73 datasets found
  1. w

    Immigration system statistics data tables

    • gov.uk
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2025). Immigration system statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/immigration-system-statistics-data-tables
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    GOV.UK
    Authors
    Home Office
    Description

    List of the data tables as part of the Immigration System Statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.

    If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.

    Accessible file formats

    The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
    If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
    Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Immigration system statistics, year ending March 2025
    Immigration system statistics quarterly release
    Immigration system statistics user guide
    Publishing detailed data tables in migration statistics
    Policy and legislative changes affecting migration to the UK: timeline
    Immigration statistics data archives

    Passenger arrivals

    https://assets.publishing.service.gov.uk/media/68258d71aa3556876875ec80/passenger-arrivals-summary-mar-2025-tables.xlsx">Passenger arrivals summary tables, year ending March 2025 (MS Excel Spreadsheet, 66.5 KB)

    ‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.

    Electronic travel authorisation

    https://assets.publishing.service.gov.uk/media/681e406753add7d476d8187f/electronic-travel-authorisation-datasets-mar-2025.xlsx">Electronic travel authorisation detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 56.7 KB)
    ETA_D01: Applications for electronic travel authorisations, by nationality ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality

    Entry clearance visas granted outside the UK

    https://assets.publishing.service.gov.uk/media/68247953b296b83ad5262ed7/visas-summary-mar-2025-tables.xlsx">Entry clearance visas summary tables, year ending March 2025 (MS Excel Spreadsheet, 113 KB)

    https://assets.publishing.service.gov.uk/media/682c4241010c5c28d1c7e820/entry-clearance-visa-outcomes-datasets-mar-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 29.1 MB)
    Vis_D01: Entry clearance visa applications, by nationality and visa type
    Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome

    Additional dat

  2. United States Immigrants Admitted: All Countries

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States Immigrants Admitted: All Countries [Dataset]. https://www.ceicdata.com/en/united-states/immigration/immigrants-admitted-all-countries
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 1, 2005 - Sep 1, 2016
    Area covered
    United States
    Variables measured
    Migration
    Description

    United States Immigrants Admitted: All Countries data was reported at 1,127,167.000 Person in 2017. This records a decrease from the previous number of 1,183,505.000 Person for 2016. United States Immigrants Admitted: All Countries data is updated yearly, averaging 451,510.000 Person from Sep 1900 (Median) to 2017, with 118 observations. The data reached an all-time high of 1,827,167.000 Person in 1991 and a record low of 23,068.000 Person in 1933. United States Immigrants Admitted: All Countries data remains active status in CEIC and is reported by US Department of Homeland Security. The data is categorized under Global Database’s United States – Table US.G087: Immigration.

  3. Deep learning four decades of human migration: datasets

    • zenodo.org
    csv, nc
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Gaskin; Thomas Gaskin; Guy Abel; Guy Abel (2025). Deep learning four decades of human migration: datasets [Dataset]. http://doi.org/10.5281/zenodo.15778301
    Explore at:
    nc, csvAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Thomas Gaskin; Thomas Gaskin; Guy Abel; Guy Abel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This Zenodo repository contains all migration flow estimates associated with the paper "Deep learning four decades of human migration." Evaluation code, training data, trained neural networks, and smaller flow datasets are available in the main GitHub repository, which also provides detailed instructions on data sourcing. Due to file size limits, the larger datasets are archived here.

    Data is available in both NetCDF (.nc) and CSV (.csv) formats. The NetCDF format is more compact and pre-indexed, making it suitable for large files. In Python, datasets can be opened as xarray.Dataset objects, enabling coordinate-based data selection.

    Each dataset uses the following coordinate conventions:

    • Year: 1990–2023
    • Birth ISO: Country of birth (UN ISO3)
    • Origin ISO: Country of origin (UN ISO3)
    • Destination ISO: Destination country (UN ISO3)
    • Country ISO: Used for net migration data (UN ISO3)

    The following data files are provided:

    • T.nc: Full table of flows disaggregated by country of birth. Dimensions: Year, Birth ISO, Origin ISO, Destination ISO
    • flows.nc: Total origin-destination flows (equivalent to T summed over Birth ISO). Dimensions: Year, Origin ISO, Destination ISO
    • net_migration.nc: Net migration data by country. Dimensions: Year, Country ISO
    • stocks.nc: Stock estimates for each country pair. Dimensions: Year, Origin ISO (corresponding to Birth ISO), Destination ISO
    • test_flows.nc: Flow estimates on a randomly selected set of test edges, used for model validation

    Additionally, two CSV files are provided for convenience:

    • mig_unilateral.csv: Unilateral migration estimates per country, comprising:
      • imm: Total immigration flows
      • emi: Total emigration flows
      • net: Net migration
      • imm_pop: Total immigrant population (non-native-born)
      • emi_pop: Total emigrant population (living abroad)
    • mig_bilateral.csv: Bilateral flow data, comprising:
      • mig_prev: Total origin-destination flows
      • mig_brth: Total birth-destination flows, where Origin ISO reflects place of birth

    Each dataset includes a mean variable (mean estimate) and a std variable (standard deviation of the estimate).

    An ISO3 conversion table is also provided.

  4. Vital Signs: Migration - by county (detailed)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Dec 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2018). Vital Signs: Migration - by county (detailed) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Migration-by-county-detailed-/sne6-igb4
    Explore at:
    csv, tsv, application/rssxml, application/rdfxml, json, xmlAvailable download formats
    Dataset updated
    Dec 12, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Description

    VITAL SIGNS INDICATOR Migration (EQ4)

    FULL MEASURE NAME Migration flows

    LAST UPDATED December 2018

    DESCRIPTION Migration refers to the movement of people from one location to another, typically crossing a county or regional boundary. Migration captures both voluntary relocation – for example, moving to another region for a better job or lower home prices – and involuntary relocation as a result of displacement. The dataset includes metropolitan area, regional, and county tables.

