57 datasets found
  1. T

    POPULATION by Country in EUROPE

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). POPULATION by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/population?continent=europe
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Europe
    Description

    This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  2. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  3. Population; households and population dynamics; from 1899

    • data.overheid.nl
    • cbs.nl
    • +2more
    atom, json
    Updated Dec 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (Rijk) (2024). Population; households and population dynamics; from 1899 [Dataset]. https://data.overheid.nl/dataset/43369-population--households-and-population-dynamics--from-1899
    Explore at:
    json(KB), atom(KB)Available download formats
    Dataset updated
    Dec 23, 2024
    Dataset provided by
    Statistics Netherlands
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The most important key figures about population, households, population growth, births, deaths, migration, marriages, marriage dissolutions and change of nationality of the Dutch population.

    CBS is in transition towards a new classification of the population by origin. Greater emphasis is now placed on where a person was born, aside from where that person’s parents were born. The term ‘migration background’ is no longer used in this regard. The main categories western/non-western are being replaced by categories based on continents and a few countries that share a specific migration history with the Netherlands. The new classification is being implemented gradually in tables and publications on population by origin.

    Data available from: 1899

    Status of the figures: The 2023 figures on stillbirths and perinatal mortality are provisional, the other figures in the table are final.

    Changes as of 23 December 2024: Figures with regard to population growth for 2023 and figures of the population on 1 January 2024 have been added. The provisional figures on the number of stillbirths and perinatal mortality for 2023 do not include children who were born at a gestational age that is unknown. These cases were included in the final figures for previous years. However, the provisional figures show a relatively larger number of children born at an unknown gestational age. Based on an internal analysis for 2022, it appears that in the majority of these cases, the child was born at less than 24 weeks. To ensure that the provisional 2023 figures do not overestimate the number of stillborn children born at a gestational age of over 24 weeks, children born at an unknown gestational age have now been excluded.

    Changes as of 15 December 2023: None, this is a new table. This table succeeds the table Population; households and population dynamics; 1899-2019. See section 3. The following changes have been made: - The underlying topic folders regarding 'migration background' have been replaced by 'Born in the Netherlands' and 'Born abroad'; - The origin countries Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan and Turkey have been assigned to the continent of Asia (previously Europe).

    When will the new figures be published? The figures for the population development in 2023 and the population on 1 January 2024 will be published in the second quarter of 2024.

  4. e

    Who fears and who welcomes population decline? [Dataset] - Dataset - B2FIND

    • b2find.eudat.eu
    Updated May 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Who fears and who welcomes population decline? [Dataset] - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/120e5982-958b-5c69-b2a2-62a1875a0ee4
    Explore at:
    Dataset updated
    May 4, 2023
    Description

    European countries are experiencing population decline and the tacit assumption in most analyses is that the decline may have detrimental welfare effects. In this paper we use a survey among the population in the Netherlands to discover whether population decline is always met with fear. A number of results stand out: population size preferences differ by geographic proximity: at a global level the majority of respondents favors a (global) population decline, but closer to home one supports a stationary population. Population decline is clearly not always met with fear: 31 percent would like the population to decline at the national level and they generally perceive decline to be accompanied by immaterial welfare gains (improvement environment) as well as material welfare losses (tax increases, economic stagnation). In addition to these driving forces it appears that the attitude towards immigrants is a very strong determinant at all geographical levels: immigrants seem to be a stronger fear factor than population decline. The data was collected from a Dutch household panel.

  5. European Union Statistics on Income and Living Conditions 2004 -...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2019). European Union Statistics on Income and Living Conditions 2004 - Cross-Sectional User Database - Luxembourg [Dataset]. https://catalog.ihsn.org/catalog/7697
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    Time period covered
    2004
    Area covered
    Luxembourg
    Description

    Abstract

    In 2004, the EU-SILC instrument covered all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.

    There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.

    Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.

    This is the 4th version of the 2004 Cross-Sectional User Database as released in July 2015.

    Geographic coverage

    The survey covers following countries: Austria; Belgium; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Estonia; Finland; France; Germany; Greece; Spain; Ireland; Italy; Latvia; Lithuania; Luxembourg; Hungary; Malta; Netherlands; Poland; Portugal; Romania; Slovenia; Slovakia; Sweden; United Kingdom; Iceland; Norway; Turkey; Switzerland

    Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United Kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.

