Note: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org.
This dataset gives the average life expectancy and corresponding confidence intervals for each Chicago community area for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/qjr3-bm53/files/AAu4x8SCRz_bnQb8SVUyAXdd913TMObSYj6V40cR6p8?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description - LE by community area.pdf
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Life expectancy is a summary measure of the all-cause mortality rates in an area in a given period. It shows an estimate of the average number of years a newborn baby would survive if he or she experienced the age-specific mortality rates for that area and time period throughout his or her life. Figures reflect mortality among those living in an area in the given time period, not the life expectancy of newborn children. That is because both the mortality rates of the area are likely to change in the future, and because many of those born in the area will live elsewhere for at least some part of their lives. Life expectancy is a summary measure of a population's health. It may be influenced by premature mortalities and health inequalities. Data source: Office for Health Improvement and Disparities (ODHI), indicator 90366.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Air pollution globalization, as a combined effect of atmospheric transport and international trade, can lead to notable transboundary health impacts. Life expectancy reduction attribution analysis of transboundary pollution can reveal the effect of pollution globalization on the lives of individuals. This study coupled five state-of-the-art models to link the regional per capita life expectancy reduction to cross-boundary pollution transport attributed to consumption in other regions. Our results revealed that pollution due to consumption in other regions contributed to a global population-weighted PM2.5 concentration of 9 μg/m3 in 2017, thereby causing 1.03 million premature deaths and reducing the global average life expectancy by 0.23 year (≈84 days). Trade-induced transboundary pollution relocation led to a significant reduction in life expectancy worldwide (from 5 to 155 days per person), and even in the least polluted regions, such as North America, Western Europe, and Russia, a 12–61-day life expectancy reduction could be attributed to consumption in other regions. Our results reveal the individual risks originating from air pollution globalization. To protect human life, all regions and residents worldwide should jointly act together to reduce atmospheric pollution and its globalization as soon as possible.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In 2024 life expectancy in France is a question of region, department and city
In France, life expectancy at birth is 85.3 years for women and 79.4 years for men. This means that on average, a French woman born in 2024 will live to the age of 85.3 years, and a man to the age of 79.4.
However, life expectancy varies considerably depending on the region, department and city where you live.
In region
Life expectancy is highest in Île-de-France, with 86.6 years for women and 81.9 years for men. Then come Provence-Alpes-Côte d’Azur (86.5 years for women, 81.7 years for men), Auvergne-Rhône-Alpes (86.4 years for women, 81.5 years for men) and Brittany (86.2 years for women, 81.3 years for men).
Conversely, life expectancy is lowest in Hauts-de-France, with 83.9 years for women and 78.9 years for men. Then come Normandy (84.1 years for women, 79.1 years for men), Centre-Val de Loire (84.2 years for women, 79.3 years for men) and Burgundy-Franche-Comté (84.3 years for women, 79.4 years for men).
Department
At the departmental level, the departments where we live the longest are Hauts-de-Seine (86.7 years for women, 81.9 years for men), Yvelines (86.4 years for women, 81.6 years for men), Val-de-Marne (86.3 years for women, 81.3 years for men), Paris (86.2 years for women, 81.1 years for men) and Haute-Garonne (86.2 years for women, 81.1 years for men).
Conversely, the departments where we live the least long are Creuse (76.4 years for women, 72.3 years for men), Pas-de-Calais (76.6 years for women, 72.5 years for men), Aisne (76.7 years for women, 72.6 years for men) and Somme (76.8 years for women, 72.7 years for men).
In town
At the municipal level, the cities where we live the longest are Paris (86.2 years for women, 81.1 years for men), Neuilly-sur-Seine (86.1 years for women, 81.0 years for men), Boulogne-Billancourt (85.9 years for women, 80.8 years for men), Rueil-Malmaison (85.8 years for women, 80.7 years for men) and Issy-les-Moulineaux (85.7 years for women, 80.6 years for men).
Conversely, the cities with the least long lived are The Crown (75.4 years for women, 71.3 years for men), Saint-Quentin (75.5 years for women, 71.4 years for men), Maubeuge (75.6 years for women, 71.5 years for men) and Valenciennes (75.7 years for women, 71.6 years for men).
