Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The DSS Payment Demographic data set is made up of:
Selected DSS payment data by
Geography: state/territory, electorate, postcode, LGA and SA2 (for 2015 onwards)
Demographic: age, sex and Indigenous/non-Indigenous
Duration on Payment (Working Age & Pensions)
Duration on Income Support (Working Age, Carer payment & Disability Support Pension)
Rate (Working Age & Pensions)
Earnings (Working Age & Pensions)
Age Pension assets data
JobSeeker Payment and Youth Allowance (other) Principal Carers
Activity Tested Recipients by Partial Capacity to Work (NSA,PPS & YAO)
Exits within 3, 6 and 12 months (Newstart Allowance/JobSeeker Payment, Parenting Payment, Sickness Allowance & Youth Allowance)
Disability Support Pension by medical condition
Care Receiver by medical conditions
Commonwealth Rent Assistance by Payment type and Income Unit type have been added from March 2017. For further information about Commonwealth Rent Assistance and Income Units see the Data Descriptions and Glossary included in the dataset.
From December 2022, the "DSS Expanded Benefit and Payment Recipient Demographics – quarterly data" publication has introduced expanded reporting populations for income support recipients. As a result, the reporting population for Jobseeker Payment and Special Benefit has changed to include recipients who are current but on zero rate of payment and those who are suspended from payment. The reporting population for ABSTUDY, Austudy, Parenting Payment and Youth Allowance has changed to include those who are suspended from payment. The expanded report will replace the standard report after June 2023.
Additional data for DSS Expanded Benefit and Payment Recipient Demographics – quarterly data includes:
• A new contents page to assist users locate the information within the spreadsheet
• Additional data for the ‘Suspended’ population in the ‘Payment by Rate’ tab to enable users to calculate the old reporting rules.
• Additional information on the Employment Earning by ‘Income Free Area’ tab.
From December 2022, Services Australia have implemented a change in the Centrelink payment system to recognise gender other than the sex assigned at birth or during infancy, or as a gender which is not exclusively male or female. To protect the privacy of individuals and comply with confidentialisation policy, persons identifying as ‘non-binary’ will initially be grouped with ‘females’ in the period immediately following implementation of this change. The Department will monitor the implications of this change and will publish the ‘non-binary’ gender category as soon as privacy and confidentialisation considerations allow.
Local Government Area has been updated to reflect the Australian Statistical Geography Standard (ASGS) 2022 boundaries from June 2023.
Commonwealth Electorate Division has been updated to reflect the Australian Statistical Geography Standard (ASGS) 2021 boundaries from June 2023.
SA2 has been updated to reflect the Australian Statistical Geography Standard (ASGS) 2021 boundaries from June 2023.
From December 2021, the following are included in the report:
selected payments by work capacity, by various demographic breakdowns
rental type and homeownership
Family Tax Benefit recipients and children by payment type
Commonwealth Rent Assistance by proportion eligible for the maximum rate
an age breakdown for Age Pension recipients
For further information, please see the Glossary.
From June 2021, data on the Paid Parental Leave Scheme is included yearly in June releases. This includes both Parental Leave Pay and Dad and Partner Pay, across multiple breakdowns. Please see Glossary for further information.
From March 2017 the DSS demographic dataset will include top 25 countries of birth. For further information see the glossary.
From March 2016 machine readable files containing the three geographic breakdowns have also been published for use in National Map, links to these datasets are below:
Pre June 2014 Quarter Data contains:
Selected DSS payment data by
Geography: state/territory; electorate; postcode and LGA
Demographic: age, sex and Indigenous/non-Indigenous
Note: JobSeeker Payment replaced Newstart Allowance and other working age payments from 20 March 2020, for further details see: https://www.dss.gov.au/benefits-payments/jobseeker-payment
For data on DSS payment demographics as at June 2013 or earlier, the department has published data which was produced annually. Data is provided by payment type containing timeseries’, state, gender, age range, and various other demographics. Links to these publications are below:
Concession card data in the March and June 2020 quarters have been re-stated to address an over-count in reported cardholder numbers.
28/06/2024 – The March 2024 and December 2023 reports were republished with updated data in the ‘Carer Receivers by Med Condition’ section, updates are exclusive to the ‘Care Receivers of Carer Payment recipients’ table, under ‘Intellectual / Learning’ and ‘Circulatory System’ conditions only.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table aims to show the distribution of welfare of persons in the Netherlands, measured by their income. The figures in this table are broken down to different person characteristics.
The population consists of all persons in private households with income on January 1st of the reporting year. In the population for the subject low-income persons, persons in both student households and households with income only for a part of the year have been excluded. The population for the subject economic independence consists of all persons aged from 15 to the OAP-age in private households with income on January 1st of the reporting year, except for students and pupils.
Data available from: 2011
Status of the figures: The figures for 2011 to 2022 are final. The figures for 2023 are preliminary.
Changes as of November 2024: The preliminary figures for 2023 have been added.