    DATA SOURCE American Community Survey County-to-County Migration Flows 2012-2015 5-year rolling average http://www.census.gov/topics/population/migration/data/tables.All.html

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Data for migration comes from the American Community Survey; county-to-county flow datasets experience a longer lag time than other standard datasets available in FactFinder. 5-year rolling average data was used for migration for all geographies, as the Census Bureau does not release 1-year annual data. Data is not available at any geography below the county level; note that flows that are relatively small on the county level are often within the margin of error. The metropolitan area comparison was performed for the nine-county San Francisco Bay Area, in addition to the primary MSAs for the nine other major metropolitan areas, by aggregating county data based on current metropolitan area boundaries. Data prior to 2011 is not available on Vital Signs due to inconsistent Census formats and a lack of net migration statistics for prior years. Only counties with a non-negligible flow are shown in the data; all other pairs can be assumed to have zero migration.

    Given that the vast majority of migration out of the region was to other counties in California, California counties were bundled into the following regions for simplicity: Bay Area: Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, Sonoma Central Coast: Monterey, San Benito, San Luis Obispo, Santa Barbara, Santa Cruz Central Valley: Fresno, Kern, Kings, Madera, Merced, Tulare Los Angeles + Inland Empire: Imperial, Los Angeles, Orange, Riverside, San Bernardino, Ventura Sacramento: El Dorado, Placer, Sacramento, Sutter, Yolo, Yuba San Diego: San Diego San Joaquin Valley: San Joaquin, Stanislaus Rural: all other counties (23)

    One key limitation of the American Community Survey migration data is that it is not able to track emigration (movement of current U.S. residents to other countries). This is despite the fact that it is able to quantify immigration (movement of foreign residents to the U.S.), generally by continent of origin. Thus the Vital Signs analysis focuses primarily on net domestic migration, while still specifically citing in-migration flows from countries abroad based on data availability.

  5. Immigration system statistics, year ending March 2023

    • gov.uk
    Updated Sep 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2023). Immigration system statistics, year ending March 2023 [Dataset]. https://www.gov.uk/government/statistics/immigration-system-statistics-year-ending-march-2023
    Explore at:
    Dataset updated
    Sep 4, 2023
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    Immigration system statistics, year ending March 2023: data tables

    This release presents immigration statistics from Home Office administrative sources, covering the period up to the end of March 2023. It includes data on the topics of:

    • work
    • study
    • family
    • passenger arrivals and visitors
    • asylum
    • extensions of stay
    • settlement
    • citizenship
    • detention
    • returns

    Further information

    User Guide to Home Office Immigration Statistics
    Policy and legislative changes affecting migration to the UK: timeline
    Developments in migration statistics
    Publishing detailed datasets in Immigration statistics

    A range of key input and impact indicators are currently published by the Home Office on the Migration transparency data webpage.

    If you have feedback or questions, our email address is MigrationStatsEnquiries@homeoffice.gov.uk.

  6. d

    Historical Migration Statistics

    • data.gov.au
    xlsx
    Updated Dec 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Home Affairs (2024). Historical Migration Statistics [Dataset]. https://data.gov.au/data/dataset/historical-migration-statistics
    Explore at:
    xlsx(374001)Available download formats
    Dataset updated
    Dec 5, 2024
    Dataset authored and provided by
    Department of Home Affairs
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    Historical Migration Statistics brings together migration statistics from 1945 through to the present day.

    In interpreting these statistics it should be noted that the classification of regions and country names has changed over time and that the way migration statistics are reported has also changed. From October 1945 to June 1959, migration statistics included permanent and long-term arrivals. Today, we have various components - the Migration Program, Humanitarian Program and Non-Program migration (mainly New Zealand citizens) reported as permanent additions to Australia's resident population.

  7. Κ

    Data from: Public Attitudes towards Immigration, News and Social Media...

    • datacatalogue.sodanet.gr
    csv, pdf, tsv
    Updated Apr 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Κατάλογος Δεδομένων SoDaNet (2024). Public Attitudes towards Immigration, News and Social Media Exposure, and Political Attitudes from a Cross-cultural Perspective: Data from seven European countries, the United States, and Colombia [Dataset]. http://doi.org/10.17903/FK2/JQ5JRI
    Explore at:
    tsv(12171706), pdf(421705), csv(17584912)Available download formats
    Dataset updated
    Apr 3, 2024
    Dataset provided by
    Κατάλογος Δεδομένων SoDaNet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 2021 - Jun 2021
    Area covered
    Spain, Germany, Belgium, Austria, Hungary, Sweden, Colombia, Italy, United States
    Description

    The data presented in this data project were collected in the context of two H2020 research projects: ‘Enhanced migration measures from a multidimensional perspective’(HumMingBird) and ‘Crises as opportunities: Towards a level telling field on migration and a new narrative of successful integration’(OPPORTUNITIES). The current survey was fielded to investigate the dynamic interplay between media representations of different migrant groups and the governmental and societal (re)actions to immigration. With these data, we provide more insight into these societal reactions by investigating attitudes rooted in values and worldviews. Through an online survey, we collected quantitative data on attitudes towards: Immigrants, Refugees, Muslims, Hispanics, Venezuelans News Media Consumption Trust in News Media and Societal Institutions Frequency and Valence of Intergroup Contact Realistic and Symbolic Intergroup Threat Right-wing Authoritarianism Social Dominance Orientation Political Efficacy Personality Characteristics Perceived COVID-threat, and Socio-demographic Characteristics For the adult population aged 25 to 65 in seven European countries: Austria Belgium Germany Hungary Italy Spain Sweden And for ages ranged from 18 to 65 for: United States of America Colombia The survey in the United States and Colombia was identical to the one in the European countries, although a few extra questions regarding COVID-19 and some region-specific migrant groups (e.g. Venezuelans) were added. We collected the data in cooperation with Bilendi, a Belgian polling agency, and selected the methodology for its cost-effectiveness in cross-country research. Respondents received an e-mail asking them to participate in a survey without specifying the subject matter, which was essential to avoid priming. Three weeks of fieldwork in May and June of 2021 resulted in a dataset of 13,645 respondents (a little over 1500 per country). Sample weights are included in the dataset and can be applied to ensure that the sample is representative for gender and age in each country. The cooperation rate ranged between 12% and 31%, in line with similar online data collections.

  8. G

    Immigrants to Canada, by country of last permanent residence

    • open.canada.ca
    • www150.statcan.gc.ca
    • +2more
    csv, html, xml
    Updated Jan 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Immigrants to Canada, by country of last permanent residence [Dataset]. https://open.canada.ca/data/en/dataset/fc6ad2eb-51f8-467c-be01-c4bda5b6186b
    Explore at:
    csv, xml, htmlAvailable download formats
    Dataset updated
    Jan 17, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    This table contains 25 series, with data for years 1955 - 2013 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...) Last permanent residence (25 items: Total immigrants; France; Great Britain; Total Europe ...).