Factors that influence life expectancy
Many factors influence life expectancy, including:
To view life expectancy for a specific region, department or city, please consult the following document:
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This indicator measures inequalities in life expectancy at birth within England as a whole, each English region, and each local authority. Life expectancy at birth is calculated for each deprivation decile of lower super output areas within each area and then the slope index of inequality (SII) is calculated based on these figures.
The SII is a measure of the social gradient in life expectancy, i.e., how much life expectancy varies with deprivation. It takes account of health inequalities across the whole range of deprivation within each area and summarises this in a single number. This represents the range in years of life expectancy across the social gradient from most to least deprived, based on a statistical analysis of the relationship between life expectancy and deprivation across all deprivation deciles.
Life expectancy at birth is a measure of the average number of years a person would expect to live based on contemporary mortality rates. For a particular area and time period, it is an estimate of the average number of years a newborn baby would survive if he or she experienced the age-specific mortality rates for that area and time period throughout his or her life.
The SII for England and for regions have been presented alongside the local authority figures in order to improve the display of the indicators on the overview page. However, they should not be considered as comparators for the local authority figures. The SII for England takes account of the full range of deprivation and mortality across the whole country. This does not therefore provide a suitable benchmark with which to compare local authority results, which take into account the range of deprivation and mortality within much smaller geographies.
Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The United States Census Bureau’s International Dataset provides estimates of country populations since 1950 and projections through 2050.
The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000. Specifically, the data set includes midyear population figures broken down by age and gender assignment at birth. Additionally, they provide time-series data for attributes including fertility rates, birth rates, death rates, and migration rates.
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_international
https://cloud.google.com/bigquery/public-data/international-census
Dataset Source: www.census.gov
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source -http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Steve Richey from Unsplash.
What countries have the longest life expectancy?
Which countries have the largest proportion of their population under 25?
Which countries are seeing the largest net migration?
Objective Gains in life expectancy have faltered in several high-income countries in recent years. We aim to compare life expectancy trends in Scotland to those seen internationally, and to assess the timing of any recent changes in mortality trends for Scotland. Setting Austria, Croatia, Czech Republic, Denmark, England & Wales, Estonia, France, Germany, Hungary, Iceland, Israel, Japan, Korea, Latvia, Lithuania, Netherlands, Northern Ireland, Poland, Scotland, Slovakia, Spain, Sweden, Switzerland, USA. Methods We used life expectancy data from the Human Mortality Database (HMD) to calculate the mean annual life expectancy change for 24 high-income countries over five-year periods from 1992 to 2016, and the change for Scotland for five-year periods from 1857 to 2016. One- and two-break segmented regression models were applied to mortality data from National Records of Scotland (NRS) to identify turning points in age-standardised mortality trends between 1990 and 2018. Results In 2012-2016 life expectancies in Scotland increased by 2.5 weeks/year for females and 4.5 weeks/year for males, the smallest gains of any period since the early 1970s. The improvements in life expectancy in 2012-2016 were smallest among females (<2.0 weeks/year) in Northern Ireland, Iceland, England & Wales and the USA and among males (<5.0 weeks/year) in Iceland, USA, England & Wales and Scotland. Japan, Korea, and countries of Eastern Europe have seen substantial gains in the same period. The best estimate of when mortality rates changed to a slower rate of improvement in Scotland was the year to 2012 Q4 for males and the year to 2014 Q2 for females. Conclusion Life expectancy improvement has stalled across many, but not all, high income countries. The recent change in the mortality trend in Scotland occurred within the period 2012-2014. Further research is required to understand these trends, but governments must also take timely action on plausible contributors. Description of methods used for collection/generation of data: The HMD has a detailed methods protocol available here: https://www.mortality.org/Public/Docs/MethodsProtocol.pdf The ONS and NRS also have similar methods for ensuring data consistency and quality assurance. Methods for processing the data: The segmented regression was conducted using the 'segmented' package in R. The recommended references to this package and its approach are here: Vito M. R. Muggeo (2003). Estimating regression