    Analysis unit

    • Households;
    • Individuals 16 years and older.

    Universe

    The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.

    For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.

    Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.

    The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.

    At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.

    According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:

    1. For all components of EU-SILC (whether survey or register based), the crosssectional and longitudinal (initial sample) data shall be based on a nationally representative probability sample of the population residing in private households within the country, irrespective of language, nationality or legal residence status. All private households and all persons aged 16 and over within the household are eligible for the operation.
    2. Representative probability samples shall be achieved both for households, which form the basic units of sampling, data collection and data analysis, and for individual persons in the target population.
    3. The sampling frame and methods of sample selection shall ensure that every individual and household in the target population is assigned a known and non-zero probability of selection.
    4. By way of exception, paragraphs 1 to 3 shall apply in Germany exclusively to the part of the sample based on probability sampling according to Article 8 of the Regulation of the European Parliament and of the Council (EC) No 1177/2003 concerning

    Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.

    Detailed information about sampling is available in Quality Reports in Related Materials.

    Mode of data collection

    Mixed

  6. T

    GDP PER CAPITA PPP by Country in EUROPE

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 28, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP PER CAPITA PPP by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/gdp-per-capita-ppp?continent=europe
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    May 28, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Europe
    Description

    This dataset provides values for GDP PER CAPITA PPP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  7. r

    Restructuring Large Housing Estates in European Cities: Good Practices and...

    • researchdata.edu.au
    • research-repository.rmit.edu.au
    Updated Nov 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sjoerd de vos; sako musterd; ronald van kempen; Karien Dekker; 0000-0001-7361-591x (2020). Restructuring Large Housing Estates in European Cities: Good Practices and New Visions for Sustainable Neighbourhoods and Cities - data from 31 large housing estates in 10 European countries (2004) [Dataset]. http://doi.org/10.6084/M9.FIGSHARE.5436283.V1
    Explore at:
    Dataset updated
    Nov 4, 2020
    Dataset provided by
    RMIT University, Australia
    Authors
    sjoerd de vos; sako musterd; ronald van kempen; Karien Dekker; 0000-0001-7361-591x
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    The empirical dataset is derived from a survey carried out on 25 estates in 14 cities in nine different European countries: France (Lyon), Germany (Berlin), Hungary (Budapest and Nyiregyha´za), Italy (Milan), the Netherlands (Amsterdam and Utrecht), Poland (Warsaw), Slovenia (Ljubljana and Koper), Spain (Barcelona and Madrid), and Sweden (Jo¨nko¨ping and Stockholm). The survey was part of the EU RESTATE project (Musterd & Van Kempen, 2005). A similar survey was constructed for all 25 estates.

    The survey was carried out between February and June 2004. In each case, a random sample was drawn, usually from the whole estate. For some estates, address lists were used as the basis for the sample; in other cases, the researchers first had to take a complete inventory of addresses themselves (for some deviations from this general trend and for an overview of response rates, see Musterd & Van Kempen, 2005). In most cities, survey teams were hired to carry out the survey. They worked under the supervision of the RESTATE partners. Briefings were organised to instruct the survey teams. In some cases (for example, in Amsterdam and Utrecht), interviewers were recruited from specific ethnic groups in order to increase the response rate among, for example, the Turkish and Moroccan residents on the estates. In other cases, family members translated questions during a face-to-face interview. The interviewers with an immigrant background were hired in those estates where this made sense. In some estates it was not necessary to do this because the number of immigrants was (close to) zero (as in most cases in CE Europe).

    The questionnaire could be completed by the respondents themselves, but also by the interviewers in a face-to-face interview.

    Data and Representativeness

    The data file contains 4756 respondents. Nearly all respondents indicated their satisfaction with the dwelling and the estate. Originally, the data file also contained cases from the UK.

    However, UK respondents were excluded from the analyses because of doubts about the reliability of the answers to the ethnic minority questions. This left 25 estates in nine countries. In general, older people and original populations are somewhat over-represented, while younger people and immigrant populations are relatively under-represented, despite the fact that in estates with a large minority population surveyors were also employed from minority ethnic groups. For younger people, this discrepancy probably derives from the extent of their activities outside the home, making them more difficult to reach. The under-representation of the immigrant population is presumably related to language and cultural differences. For more detailed information on the representation of population in each case, reference is made to the reports of the researchers in the different countries which can be downloaded from the programme website. All country reports indicate that despite these over- and under-representations, the survey results are valuable for the analyses of their own individual situation.