When will new figures be published? New figures will be published in the fall of 2025.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was created in R,PowerBi and Tableau:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F1ff6f4c9909fbc1f9823a40b599a42e1%2Fgraph1.gif?generation=1725724753823963&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F2fe80fc1639fd390ce2b3da72bc9686c%2Fgraph2.jpg?generation=1725724760373919&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fe621d0a637c3d5c83825a69de684d8c5%2Fgraph3.png?generation=1725724765816050&alt=media" alt="">
The elderly population refers to the portion of a country's inhabitants who are aged 65 and older. This demographic plays a crucial role in various economic and social analyses, especially when it comes to determining the dependent population. The dependent population consists of those individuals who do not actively participate in the workforce and, as a result, rely on others for essential goods and services. This group primarily includes both the elderly and the youth (typically under 15 years of age).
The concept of the elderly dependency ratio is a significant measure used to understand the burden on the working-age population, which consists of those between the ages of 15 and 64. This ratio is calculated by comparing the number of elderly people to those of working age. A higher elderly dependency ratio indicates a larger proportion of elderly individuals relative to those who are contributing economically, leading to increased demands on social systems such as healthcare, pensions, and other support services.
These demographic shifts have widespread implications for both government policies and private sectors. As the elderly population increases, so too does the pressure on pension systems and healthcare services, necessitating reforms to ensure sustainability. Additionally, the aging population affects broader economic growth and welfare, as fewer people of working age contribute to economic productivity, potentially slowing overall economic expansion.
This indicator, often measured as a percentage of the total population, provides valuable insights into the aging trends within a society and their potential impact on the economy, welfare, and social structures. Understanding these trends is essential for shaping future policies that address the needs of an aging population while maintaining economic stability and growth.
https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/11.0/customlicense?persistentId=hdl:1902.29/11735https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/11.0/customlicense?persistentId=hdl:1902.29/11735
The Russia Longitudinal Monitoring Survey (RLMS) is a series of nationally representative surveys designed to monitor the effects of Russian reforms on the health and economic welfare of households and individuals in the Russian Federation. These effects are measured by a variety of means: detailed monitoring of individuals' health status and dietary intake, precise measurement of household-level expenditures and service utilization, and collection of relevant community-level data, including region-specific prices and community infrastructure data. Phase II data have been collected annually (with two exceptions) since 1994. The project has been run jointly by the Carolina Population Center at the University of North Carolina at Chapel Hill, headed by Barry M. Popkin, and the Demoscope team in Russia, headed by Polina Kozyreva and Mikhail Kosolapov. Please note The sample size in 2014 was cut by about 20%, because the cost of the project increased due to inflation, but financial support remained the same. The original 1994 sample remained the same, and all cuts applied only to the part of the sample which was added in 2010. It should be stated that the implemented procedure of cutting the sample size guarantees that the smaller sample is still representative at the national level. To lower the cost it was also decided to dro p the Educational Expenses section from the HH questionnaire, which was added back in 2010. Household Data For the household interview, a single member of the household was asked questions that pertained to the entire family. The respondent was usually the oldest living woman in the home since she was available to be interviewed during the daytime. Any attempt to identify one person as the "household head" is as problematic in Russia as it is in the United States. Thus, the interviewer was instructed to speak with "the person who knows the most about this family's shop ping and health." Individual Data In theory, the individual questionnaire is administered to every person living in the household. In practice, however, some individuals, such as very young children and elderly people, did not receive an individual interview. Individual-level information is the primary source of information pertaining to a person's health, employment status, demographic characteristics, and anthropometry. It can also be used to supplement household-level income an d expenditure information. To safeguard the confidentiality of RLMS respondents, individual-level data sets omit text variables (designated char on questionnaires). Please note that almost all text variables exist in Russian only. English translations exist for only a few of these variables. Please contact us to check on the availability of English translations of specific variables of interest.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Slovakia SK: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at -0.620 % in 2015. Slovakia SK: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging -0.620 % from Dec 2015 (Median) to 2015, with 1 observations. Slovakia SK: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Slovakia – Table SK.World Bank.WDI: Poverty. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2011 Purchasing Power Parity (PPP) using the PovcalNet (http://iresearch.worldbank.org/PovcalNet). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The final year refers to the most recent survey available between 2011 and 2015. Growth rates for Iraq are based on survey means of 2005 PPP$. The coverage and quality of the 2011 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2011 exercise of the International Comparison Program. See PovcalNet for detailed explanations.; ; World Bank, Global Database of Shared Prosperity (GDSP) circa 2010-2015 (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).; ; The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ID: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data was reported at 7.650 Intl $/Day in 2023. This records an increase from the previous number of 6.970 Intl $/Day for 2018. ID: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data is updated yearly, averaging 7.310 Intl $/Day from Dec 2018 (Median) to 2023, with 2 observations. The data reached an all-time high of 7.650 Intl $/Day in 2023 and a record low of 6.970 Intl $/Day in 2018. ID: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Indonesia – Table ID.World Bank.WDI: Social: Poverty and Inequality. Mean consumption or income per capita (2017 PPP $ per day) used in calculating the growth rate in the welfare aggregate of total population.