during the construction of this dataset.

    Continuous Updates and Customization

    The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Ongoing efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to gather custom chain of thought prompt completion data tailored to specific needs, providing flexibility and customization options.

    License

    The dataset, created by FutureBeeAI, is now available for commercial use. Researchers, data scientists, and developers can leverage this fully labeled and ready-to-deploy Urdu Chain of Thought Prompt Completion Dataset to enhance the rationale and accurate response generation capabilities of their generative AI models and explore new approaches to NLP tasks.

  12. N

    Rich Hill, MO Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Rich Hill, MO Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Rich Hill from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/rich-hill-mo-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Rich Hill
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Rich Hill population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Rich Hill across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Rich Hill was 1,247, a 0.48% increase year-by-year from 2022. Previously, in 2022, Rich Hill population was 1,241, an increase of 0.40% compared to a population of 1,236 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Rich Hill decreased by 235. In this period, the peak population was 1,520 in the year 2003. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Rich Hill is shown in this column.
    • Year on Year Change: This column displays the change in Rich Hill population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rich Hill Population by Year. You can refer the same here

  13. N

    Rich Square, NC Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Rich Square, NC Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Rich Square from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/rich-square-nc-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Carolina, Rich Square
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Rich Square population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Rich Square across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Rich Square was 855, a 0.70% decrease year-by-year from 2022. Previously, in 2022, Rich Square population was 861, a decline of 0.81% compared to a population of 868 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Rich Square decreased by 566. In this period, the peak population was 1,421 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Rich Square is shown in this column.
    • Year on Year Change: This column displays the change in Rich Square population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rich Square Population by Year. You can refer the same here

  14. Forbes Billionaires list

    • kaggle.com
    zip
    Updated Jun 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shubham Vishwakarma (2023). Forbes Billionaires list [Dataset]. https://www.kaggle.com/datasets/shubham1920/forbes-billionaires-list/code
    Explore at:
    zip(195803 bytes)Available download formats
    Dataset updated
    Jun 12, 2023
    Authors
    Shubham Vishwakarma
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    Welcome to the Forbes Billionaire List Dataset! 🌟

    Context: This comprehensive dataset presents a wealth of information about the world's billionaires, curated from the prestigious Forbes Billionaires List. The Forbes list is widely recognized as a reliable source for tracking the net worth and profiles of the wealthiest individuals globally. It provides valuable insights into the distribution of wealth, entrepreneurial success stories, and the industries and countries where billionaires thrive.

    Inspiration: This dataset was inspired by a desire to analyze and explore the fascinating world of billionaires. It provides enthusiasts with a rich resource to study wealth distribution patterns, demographic trends, entrepreneurial endeavors, and global economic landscapes. By examining the Forbes Billionaires List, we can gain valuable insights into the factors that contribute to extreme wealth and the industries driving economic growth.

    Potential Applications: The Forbes Billionaire List Dataset offers numerous avenues for analysis and exploration. Here are a few potential applications: - Analyzing wealth distribution across countries and industries - Studying the relationship between age and net worth of billionaires - Identifying the top sources of wealth and the most successful industries - Exploring the demographic characteristics of billionaires - Examining the economic impact of billionaires on specific countries or regions

    Source: https://www.forbes.com/billionaires/

  15. F

    Italian Closed Ended Question Answer Text Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Italian Closed Ended Question Answer Text Dataset [Dataset]. https://www.futurebeeai.com/dataset/prompt-response-dataset/italian-closed-ended-question-answer-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    The Italian Closed-Ended Question Answering Dataset is a meticulously curated collection of 5000 comprehensive Question-Answer pairs. It serves as a valuable resource for training Large Language Models (LLMs) and question-answering models in the Italian language, advancing the field of artificial intelligence.

    Dataset Content

    This closed-ended QA dataset comprises a diverse set of context paragraphs and questions paired with corresponding answers in Italian. There is a context paragraph given for each question to get the answer from. The questions cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more.

    Each question is accompanied by an answer, providing valuable information and insights to enhance the language model training process. Both the questions and answers were manually curated by native Italian people, and references were taken from diverse sources like books, news articles, websites, web forums, and other reliable references.

    This question-answer prompt completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains questions and answers with different types of rich text, including tables, code, JSON, etc., with proper markdown.

    Question Diversity

    To ensure diversity, this Q&A dataset includes questions with varying complexity levels, ranging from easy to medium and hard. Different types of questions, such as multiple-choice, direct, and true/false, are included. The QA dataset also contains questions with constraints, which makes it even more useful for LLM training.

    Answer Formats

    To accommodate varied learning experiences, the dataset incorporates different types of answer formats. These formats include single-word, short phrases, single sentences, and paragraphs types of answers. The answers contain text strings, numerical values, date and time formats as well. Such diversity strengthens the language model's ability to generate coherent and contextually appropriate answers.

    Data Format and Annotation Details

    This fully labeled Italian Closed-Ended Question Answer Dataset is available in JSON and CSV formats. It includes annotation details such as a unique id, context paragraph, context reference link, question, question type, question complexity, question category, domain, prompt type, answer, answer type, and rich text presence.

    Quality and Accuracy

    The dataset upholds the highest standards of quality and accuracy. Each question undergoes careful validation, and the corresponding answers are thoroughly verified. To prioritize inclusivity, the dataset incorporates questions and answers representing diverse perspectives and writing styles, ensuring it remains unbiased and avoids perpetuating discrimination.

    The Italian versions is grammatically accurate without any spelling or grammatical errors. No toxic or harmful content is used while building this dataset.