    This dataset is the result of a team effort lead by Professor Ronald van Kempen, Utrecht University with funding from the EU Fifth Framework.

  8. e

    European urban population, 700 - 2000 - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Oct 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). European urban population, 700 - 2000 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/13947f0e-7a1a-521b-bde1-0c58f0b798d8
    Explore at:
    Dataset updated
    Oct 11, 2024
    Description

    This dataset contains estimates of the urban population (in thousands of inhabitants) between the years 700 and 2000 in 2,262 European settlements. It is based on previous historical demographic sources that have been critically assessed and systematically complemented with new population estimates for additional time windows, deriving from either quantitative sources or proxies. Missing data are covered by city-specific imputations. It contains European cities with more than 100,000 inhabitants. Furthermore medieval first and second nature geographical data for all cities have been added, as well as their historical names.

  9. e

    Population density by NUTS 3 region

    • data.europa.eu
    csv, html, tsv, xml
    Updated Jul 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Population density by NUTS 3 region [Dataset]. https://data.europa.eu/data/datasets/gngfvpqmfu5n6akvxqkpw?locale=en
    Explore at:
    xml(237347), tsv(119708), xml(60900), csv(302593), htmlAvailable download formats
    Dataset updated
    Jul 19, 2025
    Dataset authored and provided by
    Eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Population density by NUTS 3 region

  10. MEDIATIZED EU Public Opinion Survey ORDP Dataset and Codebook

    • data.europa.eu
    • data.niaid.nih.gov
    • +1more
    unknown
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2025). MEDIATIZED EU Public Opinion Survey ORDP Dataset and Codebook [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-14552176?locale=da
    Explore at:
    unknown(488476)Available download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The MEDIATIZED EU project aims to study how the media discourses are constructed to foster or hamper the European project and how they resonate among the public by focusing on the elite-media-public triangle. The research was conducted in seven target countries: Ireland, Belgium, Estonia, Spain, Portugal, Hungary and Georgia. This dataset is part of the integration of the MEDIATIZED EU project research data into the EU’s Open Research Data Pilot. In accordance with the Data Management Plan, public opinion survey data were deemed suitable for being openly shared through ORDP to be accessible and of use to other academic researchers in Europe and worldwide. Quantitative data derived from surveys was deemed suitable, with the only concerns being the heterogeneous nature of some of the survey questions in each target country. The aim of the population surveys was to investigate public opinion about the media and elites in their country and the EU and how they interpret elite and media discourses on Europeanisation and European integration. The merged database allows the project participants and other researchers to compare their national research results with phenomena in other participating countries. This dataset contains a subset of integrated survey data including those survey questions where comparative data was available. The final deliverable contains this subsection of the survey data which has been weighted and cleaned, in .SAV and .XLS formats, and provides the requisite codebook for the dataset. For more on the MEDIATIZED EU project, visit our website at mediatized.eu or view our CORDIS profile at: https://cordis.europa.eu/project/id/101004534 This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement no 101004534. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

  11. e

    Quality of Life in the European Union and the Candidate Countries - Dataset...

    • b2find.eudat.eu
    Updated Mar 5, 2003
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2003). Quality of Life in the European Union and the Candidate Countries - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/80b9ff52-bdb9-5a85-bf24-ca531d9c0489
    Explore at:
    Dataset updated
    Mar 5, 2003
    Area covered
    European Union
    Description