  9. w

    Migration Household Survey 2009 - South Africa

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Jun 3, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Human Sciences Research Council (HSRC) (2019). Migration Household Survey 2009 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/96
    Explore at:
    Dataset updated
    Jun 3, 2019
    Dataset authored and provided by
    Human Sciences Research Council (HSRC)
    Time period covered
    2009
    Area covered
    South Africa
    Description

    Abstract

    The Human Sciences Research Council (HSRC) carried out the Migration and Remittances Survey in South Africa for the World Bank in collaboration with the African Development Bank. The primary mandate of the HSRC in this project was to come up with a migration database that includes both immigrants and emigrants. The specific activities included: · A household survey with a view of producing a detailed demographic/economic database of immigrants, emigrants and non migrants · The collation and preparation of a data set based on the survey · The production of basic primary statistics for the analysis of migration and remittance behaviour in South Africa.

    Like many other African countries, South Africa lacks reliable census or other data on migrants (immigrants and emigrants), and on flows of resources that accompanies movement of people. This is so because a large proportion of African immigrants are in the country undocumented. A special effort was therefore made to design a household survey that would cover sufficient numbers and proportions of immigrants, and still conform to the principles of probability sampling. The approach that was followed gives a representative picture of migration in 2 provinces, Limpopo and Gauteng, which should be reflective of migration behaviour and its impacts in South Africa.

    Geographic coverage

    Two provinces: Gauteng and Limpopo

    Limpopo is the main corridor for migration from African countries to the north of South Africa while Gauteng is the main port of entry as it has the largest airport in Africa. Gauteng is a destination for internal and international migrants because it has three large metropolitan cities with a great economic potential and reputation for offering employment, accommodations and access to many different opportunities within a distance of 56 km. These two provinces therefore were expected to accommodate most African migrants in South Africa, co-existing with a large host population.

    Analysis unit

    • Household
    • Individual

    Universe

    The target group consists of households in all communities. The survey will be conducted among metro and non-metro households. Non-metro households include those in: - small towns, - secondary cities, - peri-urban settlements and - deep rural areas. From each selected household, one adult respondent will be selected to participate in the study.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Migration data for South Africa are available for 2007 only at the level of local governments or municipalities from the 2007 Census; for smaller areas called "sub places" (SPs) only as recently as the 2001 census, and for the desired EAs only back so far as the Census of 1996. In sum, there was no single source that provided recent data on the five types of migrants of principal interest at the level of the Enumeration Area, which was the area for which data were needed to draw the sample since it was going to be necessary to identify migrant and non-migrant households in the sample areas in order to oversample those with migrants for interview.

    In an attempt to overcome the data limitations referred to above, it was necessary to adopt a novel approach to the design of the sample for the World Bank's household migration survey in South Africa, to identify EAs with a high probability of finding immigrants and those with a low probability. This required the combined use of the three sources of data described above. The starting point was the CS 2007 survey, which provided data on migration at a local government level, classifying each local government cluster in terms of migration level, taking into account the types of migrants identified. The researchers then spatially zoomed in from these clusters to the so-called sub-places (SPs) from the 2001 Census to classifying SP clusters by migration level. Finally, the 1996 Census data were used to zoom in even further down to the EA level, using the 1996 census data on migration levels of various typed, to identify the final level of clusters for the survey, namely the spatially small EAs (each typically containing about 200 households, and hence amenable to the listing operation in the field).

    A higher score or weight was attached to the 2007 Community Survey municipality-level (MN) data than to the Census 2001 sub-place (SP) data, which in turn was given a greater weight than the 1996 enumerator area (EA) data. The latter was derived exclusively from the Census 1996 EA data, but has then been reallocated to the 2001 EAs proportional to geographical size. Although these weights are purely arbitrary since it was composed from different sources, they give an indication of the relevant importance attached to the different migrant categories. These weighted migrant proportions (secondary strata), therefore constituted the second level of clusters for sampling purposes.

    In addition, a system of weighting or scoring the different persons by migrant type was applied to ensure that the likelihood of finding migrants would be optimised. As part of this procedure, recent migrants (who had migrated in the preceding five years) received a higher score than lifetime migrants (who had not migrated during the preceding five years). Similarly, a higher score was attached to international immigrants (both recent and lifetime, who had come to SA from abroad) than to internal migrants (who had only moved within SA's borders). A greater weight also applied to inter-provincial (internal) than to intra-provincial migrants (who only moved within the same South African province).

    How the three data sources were combined to provide overall scores for EA can be briefly described. First, in each of the two provinces, all local government units were given migration scores according to the numbers or relative proportions of the population classified in the various categories of migrants (with non-migrants given a score of 1.0. Migrants were assigned higher scores according to their priority, with international migrants given higher scores than internal migrants and recent migrants higher scores than lifetime migrants. Then within the local governments, sub-places were assigned scores assigned on the basis of inter vs. intra-provincial migrants using the 2001 census data. Each SP area in a local government was thus assigned a value which was the product of its local government score (the same for all SPs in the local government) and its own SP score. The third and final stage was to develop relative migration scores for all the EAs from the 1996 census by similarly weighting the proportions of migrants (and non-migrants, assigned always 1.0) of each type. The the final migration score for an EA is the product of its own EA score from 1996, the SP score of which it is a part (assigned to all the EAs within the SP), and the local government score from the 2007 survey.

    Based on all the above principles the set of weights or scores was developed.

    In sum, we multiplied the proportion of populations of each migrant type, or their incidence, by the appropriate final corresponding EA scores for persons of each type in the EA (based on multiplying the three weights together), to obtain the overall score for each EA. This takes into account the distribution of persons in the EA according to migration status in 1996, the SP score of the EA in 2001, and the local government score (in which the EA is located) from 2007. Finally, all EAs in each province were then classified into quartiles, prior to sampling from the quartiles.