    Continuous Updates and Customization

    The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Continuous efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to collect custom question-answer data tailored to specific needs, providing flexibility and customization options.

    License:

    The dataset, created by FutureBeeAI, is now ready for commercial use. Researchers, data scientists, and developers can utilize this fully labeled and ready-to-deploy Italian Closed-Ended Question Answer Dataset to enhance the language understanding capabilities of their generative AI models, improve response generation, and explore new approaches to NLP question-answering tasks.

  16. N

    Rich Hill, MO Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Rich Hill, MO Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/b24f3ba4-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Rich Hill
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Rich Hill by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Rich Hill across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a majority of female population, with 56.23% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Rich Hill is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Rich Hill total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rich Hill Population by Race & Ethnicity. You can refer the same here

  17. N

    Rich Township, Michigan Population Dataset: Yearly Figures, Population...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Rich Township, Michigan Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6f461142-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Rich Township, Michigan
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Rich township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Rich township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Rich township was 1,497, a 0.00% decrease year-by-year from 2021. Previously, in 2021, Rich township population was 1,497, an increase of 0.07% compared to a population of 1,496 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Rich township increased by 83. In this period, the peak population was 1,622 in the year 2010. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Rich township is shown in this column.
    • Year on Year Change: This column displays the change in Rich township population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rich township Population by Year. You can refer the same here

  18. N

    Rich Valley Township, Minnesota Population Breakdown by Gender and Age...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Rich Valley Township, Minnesota Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1fbfee0-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Rich Valley Township
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Rich Valley township by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Rich Valley township. The dataset can be utilized to understand the population distribution of Rich Valley township by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Rich Valley township. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Rich Valley township.

    Key observations

    Largest age group (population): Male # 55-59 years (37) | Female # 65-69 years (35). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Rich Valley township population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Rich Valley township is shown in the following column.
    • Population (Female): The female population in the Rich Valley township is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Rich Valley township for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rich Valley township Population by Gender. You can refer the same here

  19. N

    Rich County, UT Hispanic or Latino Population Distribution by Ancestries...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Rich County, UT Hispanic or Latino Population Distribution by Ancestries Dataset : Detailed Breakdown of Hispanic or Latino Origins // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/rich-county-ut-population-by-race/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Rich County, Utah
    Variables measured
    Hispanic or Latino population with Cuban ancestry, Hispanic or Latino population with Mexican ancestry, Hispanic or Latino population with Puerto Rican ancestry, Hispanic or Latino population with Other Hispanic or Latino ancestry, Hispanic or Latino population with Cuban ancestry as Percent of Total Hispanic Population, Hispanic or Latino population with Mexican ancestry as Percent of Total Hispanic Population, Hispanic or Latino population with Puerto Rican ancestry as Percent of Total Hispanic Population, Hispanic or Latino population with Other Hispanic or Latino ancestry as Percent of Total Hispanic Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Origin / Ancestry for Hispanic population and (b) respective population as a percentage of the total Hispanic population, we initially analyzed and categorized the data for each of the ancestries across the Hispanic or Latino population. It is ensured that the population estimates used in this dataset pertain exclusively to ancestries for the Hispanic or Latino population. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Rich County Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of Rich County, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of Rich County.

    Key observations

    Among the Hispanic population in Rich County, regardless of the race, the largest group is of Mexican origin, with a population of 156 (86.67% of the total Hispanic population).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Origin for Hispanic or Latino population include:

    • Mexican
    • Puerto Rican
    • Cuban
    • Other Hispanic or Latino

    Variables / Data Columns

    • Origin: This column displays the origin for Hispanic or Latino population for the Rich County
    • Population: The population of the specific origin for Hispanic or Latino population in the Rich County is shown in this column.
    • % of Total Hispanic Population: This column displays the percentage distribution of each Hispanic origin as a proportion of Rich County total Hispanic or Latino population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rich County Population by Race & Ethnicity. You can refer the same here

  20. THE BILLIONAIRES LIST

    • kaggle.com
    zip
    Updated Feb 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivam Dhiman (2024). THE BILLIONAIRES LIST [Dataset]. https://www.kaggle.com/datasets/shiivvvaam/the-billionaires-list/data
    Explore at:
    zip(174225 bytes)Available download formats
    Dataset updated
    Feb 4, 2024
    Authors
    Shivam Dhiman
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Explore the dynamic landscape of global wealth with our meticulously curated dataset sourced from the Forbes Billionaires List. Delve into the lives and fortunes of the individuals, uncovering key insights into their net worth, age, country or territory of origin, primary sources of wealth, and respective industries. This dataset, meticulously web scraped from Forbes, provides a comprehensive snapshot of the world's financial elite, offering a unique lens into the diverse sectors that contribute to their staggering fortunes. From tech moguls to fashion tycoons, this dataset presents a detailed panorama of the wealthiest personalities shaping the global economic stage.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nate Raw (2023). 100-richest-people-in-world [Dataset]. https://huggingface.co/datasets/nateraw/100-richest-people-in-world

100-richest-people-in-world

nateraw/100-richest-people-in-world

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Aug 2, 2023
Authors
Nate Raw
License

https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/

Area covered
World
Description

Dataset Card for 100 Richest People In World

  Dataset Summary

This dataset contains the list of Top 100 Richest People in the World Column Information:-

Name - Person Name NetWorth - His/Her Networth Age - Person Age Country - The country person belongs to Source - Information Source Industry - Expertise Domain

  Join our Community









  Supported Tasks and Leaderboards

[More Information Needed]

  Languages

[More Information Needed]… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/100-richest-people-in-world.

Search
Clear search
Close search
Google apps
Main menu