    Harmonized data file as the basis for comparative analysis of quality of life in the Candidate Countries and the European Union member states, based on seven different data sets, one Eurobarometer survey covering 13 Candidate Countries with an identical set of variables conducted in April 2002, the other six Standard Eurobarometer of different subjects and fielded in different years, each with another set of questions identical with the CC Eurobarometer. Selected aggregate indicators of quality of life ... describing the social situation in the EU15 and Candidate Countries. The countries are tentatively grouped according to affinities following a families of nations logic. The indicators were drawn from various sources, mainly provided by supranational organisations. They are grouped into six categories and recorded in the technical report (page 12 ff.): (1) economy and employment; (2) health; (3) population and family; (4) inequality and social problems; (5) modernisation; (6) political system. Most indicators refer to the year 2000. Deviations from this rule are explained in the list of indicators, together with definitions, coding, and sources. The indicators are added to the harmonized EB data file for all 28 countries in order to provide an opportunity for multi-level analysis. Selected comprehensive indicators and relevant indices have been defined and constructed for quality of life and subjective well-being as well as for poverty and deprivation measures. The CC-Eurobarometer contains several questions on the perceived income situation of a household and on the availability or lack of certain consumer goods. It also provides information on the perception of social integration and general acceptance. (Source: Alber, Jens; Böhnke, Petra; Delhey, Jan; Fliegner, Florian; Gauckler, Britta; Habich, Roland; Keck, Wolfgang; Kohler, Ulrich Kohler; Nauenburg, Ricarda; Schiller, Sabine: Quality of Life in the European Union and the Candidate Countries. Technical Report. Results of data inspection, establishing a harmonized data file, recoding procedure and preparation of analysis. Hand-out for the first researchers’ meeting, Brussels, 4-5 March 2003.) Persönliches Interview Face-to-face interview Population of any nationality of an European Union member, aged 15 years and over, resident in any of the Member States, respectively citizens of each Candidate Country, aged 15 and over. Multi-stage, random (probability) sampling. The sampling is based on a random selection of sampling points after stratification by the distribution of the national, resident population in terms of metropolitan, urban and rural areas, i.e. proportional to the population size (for a total coverage of the country) und to the population density. These primary sampling units (PSU) are selected from each of the administrative regions in every country. In the second stage, a cluster of addresses is selected from each sampled PSU. Addresses are chosen systematically using standard random route procedures, beginning with an initial address selected at random. In each household, one respondent is selected by a random procedure, such as the first birthday method.

  12. E

    A high resolution economic density zone map of Europe

    • find.data.gov.scot
    • dtechtive.com
    jpg, pdf, txt, zip
    Updated Aug 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Edinburgh (2018). A high resolution economic density zone map of Europe [Dataset]. http://doi.org/10.7488/ds/2419
    Explore at:
    pdf(0.1632 MB), jpg(0.0838 MB), txt(0.0166 MB), zip(9.27 MB)Available download formats
    Dataset updated
    Aug 17, 2018
    Dataset provided by
    University of Edinburgh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Available data for gross domestic product (GDP) and population density are useful for defining divisions in socio-economic gradients across Europe, since economic power and human population pressure are recognised as two of the most critical factors causing ecosystem changes. To overcome both the limitations in data availability and in the distortions caused by using administrative regions, we decided to base the socio-economic dimension on an economic density indicator, defined as the income generated per square kilometre (EUR km-2), which can be mapped at a 1km2 spatial resolution. Economic density forms an integrative indicator that is based on two key drivers that were identified above: economic power and human population pressure. The indicator, which has been used to rank countries by their level of development, can be considered a crude measure for impacts on the environment caused by economic activity. An economic density map (EUR km-2) at 1 km2 spatial resolution was constructed by multiplying economic power (EUR person-1) with population density (person km-2). Subsequent logarithmic divisions resulted in an aggregated map of four economic density zones. Although the map has a fine spatial resolution it has to be realised that they form a spatial disaggregation of coarser census statistics. Importantly, the finer resolution discerns regional gradients in human activity that are required for many environmental studies, whilst broad gradients in economic activity is also treated consistently across Europe. GDP and population density data used were for the year 2001. The dataset consists of GeoTiff files of the economic density map and the four economic density zones.