    From the EAs so classified, the sampling took the form of selecting EAs, i.e., primary sampling units (PSUs, which in this case are also Ultimate Sampling Units, since this is a single stage sample), according to their classification into quartiles. The proportions selected from each quartile are based on the range of EA-level scores which are assumed to reflect weighted probabilities of finding desired migrants in each EA. To enhance the likelihood of finding migrants, much higher proportions of EAs were selected into the sample from the quartiles with the higher scores compared to the lower scores (disproportionate sampling). The decision on the most appropriate categorisations was informed by the observed migration levels in the two provinces of the study area during 2007, 2001 and 1996, analysed at the lowest spatial level for which migration data was available in each case.

    Because of the differences in their characteristics it was decided that the provinces of Gauteng and Limpopo should each be regarded as an explicit stratum for sampling purposes. These two provinces therefore represented the primary explicit strata. It was decided to select an equal number of EAs from these two primary strata.

    The migration-level categories referred to above were treated as secondary explicit strata to ensure optimal coverage of each in the sample. The distribution of migration levels was then used to draw EAs in such a way that greater preference could be given to areas with higher proportions of migrants in general, but especially immigrants (note the relative scores assigned to each type of person above). The proportion of EAs selected into the sample from the quartiles draws upon the relative mean weighted migrant scores (referred to as proportions) found below the table, but this is a coincidence and not necessary, as any disproportionate sampling of EAs from the quartiles could be done, since it would be rectified in the weighting at the end for the analysis.

    The resultant proportions of migrants then led to the following proportional allocation of sampled EAs (Quartile 1: 5 per cent (instead of 25% as in an equal distribution), Quartile 2: 15 per cent (instead

  10. census-bureau-international

    • kaggle.com
    zip
    Updated May 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). census-bureau-international [Dataset]. https://www.kaggle.com/bigquery/census-bureau-international
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 6, 2020
    Dataset provided by
    Googlehttp://google.com/
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Context

    The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.

    Sample Query 1

    What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!

    standardSQL

    SELECT age.country_name, age.life_expectancy, size.country_area FROM ( SELECT country_name, life_expectancy FROM bigquery-public-data.census_bureau_international.mortality_life_expectancy WHERE year = 2016) age INNER JOIN ( SELECT country_name, country_area FROM bigquery-public-data.census_bureau_international.country_names_area where country_area > 25000) size ON age.country_name = size.country_name ORDER BY 2 DESC /* Limit removed for Data Studio Visualization */ LIMIT 10

    Sample Query 2

    Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.

    standardSQL

    SELECT age.country_name, SUM(age.population) AS under_25, pop.midyear_population AS total, ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25 FROM ( SELECT country_name, population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population_agespecific WHERE year =2017 AND age < 25) age INNER JOIN ( SELECT midyear_population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population WHERE year = 2017) pop ON age.country_code = pop.country_code GROUP BY 1, 3 ORDER BY 4 DESC /* Remove limit for visualization*/ LIMIT 10

    Sample Query 3

    The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.

    SELECT growth.country_name, growth.net_migration, CAST(area.country_area AS INT64) AS country_area FROM ( SELECT country_name, net_migration, country_code FROM bigquery-public-data.census_bureau_international.birth_death_growth_rates WHERE year = 2017) growth INNER JOIN ( SELECT country_area, country_code FROM bigquery-public-data.census_bureau_international.country_names_area

    Update frequency

    Historic (none)

    Dataset source

    United States Census Bureau

    Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data

  11. G

    Historical statistics, immigration to Canada, by country of last permanent...

    • open.canada.ca
    • www150.statcan.gc.ca
    • +2more
    csv, html, xml
    Updated Jan 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Historical statistics, immigration to Canada, by country of last permanent residence [Dataset]. https://open.canada.ca/data/en/dataset/2894b1fa-d71e-4793-959f-48329bd38132
    Explore at:
    csv, xml, htmlAvailable download formats
    Dataset updated
    Jan 17, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    This table contains 32 series, with data for years 1956 - 1976 (not all combinations necessarily have data for all years), and was last released on 2012-02-16. This table contains data described by the following dimensions (Not all combinations are available): Unit of measure (1 items: Persons ...) Geography (32 items: Outside Canada; Great Britain; France; Europe ...).

  12. Asylum and resettlement - Historic datasets

    • gov.uk
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2023). Asylum and resettlement - Historic datasets [Dataset]. https://www.gov.uk/government/statistical-data-sets/asylum-and-resettlement-datasets
    Explore at:
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    This page contains data for the immigration system statistics up to March 2023.

    For current immigration system data, visit ‘Immigration system statistics data tables’.

    Asylum applications, decisions and resettlement

    https://assets.publishing.service.gov.uk/media/64625e6894f6df0010f5eaab/asylum-applications-datasets-mar-2023.xlsx">Asylum applications, initial decisions and resettlement (MS Excel Spreadsheet, 9.13 MB)
    Asy_D01: Asylum applications raised, by nationality, age, sex, UASC, applicant type, and location of application
    Asy_D02: Outcomes of asylum applications at initial decision, and refugees resettled in the UK, by nationality, age, sex, applicant type, and UASC
    This is not the latest data

    https://assets.publishing.service.gov.uk/media/64625ec394f6df0010f5eaac/asylum-applications-awaiting-decision-datasets-mar-2023.xlsx">Asylum applications awaiting a decision (MS Excel Spreadsheet, 1.26 MB)
    Asy_D03: Asylum applications awaiting an initial decision or further review, by nationality and applicant type
    This is not the latest data

    https://assets.publishing.service.gov.uk/media/62fa17698fa8f50b54374371/outcome-analysis-asylum-applications-datasets-jun-2022.xlsx">Outcome analysis of asylum applications (MS Excel Spreadsheet, 410 KB)
    Asy_D04: The initial decision and final outcome of all asylum applications raised in a period, by nationality
    This is not the latest data

    Age disputes

    https://assets.publishing.service.gov.uk/media/64625ef1427e41000cb437cb/age-disputes-datasets-mar-2023.xlsx">Age disputes (MS Excel Spreadsheet, 178 KB)
    Asy_D05: Age disputes raised and outcomes of age disputes
    This is not the latest data