models with unknown break-points. Statistics in Medicine, 22, 3055-3071. Vito M. R. Muggeo (2008). segmented: an R Package to Fit Regression Models with Broken-Line Relationships. R News, 8/1, 20-25. URL https://cran.r-project.org/doc/Rnews/. Vito M. R. Muggeo (2016). Testing with a nuisance parameter present only under the alternative: a score-based approach with application to segmented modelling. J of Statistical Computation and Simulation, 86, 3059-3067. Vito M. R. Muggeo (2017). Interval estimation for the breakpoint in segmented regression: a smoothed score-based approach. Australian & New Zealand Journal of Statistics, 59, 311-322. Software- or Instrument-specific information needed to interpret the data, including software and hardware version numbers: The analyses were conducted in R version 3.6.1 and Microsoft Excel 2013. Please see README.txt for further information HMD international_updated Jan 2019.xlsx Comprises 20 worksheets, of which 14 contain data. These data are arranged by country and by year. Missing data codes: "" The tab 'contents and sources' provides descriptions of the data source and contents of each sheet. HMD Scotland time trend analysis.xlsx Comprises 5 worksheets, including a combination of data and charts. The sheet 'contents' describes the data source and contents of other sheets. The variables include year, life expectancy, and various measures of change in life expectancy Missing data codes: "" Segmented regression chart.xlsx Comprises 2 worksheets, 'Data' and 'Chart'. Variables within the 'data' worksheet include: Year 4 quarter rolling period ending Female observed mortality rate Female predicted by one-break model Female predicted by two-break model Male observed mortality rate Male predicted by one-break model Male predicted by two-break model Chart breakpoint indicator Missing data codes: (blank space) Summary findings from segmented regression.xlsx Excel workbook containing table 1 of paper 'summary of results of segmented regression by population group and model/test'
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 1408 series, with data for years 2001 - 2001 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (11 items: Canada; Newfoundland and Labrador; Nova Scotia; Prince Edward Island ...), Age group (2 items: At birth; At age 65 ...), Sex (2 items: Males; Females ...), Income group (4 items: All income groups; Income group; tercile 1 (lowest);Income group; tercile 3 (highest);Income group; tercile 2 (middle) ...), Characteristics (8 items: Health-adjusted life expectancy; Low 95% confidence interval; health-adjusted life expectancy; Coefficient of variation for health-adjusted life expectancy; High 95% confidence interval; health-adjusted life expectancy ...).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Pivot table for life expectancy by sex and area type, divided by three-year intervals starting from 2001 to 2003.
Life expectancy at birth and at age 65, by sex, on a three-year average basis.
This table contains 2754 series, with data for years 2005/2007 - 2012/2014 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (153 items: Canada; Newfoundland and Labrador; Eastern Regional Integrated Health Authority, Newfoundland and Labrador; Central Regional Integrated Health Authority, Newfoundland and Labrador; ...); Age group (2 items: At birth; At age 65); Sex (3 items: Both sexes; Males; Females); Characteristics (3 items: Life expectancy; Low 95% confidence interval, life expectancy; High 95% confidence interval, life expectancy).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa ZA: Life Expectancy at Birth: Total data was reported at 62.774 Year in 2016. This records an increase from the previous number of 61.981 Year for 2015. South Africa ZA: Life Expectancy at Birth: Total data is updated yearly, averaging 57.201 Year from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 62.774 Year in 2016 and a record low of 52.215 Year in 1960. South Africa ZA: Life Expectancy at Birth: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s South Africa – Table ZA.World Bank: Health Statistics. Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision, or derived from male and female life expectancy at birth from sources such as: (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘World Happiness Report’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/unsdsn/world-happiness on 12 November 2021.
--- Dataset description provided by original source is as follows ---
The World Happiness Report is a landmark survey of the state of global happiness. The first report was published in 2012, the second in 2013, the third in 2015, and the fourth in the 2016 Update. The World Happiness 2017, which ranks 155 countries by their happiness levels, was released at the United Nations at an event celebrating International Day of Happiness on March 20th. The report continues to gain global recognition as governments, organizations and civil society increasingly use happiness indicators to inform their policy-making decisions. Leading experts across fields – economics, psychology, survey analysis, national statistics, health, public policy and more – describe how measurements of well-being can be used effectively to assess the progress of nations. The reports review the state of happiness in the world today and show how the new science of happiness explains personal and national variations in happiness.