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The choice of consumption or income for a country is made according to which welfare aggregate is used to estimate extreme poverty in the Poverty and Inequality Platform (PIP). The practice adopted by the World Bank for estimating global and regional poverty is, in principle, to use per capita consumption expenditure as the welfare measure wherever available; and to use income as the welfare measure for countries for which consumption is unavailable. However, in some cases data on consumption may be available but are outdated or not shared with the World Bank for recent survey years. In these cases, if data on income are available, income is used. Whether data are for consumption or income per capita is noted in the footnotes. Because household surveys are infrequent in most countries and are not aligned across countries, comparisons across countries or over time should be made with a high degree of caution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
European countries are experiencing population decline and the tacit assumption in most analyses is that the decline may have detrimental welfare effects. In this paper we use a survey among the population in the Netherlands to discover whether population decline is always met with fear. A number of results stand out: population size preferences differ by geographic proximity: at a global level the majority of respondents favors a (global) population decline, but closer to home one supports a stationary population. Population decline is clearly not always met with fear: 31 percent would like the population to decline at the national level and they generally perceive decline to be accompanied by immaterial welfare gains (improvement environment) as well as material welfare losses (tax increases, economic stagnation). In addition to these driving forces it appears that the attitude towards immigrants is a very strong determinant at all geographical levels: immigrants seem to be a stronger fear factor than population decline.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset presents the footprint of the birthrate per 1,000 women aged younger than 20 years, by the mother's usual place of residence. The data spans the years 2013-2015 and is aggregated to Statistical Area Level 3 (SA3) geographic areas from the 2011 Australian Statistical Geography Standard (ASGS).
The data is sourced from the Australian Institute of Health and Welfare (AIHW) National Perinatal Data Collection (NPDC) and historical data for time trends. Where the term 'teenage mother' is used the analysis is based on women who gave birth aged under 20. Teenage mothers and their babies are more likely to experience broader disadvantage, have antenatal risk factors and have poorer maternal and baby outcomes during and after birth, than older mothers and their babies.
The Teenage Mothers in Australia data accompanies the Teenage Mothers in Australia 2015 Report.
For further information about this dataset, visit the data source: Australian Institute of Health and Welfare - Teenage Mothers in Australia 2015 Data Tables.
Please note:
AURIN has spatially enabled the original data.
Excludes women not usually resident in Australia or whose usual residence was 'Not stated'.
The study included four separate surveys:
The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.
The LSMS survey of general population of Serbia in 2003 (panel survey)
The survey of Roma from Roma settlements in 2003 These two datasets are published together.
Objectives
LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.
The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).
Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]
Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.
The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).
Sample survey data [ssd]
Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.
The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.
The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.
Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.
Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.
Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.
The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.
Face-to-face [f2f]
In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).
During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.
In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
RW: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data was reported at 3.090 Intl $/Day in 2016. This records a decrease from the previous number of 3.100 Intl $/Day for 2013. RW: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data is updated yearly, averaging 3.095 Intl $/Day from Dec 2013 (Median) to 2016, with 2 observations. The data reached an all-time high of 3.100 Intl $/Day in 2013 and a record low of 3.090 Intl $/Day in 2016. RW: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Rwanda – Table RW.World Bank.WDI: Social: Poverty and Inequality. Mean consumption or income per capita (2017 PPP $ per day) used in calculating the growth rate in the welfare aggregate of total population.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The choice of consumption or income for a country is made according to which welfare aggregate is used to estimate extreme poverty in the Poverty and Inequality Platform (PIP). The practice adopted by the World Bank for estimating global and regional poverty is, in principle, to use per capita consumption expenditure as the welfare measure wherever available; and to use income as the welfare measure for countries for which consumption is unavailable. However, in some cases data on consumption may be available but are outdated or not shared with the World Bank for recent survey years. In these cases, if data on income are available, income is used. Whether data are for consumption or income per capita is noted in the footnotes. Because household surveys are infrequent in most countries and are not aligned across countries, comparisons across countries or over time should be made with a high degree of caution.
The German Survey “Attitudes and Reported Experiences of the German Welfare State” is a joint project of the University of Duisburg-Essen, the University of Gothenburg, and the Institute for Social Research, Oslo. The data set has been developed with respect to an extensive comparability with a parallel study conducted in Norway (see Kumlin et al. 2017).
Starting in 2015, information of 3,393 respondents from a German population sample was collected in three annually repeated waves until 2017. The main interest of the data collection lies on the temporal change of the data, whereas the sampling design, an online quota sample, does not allow any conclusions to be drawn about the underlying German population. The aim of this academic study is to create a high-quality panel data set, focusing on attitudes towards the welfare state within the German population. In addition, questions on political, religious, social and demographic topics were asked.