    Asylum appeals

    https://assets.publishing.service.gov.uk/media/64625f0ca09dfc000c3c17cf/asylum-appeals-lodged-datasets-mar-2023.xlsx">Asylum appeals lodged and determined (MS Excel Spreadsheet, 817 KB)
    Asy_D06: Asylum appeals raised at the First-Tier Tribunal, by nationality and sex
    Asy_D07: Outcomes of asylum appeals raised at the First-Tier Tribunal, by nationality and sex
    This is not the latest data

    https://assets.publishing.service.gov.uk/media/64625f29427e41000cb437cd/asylum-claims-certified-section-94-datasets-mar-2023.xlsx"> Asylum claims certified under Section 94 (MS Excel Spreadsheet, 150 KB)
    Asy_D08: Initial decisions on asylum applications certified under Section 94, by nationality
    This is not the latest data

    Asylum support

    https://assets.publishing.service.gov.uk/media/6463a618d3231e000c32da99/asylum-seekers-receipt-support-datasets-mar-2023.xlsx">Asylum seekers in receipt of support (MS Excel Spreadsheet, 2.16 MB)
    Asy_D09: Asylum seekers in receipt of support at end of period, by nationality, support type, accommodation type, and UK region
    This is not the latest data

    https://assets.publishing.service.gov.uk/media/63ecd7388fa8f5612a396c40/applications-section-95-support-datasets-dec-2022.xlsx">Applications for section 95 su

  13. A

    ‘New Zealand Migration’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘New Zealand Migration’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-new-zealand-migration-652a/39bb1cbd/?iid=003-374&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    Analysis of ‘New Zealand Migration’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/timoboz/migration-nz on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    **This dataset shows the migration to and from New Zealand by country and citizenship from 1979 to 2016. **

    Content

    The columns in this dataset are:

    • Measure: The signal type given in this row, one of: "Arrivals", "Departures", "Net"
    • Country: Country from where people arrived into to New Zealand (for Measure = "Arrivals") or to where they left (for Measure = "Departures"). Contains special values "Not Stated" and "All countries" (grand total)
    • Citizenship: Citizenship of the migrants, one of: "New Zealand Citizen", "Australian Citizen", "Total All Citizenships"
    • Year: Year of the measurement
    • Value: Number of migrants

    Permanent and long-term arrivals include overseas migrants who arrive in New Zealand intending to stay for a period of 12 months or more (or permanently), plus New Zealand residents returning after an absence of 12 months or more. Permanent and long-term departures include New Zealand residents departing for an intended period of 12 months or more (or permanently), plus overseas visitors departing New Zealand after a stay of 12 months or more. For arrival series, the country of residence is the country where a person arriving in New Zealand last lived for 12 months or more (country of last permanent residence). For departure series, the country of residence is the country where a person departing New Zealand intends to live for the next 12 months or more (country of next permanent residence).

    Acknowledgements

    Curated data by figure.nz, original data from Stats NZ. Dataset licensed under Creative Commons 4.0 - CC BY 4.0.

    Inspiration

    A good challenge would be to explain New Zealand migration flows as a function of the economic performance of New Zealand or other countries (combine with other datasets). The data could be possibly linked up with other data sources to predict general migration to/from countries based on external factors.

    --- Original source retains full ownership of the source dataset ---

  14. Vital Signs: Migration - by county (simple)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Dec 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2018). Vital Signs: Migration - by county (simple) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Migration-by-county-simple-/qmud-33nk
    Explore at:
    csv, tsv, json, application/rdfxml, application/rssxml, xmlAvailable download formats
    Dataset updated
    Dec 12, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Description

    VITAL SIGNS INDICATOR Migration (EQ4)

    FULL MEASURE NAME Migration flows

    LAST UPDATED December 2018

    DESCRIPTION Migration refers to the movement of people from one location to another, typically crossing a county or regional boundary. Migration captures both voluntary relocation – for example, moving to another region for a better job or lower home prices – and involuntary relocation as a result of displacement. The dataset includes metropolitan area, regional, and county tables.

    DATA SOURCE American Community Survey County-to-County Migration Flows 2012-2015 5-year rolling average http://www.census.gov/topics/population/migration/data/tables.All.html

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Data for migration comes from the American Community Survey; county-to-county flow datasets experience a longer lag time than other standard datasets available in FactFinder. 5-year rolling average data was used for migration for all geographies, as the Census Bureau does not release 1-year annual data. Data is not available at any geography below the county level; note that flows that are relatively small on the county level are often within the margin of error. The metropolitan area comparison was performed for the nine-county San Francisco Bay Area, in addition to the primary MSAs for the nine other major metropolitan areas, by aggregating county data based on current metropolitan area boundaries. Data prior to 2011 is not available on Vital Signs due to inconsistent Census formats and a lack of net migration statistics for prior years. Only counties with a non-negligible flow are shown in the data; all other pairs can be assumed to have zero migration.

    Given that the vast majority of migration out of the region was to other counties in California, California counties were bundled into the following regions for simplicity: Bay Area: Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, Sonoma Central Coast: Monterey, San Benito, San Luis Obispo, Santa Barbara, Santa Cruz Central Valley: Fresno, Kern, Kings, Madera, Merced, Tulare Los Angeles + Inland Empire: Imperial, Los Angeles, Orange, Riverside, San Bernardino, Ventura Sacramento: El Dorado, Placer, Sacramento, Sutter, Yolo, Yuba San Diego: San Diego San Joaquin Valley: San Joaquin, Stanislaus Rural: all other counties (23)

    One key limitation of the American Community Survey migration data is that it is not able to track emigration (movement of current U.S. residents to other countries). This is despite the fact that it is able to quantify immigration (movement of foreign residents to the U.S.), generally by continent of origin. Thus the Vital Signs analysis focuses primarily on net domestic migration, while still specifically citing in-migration flows from countries abroad based on data availability.

  15. Multi-aspect Integrated Migration Indicators (MIMI) dataset

    • zenodo.org
    csv
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diletta Goglia; Diletta Goglia (2025). Multi-aspect Integrated Migration Indicators (MIMI) dataset [Dataset]. http://doi.org/10.5281/zenodo.6360651
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Diletta Goglia; Diletta Goglia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Multi-aspect Integrated Migration Indicators (MIMI) dataset is the result of the process of gathering, embedding and combining traditional migration datasets, mostly from sources like Eurostat and UNSD Demographic Statistics Database, and alternative types of data, which consists in multidisciplinary features and measures not typically employed in migration studies, such as the Facebook Social Connectedness Index (SCI). Its purpose is to exploit these novel types of data for: nowcasting migration flows and stocks, studying integration of multiple sources and knowledge, and investigating migration drivers.