  13. GHS-UCDB R2024A - GHS Urban Centre Database 2025

    • data.europa.eu
    excel xlsx
    Updated Nov 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joint Research Centre (2024). GHS-UCDB R2024A - GHS Urban Centre Database 2025 [Dataset]. https://data.europa.eu/data/datasets/1a338be6-7eaf-480c-9664-3a8ade88cbcd?locale=en
    Explore at:
    excel xlsxAvailable download formats
    Dataset updated
    Nov 4, 2024
    Dataset authored and provided by
    Joint Research Centrehttps://joint-research-centre.ec.europa.eu/index_en
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains statistics on urban centres based on data from the Global Human Settlement Layer (GHSL) produced at the Joint Research Centre of the European Commission, unit E.1 (Disaster Risk Management). This release is based on the GHSL Data Package 2023, the Degree of Urbanisation to delineate spatial entities, and geospatial data integration from a variety of open source datasets to characterise them. The result is the most complete information system on cities to date with data for 11,422 quality-controlled urban centres across 15 thematic domains, 471 indicators, and 2600 attributes. The UCDB has two data streams, one based on a fixed delineation of urban centres in 2025, and a second version based on multi-temporal delineation of urban centres, traceable over time. The UCDB integrates data from Copernicus Services (including Emergency, Land Monitoring, Marine and Climate), peer-reviewed datasets (i.e. from the scientific literature), and institutional information systems (i.e. from the United Nations).

  14. European Union Statistics on Income and Living Conditions 2008 -...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2019). European Union Statistics on Income and Living Conditions 2008 - Cross-Sectional User Database - Bulgaria [Dataset]. https://catalog.ihsn.org/index.php/catalog/5597
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    Time period covered
    2008
    Area covered
    Bulgaria
    Description

    Abstract

    EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.

    There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.

    Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labour, education and health observations only apply to persons 16 and older. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.

    The 7th version of the 2008 Cross-Sectional User Database (UDB) as released in July 2015 is documented here.

    Geographic coverage

    The survey covers following countries: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Greece, Spain, France, Ireland, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, Sweden, United Kingdom, Iceland, Norway.

    Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.

    Analysis unit

    • Households;
    • Individuals 16 years and older.

    Universe

    The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.

    For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.

    Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.

    The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.

    At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.

    According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:

    1. For all components of EU-SILC (whether survey or register based), the cross-sectional and longitudinal (initial sample) data shall be based on a nationally representative probability sample of the population residing in private households within the country, irrespective of language, nationality or legal residence status. All private households and all persons aged 16 and over within the household are eligible for the operation.
    2. Representative probability samples shall be achieved both for households, which form the basic units of sampling, data collection and data analysis, and for individual persons in the target population.
    3. The sampling frame and methods of sample selection shall ensure that every individual and household in the target population is assigned a known and non-zero probability of selection.
    4. By way of exception, paragraphs 1 to 3 shall apply in Germany exclusively to the part of the sample based on probability sampling according to Article 8 of the Regulation of the European Parliament and of the Council (EC) No 1177/2003 concerning

    Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.

    Detailed information about sampling is available in Quality Reports in Related Materials.

    Mode of data collection

    Mixed

  15. Inequalities in Alcohol-Related Mortality in 17 European Countries: A...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    doc
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johan P. Mackenbach; Ivana Kulhánová; Matthias Bopp; Carme Borrell; Patrick Deboosere; Katalin Kovács; Caspar W. N. Looman; Mall Leinsalu; Pia Mäkelä; Pekka Martikainen; Gwenn Menvielle; Maica Rodríguez-Sanz; Jitka Rychtaříková; Rianne de Gelder (2023). Inequalities in Alcohol-Related Mortality in 17 European Countries: A Retrospective Analysis of Mortality Registers [Dataset]. http://doi.org/10.1371/journal.pmed.1001909
    Explore at:
    docAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Johan P. Mackenbach; Ivana Kulhánová; Matthias Bopp; Carme Borrell; Patrick Deboosere; Katalin Kovács; Caspar W. N. Looman; Mall Leinsalu; Pia Mäkelä; Pekka Martikainen; Gwenn Menvielle; Maica Rodríguez-Sanz; Jitka Rychtaříková; Rianne de Gelder
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    BackgroundSocioeconomic inequalities in alcohol-related mortality have been documented in several European countries, but it is unknown whether the magnitude of these inequalities differs between countries and whether these inequalities increase or decrease over time.Methods and FindingsWe collected and harmonized data on mortality from four alcohol-related causes (alcoholic psychosis, dependence, and abuse; alcoholic cardiomyopathy; alcoholic liver cirrhosis; and accidental poisoning by alcohol) by age, sex, education level, and occupational class in 20 European populations from 17 different countries, both for a recent period and for previous points in time, using data from mortality registers. Mortality was age-standardized using the European Standard Population, and measures for both relative and absolute inequality between low and high socioeconomic groups (as measured by educational level and occupational class) were calculated.Rates of alcohol-related mortality are higher in lower educational and occupational groups in all countries. Both relative and absolute inequalities are largest in Eastern Europe, and Finland and Denmark also have very large absolute inequalities in alcohol-related mortality. For example, for educational inequality among Finnish men, the relative index of inequality is 3.6 (95% CI 3.3–4.0) and the slope index of inequality is 112.5 (95% CI 106.2–118.8) deaths per 100,000 person-years. Over time, the relative inequality in alcohol-related mortality has increased in many countries, but the main change is a strong rise of absolute inequality in several countries in Eastern Europe (Hungary, Lithuania, Estonia) and Northern Europe (Finland, Denmark) because of a rapid rise in alcohol-related mortality in lower socioeconomic groups. In some of these countries, alcohol-related causes now account for 10% or more of the socioeconomic inequality in total mortality.Because our study relies on routinely collected underlying causes of death, it is likely that our results underestimate the true extent of the problem.ConclusionsAlcohol-related conditions play an important role in generating inequalities in total mortality in many European countries. Countering increases in alcohol-related mortality in lower socioeconomic groups is essential for reducing inequalities in mortality. Studies of why such increases have not occurred in countries like France, Switzerland, Spain, and Italy can help in developing evidence-based policies in other European countries.