Political participation in the last four years (participation in a demonstration, writing about political issues in a newspaper, online newspaper or blog, member of a political party, member of a trade union, member of another political organization); general social trust; group-related trust (Hartz IV recipients, richest people in Germany, people met for the first time, Germans without migration background, people with migration background from non-European countries, people with migration background from Eastern Europe); interest in politics; frequency of political discussions; frequency of political information; left-right self-ranking; attitude toward political asylum; attitude toward the right to social benefits for migrants; party affiliation; party voted for in the 2013 federal election; other party voted for in the 2013 federal election; actual voting behavior in 2013; party preference (Sunday question); party preference (Sunday question - open); retrospective voting behavior in the 2015 federal election; retrospective voting behavior in the 2015 federal election (open); probability of party choice (CDU/CSU, SPD, Bündnis90/Die Grünen, FDP, Die Linke, AfD, ALFA, NPD, Piratenpartei Deutschland); assessment of the living situation of various groups in Germany (pensioners and retirees, unemployed, families with children, single parents, recipients of disability pensions, recipients of Hartz IV, people with a migration background from European countries and from non-European countries); perceived personal risk in the next 12 months with regard to: unemployment, caring for family members, inability to work, divorce, parental leave, not enough money for household needs, pension due to reduced earning capacity; use of various facilities or services (family doctor, emergency doctor or emergency room in hospital, specialist, medical specialist, retirement or nursing home, home care by a private provider or by one of the welfare associations, rehabilitation center, public or private kindergarten, daycare center or day nursery, day nanny or day father, state elementary school without church orientation or with church orientation, private elementary school, open all-day care after school, secondary state school, secondary private school with church orientation, vocational training, college or university). with church orientation, private elementary school, open all-day care after school, secondary state school, secondary school with church orientation, secondary private school, vocational training, technical college or university); satisfaction with these facilities or services; personal experience with these facilities and services (staff worked quickly and efficiently, I got the support and help I was entitled to, staff were helpful and listened to me, I had the opportunity to influence the type of support and help I received, I had difficulty finding the right person to talk to, I was treated worse than most, I had the opportunity to choose between different facilities); use of transfer benefits (unemployment benefit 1, Hartz IV, sickness benefit, reduced earning capacity pension, early retirement pension, company pension, retirement or pension); framing experiment: Assessment of future levels in Germany in various areas of social security and provision of public services (health care, old-age pension and old-age pensions, support in case of temporary incapacity to work due to illness, unemployment benefits, social assistance/unemployment benefit II/basic income support, care for the elderly and sick, public child care in kindergartens/day nursery/daycare centers); evaluation of various strategies to adjust social benefits and services (lower the level of social benefits and services, raise general taxation levels, increase fees for the use of public services and contributions to social insurance, push recipients of social support more to look for and accept new jobs, offer better retraining and continuing education measures for the unemployed and sick,...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 2006-07 Pakistan Demographic and Health Survey (PDHS) was undertaken to address the monitoring and evaluation needs of maternal and child health and family planning programmes. The survey was designed with the broad objective to provide policymakers, primarily in the Ministries of Population Welfare and Health, with information to improve programmatic interventions based on empirical evidence. The aim is to provide reliable estimates of the maternal mortality ratio (MMR) at the national level and a variety of other health and population indicators at national, urban-rural, and provincial levels. The 2006-07 Pakistan Demographic and Health Survey (PDHS) is the fifth in a series of demographic surveys conducted by the National Institute of Population Studies (NIPS) since 1990. However, the PDHS 2006-07 is the second survey conducted as part of the worldwide Demographic andHealth Surveys programme. The survey was conducted under the aegis of the Ministry of Population Welfare and implemented by the National Institute of Population Studies. Other collaborating institutions include the Federal Bureau of Statistics, the Aga Khan University, and the National Committee for Maternal and Neonatal Health. Technical support was provided by Macro International Inc. and financial support was provided by the United States Agency for International Development (USAID). The United Nations Population Fund (UNFPA) and United Nations Children's Fund (UNICEF) provided logistical support for monitoring the fieldwork for the PDHS. The 2006-07 PDHS supplements and complements the information collected through the censuses and demographic surveys conducted by the Federal Bureau of Statistics. It updates the available information on population and health issues, and provides guidance in planning, implementing, monitoring and evaluating health and population programmes in Pakistan. Some of the findings of the PDHS may seem at variance with data compiled by other sources. This may be due to differences in methodology, reference period, wording of questions and subsequent interpretation. This fact may be kept in mind while analyzing and comparing PDHS data with other sources. The results of the survey assist in the monitoring of the progress made towards meeting the Millennium Development Goals (MDGs). The 2006-07 PDHS includes topics related to fertility levels and determinants, family planning, fertility preferences, infant, child and maternal mortality and their causes, maternal and child health, immunization and nutritional status of mothers and children, knowledge of HIV/AIDS, and malaria. The 2006-07 PDHS also includes direct estimation of maternal mortality and its causes at the national level for the