    The MIMI dataset is designed to have a unique pair of countries for each row. Each record contains country-to-country information about: migrations flows and stock their share, their strength of Facebook connectedness and other features, such as corresponding populations, GDP, coordinates, NET migration, and many others.

    Methodology.

    After having collected bilateral flows records about international human mobility by citizenship, residence and country of birth (available for both sexes and, in some cases, for different age groups), they have been merged together in order to obtain a unique dataset in which each ordered couple (country-of-origin, country-of-destination) appears once. To avoid duplicate couples, flow records have been selected by following this priority: first migration by citizenship, then migration by residence and lastly by country of birth.

    The integration process started by choosing, collecting and meaningfully including many other indicators that could be helpful for the dataset final purpose mentioned above.

    • International migration stocks (having a five-year range of measurement) for each couple of countries.
    • Geographical features for each country: ISO3166 name and official name, ISO3166-1 alpha-2 and alpha-3 codes, continent code and name of belonging, latitude and longitude of the centroid, list of bordering countries, country area in square kilometres. Also, the following features have been included for each pair of countries: geodesic distance (in kilometres) computed between their respective centroids.
    • Non-bidirectional migration measures for each country: total number of immigrants and emigrants for each year, NET migration and NET migration rate in a five-year range.

    • Other multidisciplinary indicators (cultural, social, anthropological, demographical, historical features) related to each country: religion (single one or list), yearly GDP at PPP, spoken language (or list of languages), yearly population stocks (and population densities if available), number of Facebook users, percentage of Facebook users, cultural indicators (PDI, IDV, MAS, UAI, LTO). Also the following feature have been included for each pair of countries: Facebook Social Connectedness Index.

    Once traditional and non-traditional knowledge is gathered and integrated, we move to the pre-processing phase where we manage the data cleaning, preparation and transformation. Here our dataset was subjected to various computational standard processes and additionally reshaped in the final structure established by our design choices.

    The data quality assessment phase was one of the longest and most delicate, since many values were missing and this could have had a negative impact on the quality of the desired resulting knowledge. They have been integrated from additional sources such as The World Bank, World Population Review, Statista, DataHub, Wikipedia and in some cases extracted from Python libraries such as PyPopulation, CountryInfo and PyCountry.

    The final dataset has the structure of a huge matrix having countries couples as index (uniquely identified by coupling their ISO 3166-1 alpha-2 codes): it comprises 28725 entries and 485 columns.

  16. Managed migration - Historic datasets

    • gov.uk
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2023). Managed migration - Historic datasets [Dataset]. https://www.gov.uk/government/statistical-data-sets/managed-migration-datasets
    Explore at:
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    This page contains data for the immigration system statistics up to March 2023.

    For current immigration system data, visit ‘Immigration system statistics data tables’.

    Sponsorship

    https://assets.publishing.service.gov.uk/media/6462571894f6df0010f5ea9d/migration-study-sponsorship-datasets-mar-2023.xlsx">Study sponsorship (Confirmation of acceptance for Studies) (MS Excel Spreadsheet, 1.04 MB)
    CAS_D01: Confirmation of acceptance for study (CAS) used in applications for visas or extensions of stay to study in the UK, by institution type
    CAS_D02: Confirmation of acceptance for study (CAS) used in applications for visas or extensions of stay to study in the UK, by nationality
    This is not the latest data

    https://assets.publishing.service.gov.uk/media/6462572794f6df000cf5ea91/migration-work-sponsorship-datasets-mar-2023.xlsx">Work sponsorship (Certificate of Sponsorship) (MS Excel Spreadsheet, 1.04 MB)
    CoS_D01: Certificates of sponsorship (CoS) used in applications for visas or extensions of stay for work in the UK, by industry type
    CoS_D02: Certificates of sponsorship (CoS) used in applications for visas or extensions of stay for work in the UK, by nationality
    This is not the latest data

    Entry clearance visas granted outside the UK

    https://assets.publishing.service.gov.uk/media/64625737a09dfc000c3c17c2/entry-clearance-visa-outcomes-datasets-mar-2023.xlsx">Entry clearance visa applications and outcomes (MS Excel Spreadsheet, 25.5 MB)
    Vis_D01: Entry clearance visa applications, by nationality and visa type
    Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome
    This is not the latest data

    Extensions

    https://assets.publishing.service.gov.uk/media/64625744427e41000cb437bc/extensions-datasets-mar-2023.xlsx">Extensions (MS Excel Spreadsheet, 6.95 MB)
    Exe_D01: Grants and refusals of extensions of stay in the UK, by nationality and category of leave
    Exe_D02: Grants of extensions of stay in the UK, by current and previous category of leave
    This is not the latest data

    Settlement

    https://assets.publishing.service.gov.uk/media/646268a5a09dfc06d73c1760/settlement-datasets-mar-2023.xlsx">Settlement (MS Excel Spreadsheet, 6.18 MB)
    Se_D01 Grants of settlement by country of nationality and category and in-country refusals of settlement
    Se_D02 Grants of settlement by category and type of applicant, grants and refusals
    Se_D03 Grants of settlement on removal of time limit by geographical region of nationality, sex and age
    This is not the latest data

    Citizenship

    https://assets.publishing.service.gov.uk/media/64625754427e41000cb437be/citizenship-datasets-mar-2023.xlsx">Citizenship (MS Excel Spreadsheet, 6.86 MB)
    Cit_D01: Applications for British citizenship, by application type and nationality
    Cit_D02: Grants of British citizenship, by application type, nationality, sex and age
    Cit_D03: British citizenship ceremonies attended, by local authority
    This is not the latest data

    Passengers refused entry at the border

    <a class="govuk-link" href="https://assets.publishing.service.gov.uk/media/64917a9

  17. e

    Immigrants 16-66 years (end November) by country of origin, length of...

    • data.europa.eu
    csv, excel xlsx, html +2
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danmarks Statistik, Immigrants 16-66 years (end November) by country of origin, length of residence, socioeconomic status, sex and age [Dataset]. https://data.europa.eu/data/datasets/dst-ras206?locale=en
    Explore at:
    json, csv, html, xml, excel xlsxAvailable download formats
    Dataset authored and provided by
    Danmarks Statistik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    StatBank dataset: RAS206 Title: Immigrants 16-66 years (end November) by country of origin, length of residence, socioeconomic status, sex and age Period type: years Period format (time in data): yyyy The oldest period: 2008 The most recent period: 2023

  18. A

    ‘Missing Migrants Dataset’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Apr 23, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2019). ‘Missing Migrants Dataset’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-missing-migrants-dataset-c736/2e62d69f/?v=grid
    Explore at:
    Dataset updated
    Apr 23, 2019
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Missing Migrants Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jmataya/missingmigrants on 14 February 2022.