  16. T

    HOME OWNERSHIP RATE by Country in EUROPE

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 29, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). HOME OWNERSHIP RATE by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/home-ownership-rate?continent=europe
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    May 29, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Europe
    Description

    This dataset provides values for HOME OWNERSHIP RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  17. p

    Global Population Dynamics Database - Dataset - CKAN

    • dataportal.ponderful.eu
    Updated Jun 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Global Population Dynamics Database - Dataset - CKAN [Dataset]. https://dataportal.ponderful.eu/dataset/global-population-dynamics-database
    Explore at:
    Dataset updated
    Jun 23, 2017
    Description

    The Global Population Dynamics Database is the largest collection of animal and plant population data in the world, bringing together nearly five thousand time series in one database. Sources of data vary enormously, from annual counts of mammals or birds at individual sampling sites, to weekly counts of zooplankton and other marine fauna. More information on this dataset can be found in the Freshwater Metadatabase - BFE_64 (http://www.freshwatermetadata.eu/metadb/bf_mdb_view.php?entryID=BFE_64).

  18. SECURES-Met - A European wide meteorological data set suitable for...

    • zenodo.org
    bin, zip
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Herbert Formayer; Herbert Formayer; Philipp Maier; Philipp Maier; Imran Nadeem; Imran Nadeem; David Leidinger; David Leidinger; Fabian Lehner; Fabian Lehner; Franziska Schöniger; Franziska Schöniger; Gustav Resch; Gustav Resch; Demet Suna; Demet Suna; Peter Widhalm; Peter Widhalm; Nicolas Pardo-Garcia; Nicolas Pardo-Garcia; Florian Hasengst; Florian Hasengst; Gerhard Totschnig; Gerhard Totschnig (2024). SECURES-Met - A European wide meteorological data set suitable for electricity modelling (supply and demand) for historical climate and climate change projections [Dataset]. http://doi.org/10.5281/zenodo.7907883
    Explore at:
    bin, zipAvailable download formats
    Dataset updated
    Aug 7, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Herbert Formayer; Herbert Formayer; Philipp Maier; Philipp Maier; Imran Nadeem; Imran Nadeem; David Leidinger; David Leidinger; Fabian Lehner; Fabian Lehner; Franziska Schöniger; Franziska Schöniger; Gustav Resch; Gustav Resch; Demet Suna; Demet Suna; Peter Widhalm; Peter Widhalm; Nicolas Pardo-Garcia; Nicolas Pardo-Garcia; Florian Hasengst; Florian Hasengst; Gerhard Totschnig; Gerhard Totschnig
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For the modelling of electricity production and demand, meteorological conditions are becoming more relevant due to the increasing contribution from renewable electricity production. But the requirements on meteorological data sets for electricity modelling are quite high. One challenge is the high temporal resolution, since a typical time step for modelling electricity production and demand is one hour. On the other side the European electricity market is highly connected, so that a pure country based modelling does not make sense and at least the whole European Union area has to be considered. Additionally, the spatial resolution of the data set must be able to represent the thermal conditions, which requires high spatial resolution at least in mountainous regions. All these requirements lead to huge data amounts for historic observations and even more for climate change projections for the whole 21st century. Thus, we have developed an aggregated European wide data set that has a temporal resolution of one hour, covers the whole EU area, has a reasonable size but is considering the high spatial variability. This meteorological data set for Europe for the historical period and climate change projections fulfills all relevant criteria for energy modelling. It has a hourly temporal resolution, considers local effects up to a spatial resolution of 1 km and has a suitable size, as all variables are aggregated to NUTS regions. Additionally meteorological information from wind speed and river run-off is directly converted into power productions, using state of the art methods and the current information on the location of power plants. Within the research project SECURES (https://www.secures.at/) this data set has been widely used for energy modelling.