first time in Pakistan. The survey provides all other estimates for national, provincial and urban-rural domains. This being the fifth survey of its kind, there is considerable trend information on reproductive health, fertility and family planning over the past one and a half decades. More specifically, PDHS had the following objectives: Collect quality data on fertility levels and preference, family planning knowledge and use, childhood—and especially neonatal—mortality levels and awareness regarding HIV/ AIDS and other indicators relevant to the Millennium Development Goals and the Poverty Reduction Strategy Paper; Produce a reliable national estimate of the MMR for Pakistan, as well as information on the direct and indirect causes of maternal deaths using verbal autopsy instruments; Investigate factors that impact on maternal and neonatal morbidity and mortality (i.e., antenatal and delivery care, treatment of pregnancy complications, and postnatal care); Improve the capacity of relevant organizations to implement surveys and analyze and disseminate survey findings.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Pakistan Demographic and Health Survey (PDHS) was fielded on a national basis between the months of December 1990 and May 1991. The survey was carried out by the National Institute of Population Studies with the objective of assisting the Ministry of Population Welfare to evaluate the Population Welfare Programme and maternal and child health services. The PDHS is the latest in a series of surveys, making it possible to evaluate changes in the demographic status of the population and in health conditions nationwide. Earlier surveys include the Pakistan Contraceptive Prevalence Survey of 1984-85 and the Pakistan Fertility Survey of 1975. The primary objective of the Pakistan Demographic and Health Survey (PDHS) was to provide national- and provincial-level data on population and health in Pakistan. The primary emphasis was on the following topics: fertility, nuptiality, family size preferences, knowledge and use of family planning, the potential demand for contraception, the level of unwanted fertility, infant and child mortality, breastfeeding and food supplementation practices, maternal care, child nutrition and health, immunisations and child morbidity. This information is intended to assist policy makers, administrators and researchers in assessing and evaluating population and health programmes and strategies. The PDHS is further intended to serve as a source of demographic data for comparison with earlier surveys, particularly the 1975 Pakistan Fertility Survey (PFS) and the 1984-85 Pakistan Contraceptive Prevalence Survey (PCPS). MAIN RESULTS Until recently, fertility rates had remained high with little evidence of any sustained fertility decline. In recent years, however, fertility has begun to decline due to a rapid increase in the age at marriage and to a modest rise in the prevalence of contraceptive use. The lotal fertility rate is estimated to have fallen from a level of approximately 6.4 children in the early 1980s to 6.0 children in the mid-1980s, to 5.4 children in the late 1980s. The exact magnitude of the change is in dispute and will be the subject of further research. Important differentials of fertility include the degree ofurbanisation and the level of women's education. The total fertility rate is estimated to be nearly one child lower in major cities (4.7) than in rural areas (5.6). Women with at least some secondary schooling have a rate of 3.6, compared to a rate of 5.7 children for women with no formal education. There is a wide disparity between women's knowledge and use of contraceptives in Pakistan. While 78 percent of currently married women report knowing at least one method of contraception, only 21 percent have ever used a method, and only 12 percent are currently doing so. Three-fourths of current users are using a modem method and one-fourth a traditional method. The two most commonly used methods are female sterilisation (4 percent) and the condom (3 percent). Despite the relatively low level of contraceptive use, the gain over time has been significant. Among married non-pregnant women, contraceptive use has almost tripled in 15 years, from 5 percent in 1975 to 14 percent in 1990-91. The contraceptive prevalence among women with secondary education is 38 percent, and among women with no schooling it is only 8 percent. Nearly one-third of women in major cities arc current users of contraception, but contraceptive use is still rare in rural areas (6 percent). The Government of Pakistan plays a major role in providing family planning services. Eighty-five percent of sterilised women and 81 percent of IUD users obtained services from the public sector. Condoms, however, were supplied primarily through the social marketing programme. The use of contraceptives depends on many factors, including the degree of acceptability of the concept of family planning. Among currently married women who know of a contraceptive method, 62 percent approve of family planning. There appears to be a considerable amount of consensus between husbands and wives about family planning use: one-third of female respondents reported that both they and their husbands approve of family planning, while slightly more than one-fifth said they both disapprove. The latter couples constitute a group for which family planning acceptance will require concerted motivational efforts. The educational levels attained by Pakistani women remain low: 79 percent of women have had no formal education, 14 percent have studied at the primary or middle school level, and only 7 percent have attended at least some secondary schooling. The traditional social structure of Pakistan supports a natural fertility pattern in which the majority of women do not use any means of fertility regulation. In such populations, the proximate determinants of fertility (other than contraception) are crucial in determining fertility levels. These include age at marriage, breastfeeding, and the duration of postpartum amenorrhoea and abstinence. The mean age at marriage has risen sharply over the past few decades, from under 17 years in the 1950s to 21.7 years in 1991. Despite this rise, marriage remains virtually universal: among women over the age of 35, only 2 percent have never married. Marriage patterns in Pakistan are characterised by an unusually high degree of consangninity. Half of all women are married to their first cousin and an additional 11 percent are married to their second cousin. Breasffeeding is important because of the natural immune protection it provides to babies, and the protection against pregnancy it gives to mothers. Women in Pakistan breastfeed their children for an average