The happiness scores and rankings use data from the Gallup World Poll. The scores are based on answers to the main life evaluation question asked in the poll. This question, known as the Cantril ladder, asks respondents to think of a ladder with the best possible life for them being a 10 and the worst possible life being a 0 and to rate their own current lives on that scale. The scores are from nationally representative samples for the years 2013-2016 and use the Gallup weights to make the estimates representative. The columns following the happiness score estimate the extent to which each of six factors – economic production, social support, life expectancy, freedom, absence of corruption, and generosity – contribute to making life evaluations higher in each country than they are in Dystopia, a hypothetical country that has values equal to the world’s lowest national averages for each of the six factors. They have no impact on the total score reported for each country, but they do explain why some countries rank higher than others.
What countries or regions rank the highest in overall happiness and each of the six factors contributing to happiness? How did country ranks or scores change between the 2015 and 2016 as well as the 2016 and 2017 reports? Did any country experience a significant increase or decrease in happiness?
What is Dystopia?
Dystopia is an imaginary country that has the world’s least-happy people. The purpose in establishing Dystopia is to have a benchmark against which all countries can be favorably compared (no country performs more poorly than Dystopia) in terms of each of the six key variables, thus allowing each sub-bar to be of positive width. The lowest scores observed for the six key variables, therefore, characterize Dystopia. Since life would be very unpleasant in a country with the world’s lowest incomes, lowest life expectancy, lowest generosity, most corruption, least freedom and least social support, it is referred to as “Dystopia,” in contrast to Utopia.
What are the residuals?
The residuals, or unexplained components, differ for each country, reflecting the extent to which the six variables either over- or under-explain average 2014-2016 life evaluations. These residuals have an average value of approximately zero over the whole set of countries. Figure 2.2 shows the average residual for each country when the equation in Table 2.1 is applied to average 2014- 2016 data for the six variables in that country. We combine these residuals with the estimate for life evaluations in Dystopia so that the combined bar will always have positive values. As can be seen in Figure 2.2, although some life evaluation residuals are quite large, occasionally exceeding one point on the scale from 0 to 10, they are always much smaller than the calculated value in Dystopia, where the average life is rated at 1.85 on the 0 to 10 scale.
What do the columns succeeding the Happiness Score(like Family, Generosity, etc.) describe?
The following columns: GDP per Capita, Family, Life Expectancy, Freedom, Generosity, Trust Government Corruption describe the extent to which these factors contribute in evaluating the happiness in each country. The Dystopia Residual metric actually is the Dystopia Happiness Score(1.85) + the Residual value or the unexplained value for each country as stated in the previous answer.
If you add all these factors up, you get the happiness score so it might be un-reliable to model them to predict Happiness Scores.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘World Happiness Report 2019’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/PromptCloudHQ/world-happiness-report-2019 on 30 September 2021.
--- Dataset description provided by original source is as follows ---
The data has been released by SDSN and extracted by PromptCloud's custom web crawling solution.
The World Happiness Report is a landmark survey of the state of global happiness that ranks 156 countries by how happy their citizens perceive themselves to be. This year’s World Happiness Report focuses on happiness and the community: how happiness has evolved over the past dozen years, with a focus on the technologies, social norms, conflicts and government policies that have driven those changes.
What is Dystopia?
Dystopia is an imaginary country that has the world’s least-happy people. The purpose in establishing Dystopia is to have a benchmark against which all countries can be favorably compared (no country performs more poorly than Dystopia) in terms of each of the six key variables, thus allowing each sub-bar to be of positive (or zero, in six instances) width. The lowest scores observed for the six key variables, therefore, characterize Dystopia. Since life would be very unpleasant in a country with the world’s lowest incomes, lowest life expectancy, lowest generosity, most corruption, least freedom, and least social support, it is referred to as “Dystopia,” in contrast to Utopia.
What are the residuals?