    The SECURES-Met dataset provides variables visible in the table.

    VariableShort nameUnitAggregation methodsTemporal resolution
    Temperature (2m)T2M

    °C

    °C

    spatial mean

    population weighted mean (recommended)

    hourly
    Radiation

    GLO (mean global radiation)

    BNI (direct normal irradiation)

    Wm-2

    Wm-2

    spatial mean

    population weighted mean (recommended)

    hourly
    Potential Wind Power WP1normalized with potentially available areahourly
    Hydro Power Potential

    HYD-RES (reservoir)

    HYD-ROR (run-of-river)

    MW

    1

    summed power production

    summed power production normalized with average daily production

    daily

    SECURES-Met is available in a tabular csv format for the historical period (1981-2020, Hydro only until 2010) created from ERA5 and ERA5-Land and two future emission scenarios (RCP 4.5 and RCP 8.5, both 1951-2100, wind power starting from 1981, hydro power from 1971) created from one CMIP5 EUROCORDEX model (GCM: ICHEC-EC-EARTH, RCM: KNMI-RACMO22E, ensemble run: r12i1p1) on the spatial aggregation level

    • NUTS0 (country-wide),
    • NUTS2 (province-wide),
    • NUTS3 (Austria only),
    • and EEZ (Exclusive Economic Zones, offshore only).

    The data is divided into the historical (Historical.zip) and the two emission scenarios (Future_RCP45.zip and Future_RCP85.zip), a README file, which describes, how the files are organized, and a folder (Meta.zip), which has information and shape files of the different NUTS levels. As population weighted temperature and radiation represent values in geographical areas more relevant for solar power, it is highly relevant to use population weighted files. Spatial mean should be used for reference only.

    The project SECURES, in which this dataset was produced, was funded by the Climate and Energy Fund (Klima- und Energiefonds) under project number KR19AC0K17532.

  19. MANET: uncertainty in demographics – data on population projections

    • data.europa.eu
    • data.niaid.nih.gov
    • +1more
    unknown
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2025). MANET: uncertainty in demographics – data on population projections [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-13335264?locale=da
    Explore at:
    unknown(40866302)Available download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a repository of global and regional human population data collected from: the databases of scenarios assessed by the Intergovernmental Panel on Climate Change (Sixth Assessment Report, Special Report on 1.5 C; Fifth Assessment Report), multi-national databases of population projections (World Bank, International Database, United Nation population projections), and other very long-term population projections (Resources for the Future). More specifically, it contains: - in other_pop_data folder files from World Bank, the International Database from the US Census, and from IHME - in the SSP folder, the Shared Socioeconomic Pathways, as in the version 2.0 downloaded from IIASA and as in the version 3.0 downloaded from IIASA workspace - in the UN folder, the demographic projections from UN - IAMstat.xlsx, an overview file of the metadata accompanying the scenarios present in the IPCC databases - RFF.csv, an overview file containing the population projections obtained by Resources For the Future '- the remaining .csv files with names AR6#, AR5#, IAMC15# contain the IPCC scenarios assessed by the IPCC for preparing the IPCC assessment reports. They can be downloaded from AR5, SR 1.5, and AR6 This data in intended to be downloaded for use together with the package downloadable here. The dataset was used as a supporting material for the paper "Underestimating demographic uncertainties in the synthesis process of the IPCC" accepted on npj Climate Action (DOI : 10.1038/s44168-024-00152-y).