of20months. Themeandurationofpostpartumamenorrhoeais slightly more than 9 months. After tbebirth of a child, women abstain from sexual relations for an average of 5 months. As a result, the mean duration of postpartum insusceptibility (the period immediately following a birth during which the mother is protected from the risk of pregnancy) is 11 months, and the median is 8 months. Because of differentials in the duration of breastfeeding and abstinence, the median duration of insusceptibility varies widely: from 4 months for women with at least some secondary education to 9 months for women with no schooling; and from 5 months for women residing in major cities to 9 months for women in rural areas. In the PDHS, women were asked about their desire for additional sons and daughters. Overall, 40 percent of currently married women do not want to have any more children. This figure increases rapidly depending on the number of children a woman has: from 17 percent for women with two living children, to 52 percent for women with four children, to 71 percent for women with six children. The desire to stop childbearing varies widely across cultural groupings. For example, among women with four living children, the percentage who want no more varies from 47 percent for women with no education to 84 percent for those with at least some secondary education. Gender preference continues to be widespread in Pakistan. Among currently married non-pregnant women who want another child, 49 percent would prefer to have a boy and only 5 percent would prefer a girl, while 46 percent say it would make no difference. The need for family planning services, as measured in the PDHS, takes into account women's statements concerning recent and future intended childbearing and their use of contraceptives. It is estimated that 25 percent of currently married women have a need for family planning to stop childbearing and an additional 12 percent are in need of family planning for spacing children. Thus, the total need for family planning equals 37 percent, while only 12 percent of women are currently using contraception. The result is an unmet need for family planning services consisting of 25 percent of currently married women. This gap presents both an opportunity and a challenge to the Population Welfare Programme. Nearly one-tenth of children in Pakistan die before reaching their first birthday. The infant mortality rate during the six years preceding the survey is estimaled to be 91 per thousand live births; the under-five mortality rate is 117 per thousand. The under-five mortality rates vary from 92 per thousand for major cities to 132 for rural areas; and from 50 per thousand for women with at least some secondary education to 128 for those with no education. The level of infant mortality is influenced by biological factors such as mother's age at birth, birth order and, most importantly, the length of the preceding birth interval. Children born less than two years after their next oldest sibling are subject to an infant mortality rate of 133 per thousand, compared to 65 for those spaced two to three years apart, and 30 for those born at least four years after their older brother or sister. One of the priorities of the Government of Pakistan is to provide medical care during pregnancy and at the time of delivery, both of which are essential for infant and child survival and safe motherhood. Looking at children born in the five years preceding the survey, antenatal care was received during pregnancy for only 30 percent of these births. In rural areas, only 17 percent of births benefited from antenatal care, compared to 71 percent in major cities. Educational differentials in antenatal care are also striking: 22 percent of births of mothers with no education received antenatal care, compared to 85 percent of births of mothers with at least some secondary education. Tetanus, a major cause of neonatal death in Pakistan, can be prevented by immunisation of the mother during pregnancy. For 30 percent of all births in the five years prior to the survey, the mother received a tetanus toxoid vaccination. The differentials are about the same as those for antenatal care generally. Eighty-five percent of the births occurring during the five years preceding the survey were delivered
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Family Health Survey (NFHS) was carried out as the principal activity of a collaborative project to strengthen the research capabilities of the Population Reasearch Centres (PRCs) in India, initiated by the Ministry of Health and Family Welfare (MOHFW), Government of India, and coordinated by the International Institute for Population Sciences (IIPS), Bombay. Interviews were conducted with a nationally representative sample of 89,777 ever-married women in the age group 13-49, from 24 states and the National Capital Territoty of Delhi. The main objective of the survey was to collect reliable and up-to-date information on fertility, family planning, mortality, and maternal and child health. Data collection was carried out in three phases from April 1992 to September 1993. THe NFHS is one of the most complete surveys of its kind ever conducted in India. The households covered in the survey included 500,492 residents. The young age structure of the population highlights the momentum of the future population growth of the country; 38 percent of household residents are under age 15, with their reproductive years still in the future. Persons age 60 or older constitute 8 percent of the population. The population sex ratio of the de jure residents is 944 females per 1,000 males, which is slightly higher than sex ratio of 927 observed in the 1991 Census. The primary objective of the NFHS is to provide national-level and state-level data on fertility, nuptiality, family size preferences, knowledge and practice of family planning, the potentiel demand for contraception, the level of unwanted fertility, utilization of antenatal services, breastfeeding and food supplemation practises, child nutrition and health, immunizations, and infant and child mortality. The NFHS is also designed to explore the demographic and socioeconomic determinants of fertility, family planning, and maternal and child health. This information is intended to assist policymakers, adminitrators and researchers in assessing and evaluating population and family welfare programmes and strategies. The NFHS used uniform questionnaires and uniform methods of sampling, data collection and analysis with the primary objective of providing a source of demographic and health data for interstate comparisons. The data collected in the NFHS are also comparable with those of the Demographic and Health Surveys (DHS) conducted in many other countries.