The residuals, or unexplained components, differ for each country, reflecting the extent to which the six variables either over- or under-explain average 2016-2018 life evaluations. These residuals have an average value of approximately zero over the whole set of countries. Figure 2.7 shows the average residual for each country if the equation in Table 2.1 is applied to average 2016- 2018 data for the six variables in that country. We combine these residuals with the estimate for life evaluations in Dystopia so that the combined bar will always have positive values. As can be seen in Figure 2.7, although some life evaluation residuals are quite large, occasionally exceeding one point on the scale from 0 to 10, they are always much smaller than the calculated value in Dystopia, where the average life is rated at 1.88 on the 0 to 10 scale. Table 7 of the online Statistical Appendix 1 for Chapter 2 puts the Dystopia plus residual block at the left side, and also draws the Dystopia line, making it easy to compare the signs and sizes of the residuals in different countries.
Why do we use these six factors to explain life evaluations?
The variables used reflect what has been broadly found in the research literature to be important in explaining national-level differences in life evaluations. Some important variables, such as unemployment or inequality, do not appear because comparable international data are not yet available for the full sample of countries. The variables are intended to illustrate important lines of correlation rather than to reflect clean causal estimates, since some of the data are drawn from the same survey sources, some are correlated with each other (or with other important factors for which we do not have measures), and in several instances there are likely to be two-way relations between life evaluations and the chosen variables (for example, healthy people are overall happier, but as Chapter 4 in the World Happiness Report 2013 demonstrated, happier people are overall healthier). In Statistical Appendix 1 of World Happiness Report 2018, we assessed the possible importance of using explanatory data from the same people whose life evaluations are being explained. We did this by randomly dividing the samples into two groups, and using the average values for .e.g. freedom gleaned from one group to explain the life evaluations of the other group. This lowered the effects, but only very slightly (e.g. 2% to 3%), assuring us that using data from the same individuals is not seriously affecting the results.
Data source: http://worldhappiness.report/ed/2019/
More such datasets can be downloaded from DataStock.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19"
cc-by Jonas Schöley, José Manuel Aburto, Ilya Kashnitsky, Maxi S. Kniffka, Luyin Zhang, Hannaliis Jaadla, Jennifer B. Dowd, and Ridhi Kashyap. "Bounce backs amid continued losses: Life expectancy changes since COVID-19".
These are CSV files of life tables over the years 2015 through 2021 across 29 countries analyzed in the paper "Bounce backs amid continued losses: Life expectancy changes since COVID-19".
40-lifetables.csv
Life table statistics 2015 through 2021 by sex, region and quarter with uncertainty quantiles based on Poisson replication of death counts. Actual life tables and expected life tables (under the assumption of pre-COVID mortality trend continuation) are provided.
30-lt_input.csv
Life table input data.
id
: unique row identifier
region_iso
: iso3166-2 region codes
sex
: Male, Female, Total
year
: iso year
age_start
: start of age group
age_width
: width of age group, Inf for age_start 100, otherwise 1
nweeks_year
: number of weeks in that year, 52 or 53
death_total
: number of deaths by any cause
population_py
: person-years of exposure (adjusted for leap-weeks and missing weeks in input data on all cause deaths)
death_total_nweeksmiss
: number of weeks in the raw input data with at least one missing death count for this region-sex-year stratum. missings are counted when the week is implicitly missing from the input data or if any NAs are encounted in this week or if age groups are implicitly missing for this week in the input data (e.g. 40-45, 50-55)
death_total_minnageraw
: the minimum number of age-groups in the raw input data within this region-sex-year stratum
death_total_maxnageraw
: the maximum number of age-groups in the raw input data within this region-sex-year stratum
death_total_minopenageraw
: the minimum age at the start of the open age group in the raw input data within this region-sex-year stratum
death_total_maxopenageraw
: the maximum age at the start of the open age group in the raw input data within this region-sex-year stratum
death_total_source
: source of the all-cause death data
death_total_prop_q1
: observed proportion of deaths in first quarter of year
death_total_prop_q2
: observed proportion of deaths in second quarter of year
death_total_prop_q3
: observed proportion of deaths in third quarter of year
death_total_prop_q4
: observed proportion of deaths in fourth quarter of year
death_expected_prop_q1