    --- Dataset description provided by original source is as follows ---

    About the Missing Migrants Data

    This data is sourced from the International Organization for Migration. The data is part of a specific project called the Missing Migrants Project which tracks deaths of migrants, including refugees , who have gone missing along mixed migration routes worldwide. The research behind this project began with the October 2013 tragedies, when at least 368 individuals died in two shipwrecks near the Italian island of Lampedusa. Since then, Missing Migrants Project has developed into an important hub and advocacy source of information that media, researchers, and the general public access for the latest information.

    Where is the data from?

    Missing Migrants Project data are compiled from a variety of sources. Sources vary depending on the region and broadly include data from national authorities, such as Coast Guards and Medical Examiners; media reports; NGOs; and interviews with survivors of shipwrecks. In the Mediterranean region, data are relayed from relevant national authorities to IOM field missions, who then share it with the Missing Migrants Project team. Data are also obtained by IOM and other organizations that receive survivors at landing points in Italy and Greece. In other cases, media reports are used. IOM and UNHCR also regularly coordinate on such data to ensure consistency. Data on the U.S./Mexico border are compiled based on data from U.S. county medical examiners and sheriff’s offices, as well as media reports for deaths occurring on the Mexico side of the border. Estimates within Mexico and Central America are based primarily on media and year-end government reports. Data on the Bay of Bengal are drawn from reports by UNHCR and NGOs. In the Horn of Africa, data are obtained from media and NGOs. Data for other regions is drawn from a combination of sources, including media and grassroots organizations. In all regions, Missing Migrants Projectdata represents minimum estimates and are potentially lower than in actuality.

    Updated data and visuals can be found here: https://missingmigrants.iom.int/

    Who is included in Missing Migrants Project data?

    IOM defines a migrant as any person who is moving or has moved across an international border or within a State away from his/her habitual place of residence, regardless of

      (1) the person’s legal status; 
      (2) whether the movement is voluntary or involuntary; 
      (3) what the causes for the movement are; or 
      (4) what the length of the stay is.[1]
    

    Missing Migrants Project counts migrants who have died or gone missing at the external borders of states, or in the process of migration towards an international destination. The count excludes deaths that occur in immigration detention facilities, during deportation, or after forced return to a migrant’s homeland, as well as deaths more loosely connected with migrants’ irregular status, such as those resulting from labour exploitation. Migrants who die or go missing after they are established in a new home are also not included in the data, so deaths in refugee camps or housing are excluded. This approach is chosen because deaths that occur at physical borders and while en route represent a more clearly definable category, and inform what migration routes are most dangerous. Data and knowledge of the risks and vulnerabilities faced by migrants in destination countries, including death, should not be neglected, rather tracked as a distinct category.

    How complete is the data on dead and missing migrants?

    Data on fatalities during the migration process are challenging to collect for a number of reasons, most stemming from the irregular nature of migratory journeys on which deaths tend to occur. For one, deaths often occur in remote areas on routes chosen with the explicit aim of evading detection. Countless bodies are never found, and rarely do these deaths come to the attention of authorities or the media. Furthermore, when deaths occur at sea, frequently not all bodies are recovered - sometimes with hundreds missing from one shipwreck - and the precise number of missing is often unknown. In 2015, over 50 per cent of deaths recorded by the Missing Migrants Project refer to migrants who are presumed dead and whose bodies have not been found, mainly at sea.

    Data are also challenging to collect as reporting on deaths is poor, and the data that does exist are highly scattered. Few official sources are collecting data systematically. Many counts of death rely on media as a source. Coverage can be spotty and incomplete. In addition, the involvement of criminal actors in incidents means there may be fear among survivors to report deaths and some deaths may be actively covered-up. The irregular immigration status of many migrants, and at times their families as well, also impedes reporting of missing persons or deaths.

    The varying quality and comprehensiveness of data by region in attempting to estimate deaths globally may exaggerate the share of deaths that occur in some regions, while under-representing the share occurring in others.

    What can be understood through this data?

    The available data can give an indication of changing conditions and trends related to migration routes and the people travelling on them, which can be relevant for policy making and protection plans. Data can be useful to determine the relative risks of irregular migration routes. For example, Missing Migrants Project data show that despite the increase in migrant flows through the eastern Mediterranean in 2015, the central Mediterranean remained the more deadly route. In 2015, nearly two people died out of every 100 travellers (1.85%) crossing the Central route, as opposed to one out of every 1,000 that crossed from Turkey to Greece (0.095%). From the data, we can also get a sense of whether groups like women and children face additional vulnerabilities on migration routes.

    However, it is important to note that because of the challenges in data collection for the missing and dead, basic demographic information on the deceased is rarely known. Often migrants in mixed migration flows do not carry appropriate identification. When bodies are found it may not be possible to identify them or to determine basic demographic information. In the data compiled by Missing Migrants Project, sex of the deceased is unknown in over 80% of cases. Region of origin has been determined for the majority of the deceased. Even this information is at times extrapolated based on available information – for instance if all survivors of a shipwreck are of one origin it was assumed those missing also came from the same region.

    The Missing Migrants Project dataset includes coordinates for where incidents of death took place, which indicates where the risks to migrants may be highest. However, it should be noted that all coordinates are estimates.

    Why collect data on missing and dead migrants?

    By counting lives lost during migration, even if the result is only an informed estimate, we at least acknowledge the fact of these deaths. What before was vague and ill-defined is now a quantified tragedy that must be addressed. Politically, the availability of official data is important. The lack of political commitment at national and international levels to record and account for migrant deaths reflects and contributes to a lack of concern more broadly for the safety and well-being of migrants, including asylum-seekers. Further, it drives public apathy, ignorance, and the dehumanization of these groups.

    Data are crucial to better understand the profiles of those who are most at risk and to tailor policies to better assist migrants and prevent loss of life. Ultimately, improved data should contribute to efforts to better understand the causes, both direct and indirect, of fatalities and their potential links to broader migration control policies and practices.