In 2018, over nine billion chickens were slaughtered in the United States. As the demand for chickens increases, so too have concerns regarding the welfare of the chickens in these systems and the damage such practices cause to the surrounding ecosystems. To address welfare concerns, there is large-scale interest in raising chickens on pasture and switching to slower-growing, higher-welfare breeds as soon as 2024. We created a box model of US chicken demographics to characterize aggregate broiler chicken welfare and land use consequences at the country scale for US shifts to slower-growing chickens, housing with outdoor access, and pasture management. The US produces roughly 20 million metric tons of chicken meat annually. Maintaining this level of consumption entirely with a slower-growing breed would require a 44.6%–86.8% larger population of chickens and a 19.2% – 27.2% higher annual slaughter rate, relative to the current demographics of primarily “Ross 308” chickens that are slaugh...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at 1.310 % in 2016. United States US: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging 1.310 % from Dec 2016 (Median) to 2016, with 1 observations. United States US: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2011 Purchasing Power Parity (PPP) using the PovcalNet (http://iresearch.worldbank.org/PovcalNet). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The final year refers to the most recent survey available between 2011 and 2015. Growth rates for Iraq are based on survey means of 2005 PPP$. The coverage and quality of the 2011 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2011 exercise of the International Comparison Program. See PovcalNet for detailed explanations.; ; World Bank, Global Database of Shared Prosperity (GDSP) circa 2010-2015 (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).; ; The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 2008 Sierra Leone Demographic and Health Survey (SLDHS) is the first DHS survey to be held in Sierra Leone. Teams visited 353 sample points across Sierra Leone and collected data from a nationally representative sample of 7,374 women age 15-49 and 3,280 men age 15-59. The primary purpose of the 2008 SLDHS is to provide policy-makers and planners with detailed information on Demography and health. This is the first Demographic and Health Survey conducted in Sierra Leone and was carried out by Statistics Sierra Leone (SSL) in collaboration with the Ministry of Health and Sanitation. The 2008 SLDHS was funded by the Sierra Leone government, UNFPA, UNDP, UNICEF, DFID, USAID, and The World Bank. WHO, WFP and UNHCR provided logistical support. ICF Macro, an ICF International Company, provided technical support for the survey through the MEASURE DHS project. MEASURE DHS is sponsored by the United States Agency for International Development (USAID) to assist countries worldwide in obtaining information on key population and health indicators. The purpose of the SLDHS is to collect national- and regional-level data on fertility and contraceptive use, marriage and sexual activity, fertility preferences, breastfeeding practices, nutritional status of women and young children, childhood and adult mortality, maternal and child health, female genital cutting, awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections, adult health, and other issues. The survey obtained detailed information on these topics from women of reproductive age and, for certain topics, from men as well. The 2008 SLDHS was carried out from late April 2008 to late June 2008, using a nationally representative sample of 7,758 households. The survey results are intended to assist policymakers and planners in assessing the current health and population programmes and in designing new strategies for improving reproductive health and health services in Sierra Leone. MAIN RESULTS FERTILITY Survey results indicate that there has been little or no decline in the total fertility rate over the past two decades, from 5.7 children per woman in 1980-85 to 5.1 children per woman for the three years preceding the 2008 SLDHS (approximately 2004-07). Fertility is lower in urban areas than in rural areas (3.8 and 5.8 children per woman, respectively). Regional variations in fertility are marked, ranging from 3.4 births per woman in the Western Region (where the capital, Freetown, is located) to almost six births per woman in the Northern and Eastern regions. Women with no education give birth to almost twice as many children as women who have been to secondary school (5.8 births, compared with 3.1 births). Fertility is also closely associated with household wealth, ranging from 3.2 births among women in the highest wealth quintile to 6.3 births among women in the lowest wealth quintile, a difference of more than three births. Research has demonstrated that children born too close to a previous birth are at increased risk of dying. In Sierra Leone, only 18 percent of births occur within 24 months of a previous birth. The interval between births is relatively long; the median interval is 36 months. FAMILY PLANNING The vast majority of Sierra Leonean women and men know of at least one method of contraception. Contraceptive pills and injectables are known to about 60 percent of currently married women and 49 percent of married men. Male condoms are known to 58 percent of married women and 80 percent of men. A higher proportion of respondents reported knowing a modern method of family planning than a traditional method. About one in five (21 percent) currently married women has used a contraceptive method at some time-19 percent have used a modern method and 6 percent have used a traditional method. However, only about one in twelve currently married women (8 percent) is currently using a contraceptive method. Modern methods account for almost all contraceptive use, with 7 percent of married women reporting use of a modern method, compared with only 1 percent using a traditional method. Injectables and the pill are the most widely used methods (3 and 2 percent of married women, respectively), followed by LAM and male condoms (less than 1 percent each). CHILD HEALTH Examination of levels of infant and child mortality is essential for assessing population and health policies and programmes. Infant and child mortality rates are also used as indices reflecting levels of poverty and deprivation in a population. The 2008 survey data show that over the past 15 years, infant and under-five mortality