: expected proportion of deaths in first quarter of year
death_expected_prop_q2
: expected proportion of deaths in second quarter of year
death_expected_prop_q3
: expected proportion of deaths in third quarter of year
death_expected_prop_q4
: expected proportion of deaths in fourth quarter of year
population_midyear
: midyear population (July 1st)
population_source
: source of the population count/exposure data
death_covid
: number of deaths due to covid
death_covid_date
: number of deaths due to covid as of
death_covid_nageraw
: the number of age groups in the covid input data
ex_wpp_estimate
: life expectancy estimates from the World Population prospects for a five year period, merged at the midpoint year
ex_hmd_estimate
: life expectancy estimates from the Human Mortality Database
nmx_hmd_estimate
: death rate estimates from the Human Mortality Database
nmx_cntfc
: Lee-Carter death rate projections based on trend in the years 2015 through 2019
Deaths
source:
STMF input data series (https://www.mortality.org/Public/STMF/Outputs/stmf.csv)
ONS for GB-EAW pre 2020
CDC for US pre 2020
STMF:
harmonized to single ages via pclm
pclm iterates over country, sex, year, and within-year age grouping pattern and converts irregular age groupings, which may vary by country, year and week into a regular age grouping of 0:110
smoothing parameters estimated via BIC grid search seperately for every pclm iteration
last age group set to [110,111)
ages 100:110+ are then summed into 100+ to be consistent with mid-year population information
deaths in unknown weeks are considered; deaths in unknown ages are not considered
ONS:
data already in single ages
ages 100:105+ are summed into 100+ to be consistent with mid-year population information
PCLM smoothing applied to for consistency reasons
CDC:
The CDC data comes in single ages 0:100 for the US. For 2020 we only have the STMF data in a much coarser age grouping, i.e. (0, 1, 5, 15, 25, 35, 45, 55, 65, 75, 85+). In order to calculate life-tables in a manner consistent with 2020, we summarise the pre 2020 US death counts into the 2020 age grouping and then apply the pclm ungrouping into single year ages, mirroring the approach to the 2020 data
Population
source:
for years 2000 to 2019: World Population Prospects 2019 single year-age population estimates 1950-2019
for year 2020: World Population Prospects 2019 single year-age population projections 2020-2100
mid-year population
mid-year population translated into exposures:
if a region reports annual deaths using the Gregorian calendar definition of a year (365 or 366 days long) set exposures equal to mid year population estimates
if a region reports annual deaths using the iso-week-year definition of a year (364 or 371 days long), and if there is a leap-week in that year, set exposures equal to 371/364*mid_year_population to account for the longer reporting period. in years without leap-weeks set exposures equal to mid year population estimates. further multiply by fraction of observed weeks on all weeks in a year.
COVID deaths
source: COVerAGE-DB (https://osf.io/mpwjq/)
the data base reports cumulative numbers of COVID deaths over days of a year, we extract the most up to date yearly total
External life expectancy estimates
source:
World Population Prospects (https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/CSV_FILES/WPP2019_Life_Table_Medium.csv), estimates for the five year period 2015-2019
Human Mortality Database (https://mortality.org/), single year and age tables
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The life expectancy figure used is for males aged under 1 year. Figures are based on the number of deaths registered and mid-year population estimates, aggregated over three consecutive years.
Expectation of life at a given age for an area is the average number of years a person would live if he or she experienced that area's age-specific mortality rates for that time period throughout his or her life. It is therefore not the number of years someone of that age in the area could actually expect to live, both because the death rates of the area are likely to change in the future and because people may live in other areas for at least part of their lives.
Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.
This table contains mortality indicators by sex for Canada and all provinces except Prince Edward Island. These indicators are derived from three-year complete life tables. Mortality indicators derived from single-year life tables are also available (table 13-10-0837). For Prince Edward Island, Yukon, the Northwest Territories and Nunavut, mortality indicators derived from three-year abridged life tables are available (table 13-10-0140).
Note: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org.
This dataset gives the average life expectancy and corresponding confidence intervals for each Chicago community area for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/qjr3-bm53/files/AAu4x8SCRz_bnQb8SVUyAXdd913TMObSYj6V40cR6p8?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description - LE by community area.pdf