    Counting and recording the dead can also be an initial step to encourage improved systems of identification of those who die. Identifying the dead is a moral imperative that respects and acknowledges those who have died. This process can also provide a some sense of closure for families who may otherwise be left without ever knowing the fate of missing loved ones.

    Identification and tracing of the dead and missing

    As mentioned above, the challenge remains to count the numbers of dead and also identify those counted. Globally, the majority of those who die during migration remain unidentified. Even in cases in which a body is found identification rates are low. Families may search for years or a lifetime to find conclusive news of their loved one. In the meantime, they may face psychological, practical, financial, and legal problems.

    Ultimately Missing Migrants Project would like to see that every unidentified body, for which it is possible to recover, is adequately “managed”, analysed and tracked to ensure proper documentation, traceability and dignity. Common forensic protocols and standards should be agreed upon, and used within and between States. Furthermore, data relating to the dead and missing should be held in searchable and open databases at local, national and international levels to facilitate identification.

    For more in-depth analysis and discussion of the numbers of missing and dead migrants around the world, and the challenges involved in identification and tracing, read our two reports on the issue, Fatal Journeys: Tracking Lives Lost during Migration (2014) and Fatal Journeys Volume 2, Identification and Tracing of Dead and Missing Migrants

    Content

    The data set records

  19. m

    Annual Bilateral Migration Data - 1960-2022

    • data.mendeley.com
    Updated Mar 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samuel Standaert (2025). Annual Bilateral Migration Data - 1960-2022 [Dataset]. http://doi.org/10.17632/cpt3nh6jct.2
    Explore at:
    Dataset updated
    Mar 16, 2025
    Authors
    Samuel Standaert
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The study of the patterns and evolution of international migration often requires high-frequency data on migration flows on a global scale. However, the presently existing databases force a researcher to choose between the frequency of the data and its geographical scale. Yearly data exist but only for a small subset of countries, while most others are only covered every 5 to 10 years. To fill in the gaps in the coverage, the vast majority of databases use some imputation method. Gaps in the stock of migrants are often filled by combining information on migrants based on their country of birth with data based on nationality or using ‘model’ countries and propensity methods. Gaps in the data on the flow of migrants, on the other hand, are often filled by taking the difference in the stock, which the ’demographic accounting’ methods then adjust for demographic evolutions.

    This database aims to fill this gap by providing a global, yearly, bilateral database on the stock of migrants according to their country of birth. This database contains close to 2.9 million observations on over 56,000 country pairs from 1960 to 2022, a tenfold increase relative to the second-largest database. In addition, it also produces an estimate of the net flow of migrants. For a subset of countries –over 8,000 country pairs and half a million observations– we also have lower-bound estimates of the gross in- and outflow.

    This database was constructed using a novel approach to estimating the most likely values of missing migration stocks and flows. Specifically, we use a Bayesian state-space model to combine the information from multiple datasets on both stocks and flows into a single estimate. Like the demographic accounting technique, the state-space model is built on the demographic relationship between migrant stocks, flows, births and deaths. The most crucial difference is that the state-space model combines the information from multiple databases, including those covering migrant stocks, net flows, and gross flows.

    More details on the construction can currently be found in the UNU-CRIS working paper: Standaert, Samuel and Rayp, Glenn (2022) "Where Did They Come From, Where Did They Go? Bridging the Gaps in Migration Data" UNU-CRIS working paper 22.04. Bruges.

    https://cris.unu.edu/where-did-they-come-where-did-they-go-bridging-gaps-migration-data

  20. e

    Global Bilateral Migration Database - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Nov 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Global Bilateral Migration Database - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/global-bilateral-migration-database
    Explore at:
    Dataset updated
    Nov 28, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Global matrices of bilateral migrant stocks spanning the period 1960-2000, disaggregated by gender and based primarily on the foreign-born concept are presented. Over one thousand census and population register records are combined to construct decennial matrices corresponding to the last five completed census rounds.For the first time, a comprehensive picture of bilateral global migration over the last half of the twentieth century emerges. The data reveal that the global migrant stock increased from 92 to 165 million between 1960 and 2000. South-North migration is the fastest growing component of international migration in both absolute and relative terms. The United States remains the most important migrant destination in the world, home to one fifth of the world™s migrants and the top destination for migrants from no less than sixty sending countries. Migration to Western Europe remains largely from elsewhere in Europe. The oil-rich Persian Gulf countries emerge as important destinations for migrants from the Middle East, North Africa and South and South-East Asia. Finally, although the global migrant stock is still predominantly male, the proportion of women increased noticeably between 1960 and 2000.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Home Office (2025). Immigration system statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/immigration-system-statistics-data-tables

Immigration system statistics data tables

Explore at:
25 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 22, 2025
Dataset provided by
GOV.UK
Authors
Home Office
Description

List of the data tables as part of the Immigration System Statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.

If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.

Accessible file formats

The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
Please tell us what format you need. It will help us if you say what assistive technology you use.

Related content

Immigration system statistics, year ending March 2025
Immigration system statistics quarterly release
Immigration system statistics user guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives

Passenger arrivals

https://assets.publishing.service.gov.uk/media/68258d71aa3556876875ec80/passenger-arrivals-summary-mar-2025-tables.xlsx">Passenger arrivals summary tables, year ending March 2025 (MS Excel Spreadsheet, 66.5 KB)

‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.

Electronic travel authorisation

https://assets.publishing.service.gov.uk/media/681e406753add7d476d8187f/electronic-travel-authorisation-datasets-mar-2025.xlsx">Electronic travel authorisation detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 56.7 KB)
ETA_D01: Applications for electronic travel authorisations, by nationality ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality

Entry clearance visas granted outside the UK

https://assets.publishing.service.gov.uk/media/68247953b296b83ad5262ed7/visas-summary-mar-2025-tables.xlsx">Entry clearance visas summary tables, year ending March 2025 (MS Excel Spreadsheet, 113 KB)

https://assets.publishing.service.gov.uk/media/682c4241010c5c28d1c7e820/entry-clearance-visa-outcomes-datasets-mar-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 29.1 MB)
Vis_D01: Entry clearance visa applications, by nationality and visa type
Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome

Additional dat

Search
Clear search
Close search
Google apps
Main menu