  20. r

    Data from: Financing the State: Government Tax Revenue from 1800 to 2012

    • researchdata.se
    • demo.researchdata.se
    Updated Feb 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Per F. Andersson; Thomas Brambor (2020). Financing the State: Government Tax Revenue from 1800 to 2012 [Dataset]. http://doi.org/10.5878/nsbw-2102
    Explore at:
    (1146002)Available download formats
    Dataset updated
    Feb 20, 2020
    Dataset provided by
    Lund University
    Authors
    Per F. Andersson; Thomas Brambor
    Time period covered
    1800 - 2012
    Area covered
    North America, Japan, Oceania, Europe, South America
    Description

    This dataset presents information on historical central government revenues for 31 countries in Europe and the Americas for the period from 1800 (or independence) to 2012. The countries included are: Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Chile, Colombia, Denmark, Ecuador, Finland, France, Germany (West Germany between 1949 and 1990), Ireland, Italy, Japan, Mexico, New Zealand, Norway, Paraguay, Peru, Portugal, Spain, Sweden, Switzerland, the Netherlands, the United Kingdom, the United States, Uruguay, and Venezuela. In other words, the dataset includes all South American, North American, and Western European countries with a population of more than one million, plus Australia, New Zealand, Japan, and Mexico. The dataset contains information on the public finances of central governments. To make such information comparable cross-nationally we have chosen to normalize nominal revenue figures in two ways: (i) as a share of the total budget, and (ii) as a share of total gross domestic product. The total tax revenue of the central state is disaggregated guided by the Government Finance Statistics Manual 2001 of the International Monetary Fund (IMF) which provides a classification of types of revenue, and describes in detail the contents of each classification category. Given the paucity of detailed historical data and the needs of our project, we combined some subcategories. First, we are interested in total tax revenue (centaxtot), as well as the shares of total revenue coming from direct (centaxdirectsh) and indirect (centaxindirectsh) taxes. Further, we measure two sub-categories of direct taxation, namely taxes on property (centaxpropertysh) and income (centaxincomesh). For indirect taxes, we separate excises (centaxexcisesh), consumption (centaxconssh), and customs(centaxcustomssh).

    For a more detailed description of the dataset and the coding process, see the codebook available in the .zip-file.

    Purpose:

    This dataset presents information on historical central government revenues for 31 countries in Europe and the Americas for the period from 1800 (or independence) to 2012. The countries included are: Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Chile, Colombia, Denmark, Ecuador, Finland, France, Germany (West Germany between 1949 and 1990), Ireland, Italy, Japan, Mexico, New Zealand, Norway, Paraguay, Peru, Portugal, Spain, Sweden, Switzerland, the Netherlands, the United Kingdom, the United States, Uruguay, and Venezuela. In other words, the dataset includes all South American, North American, and Western European countries with a population of more than one million, plus Australia, New Zealand, Japan, and Mexico. The dataset contains information on the public finances of central governments. To make such information comparable cross-nationally we have chosen to normalize nominal revenue figures in two ways: (i) as a share of the total budget, and (ii) as a share of total gross domestic product. The total tax revenue of the central state is disaggregated guided by the Government Finance Statistics Manual 2001 of the International Monetary Fund (IMF) which provides a classification of types of revenue, and describes in detail the contents of each classification category. Given the paucity of detailed historical data and the needs of our project, we combined some subcategories. First, we are interested in total tax revenue (centaxtot), as well as the shares of total revenue coming from direct (centaxdirectsh) and indirect (centaxindirectsh) taxes. Further, we measure two sub-categories of direct taxation, namely taxes on property (centaxpropertysh) and income (centaxincomesh). For indirect taxes, we separate excises (centaxexcisesh), consumption (centaxconssh), and customs(centaxcustomssh).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2017). POPULATION by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/population?continent=europe

POPULATION by Country in EUROPE

POPULATION by Country in EUROPE (2025)

Explore at:
13 scholarly articles cite this dataset (View in Google Scholar)
excel, xml, json, csvAvailable download formats
Dataset updated
May 27, 2017
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
2025
Area covered
Europe
Description

This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

Search
Clear search
Close search
Google apps
Main menu