have decreased by 26 percent. Still, one in seven Sierra Leonean children dies before reaching age five. For the most recent five-year period before the survey (approximately calendar years 2003 to 2008), the infant mortality rate was 89 deaths per 1,000 live births and the under-five mortality rate was 140 deaths per 1,000 live births. The neonatal mortality rate was 36 deaths per 1,000 live births and the post-neonatal mortality rate was 53 deaths per 1,000 live births. The child mortality rate was 56 deaths per 1,000 children surviving to age one year. Mortality rates at all ages of childhood show a strong relationship with the length of the preceding birth interval. Under-five mortality is three times higher among children born less than two years after a preceding sibling (252 deaths per 1,000 births) than among children born four or more years after a previous child (deaths 81 per 1,000 births). MATERNAL HEALTH Almost nine in ten mothers (87 percent) in Sierra Leone receive antenatal care from a health professional (doctor, nurse, midwife, or MCH aid). Only 5 percent of mothers receive antenatal care from a traditional midwife or a community health worker; 7 percent of mothers do not receive any antenatal care. In Sierra Leone, over half of mothers have four or more antenatal care (ANC) visits, about 20 percent have one to three ANC visits, and only 7 percent have no antenatal care at all. The survey shows that not all women in Sierra Leone receive antenatal care services early in pregnancy. Only 30 percent of mothers obtain antenatal care in the first three months of pregnancy, 41 percent make their first visit in the fourth or fifth month, and 17 percent in have their first visit in the sixth or seventh month. Only 1 percent of women have their first ANC visit in their eighth month of pregnancy or later. BREASTFEEDING AND NUTRITION Poor nutritional status is one of the most important health and welfare problems facing Sierra Leone today and particularly afflicts women and children. The data show that 36 percent of children under five are stunted (too short for their age) and 10 percent of children under five are wasted (too thin for their height). Overall, 21 percent of children are underweight, which may reflect stunting, wasting, or both. For women, at the national level 11 percent of women are considered to be thin (body mass index
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at -2.590 % in 2021. Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging -2.590 % from Dec 2021 (Median) to 2021, with 1 observations. The data reached an all-time high of -2.590 % in 2021 and a record low of -2.590 % in 2021. Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Colombia – Table CO.World Bank.WDI: Social: Poverty and Inequality. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The coverage and quality of the 2017 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2017 exercise of the International Comparison Program. See the Poverty and Inequality Platform for detailed explanations.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The regional statistics interface enables the computerised retrieval of statistical data in Greater Helsinki’s Aluesarjat (in Finnish) statistical database in different file formats, such as XLSX, CSV, JSON and JSON-stat.
The Regional series statistical database contains statistical time series on several regional phenomena. The statistics are mostly annual, the longest population series starting from 1962. The database consists of three entities: statistical area data of the cities of Helsinki, Espoo and Vantaa as well as municipal and regional statistics on Greater Helsinki and the Uusimaa region. ̈ The database provides the latest information available. Some data is updated once a year, some on a quarterly basis.
The statistics of the database are described in more detail in the data collections Regional series and Historical statistics.
In addition to the contents of the Aluesarjat statistical database, the interface also provides access to the Aluesarjat archive database, Wellness statistics, Nordstat database and Helsinki environmental statistics.
Instructions have been prepared on the use of the PX-Web API, which should be consulted before using the interface:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
KZ: Survey Mean Consumption or Income per Capita: Total Population: Annualized Average Growth Rate data was reported at 3.470 % in 2015. KZ: Survey Mean Consumption or Income per Capita: Total Population: Annualized Average Growth Rate data is updated yearly, averaging 3.470 % from Dec 2015 (Median) to 2015, with 1 observations. KZ: Survey Mean Consumption or Income per Capita: Total Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kazakhstan – Table KZ.World Bank: Poverty. The growth rate in the welfare aggregate of the total population is computed as the annualized average growth rate in per capita real consumption or income of the total population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2011 Purchasing Power Parity (PPP) using the PovcalNet (http://iresearch.worldbank.org/PovcalNet). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The final year refers to the most recent survey available between 2011 and 2015. Growth rates for Iraq are based on survey means of 2005 PPP$. The coverage and quality of the 2011 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2011 exercise of the International Comparison Program. See PovcalNet for detailed explanations.; ; World Bank, Global Database of Shared Prosperity (GDSP) circa 2010-2015 (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).; ; The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The DSS Payment Demographic data set is made up of:
Selected DSS payment data by
Geography: state/territory, electorate, postcode, LGA and SA2 (for 2015 onwards)
Demographic: age, sex and Indigenous/non-Indigenous
Duration on Payment (Working Age & Pensions)
Duration on Income Support (Working Age, Carer payment & Disability Support Pension)
Rate (Working Age & Pensions)
Earnings (Working Age & Pensions)
Age Pension assets data
JobSeeker Payment and Youth Allowance (other) Principal Carers
Activity Tested Recipients by Partial Capacity to Work (NSA,PPS & YAO)
Exits within 3, 6 and 12 months (Newstart Allowance/JobSeeker Payment, Parenting Payment, Sickness Allowance & Youth Allowance)
Disability Support Pension by medical condition
Care Receiver by medical conditions
Commonwealth Rent Assistance by Payment type and Income Unit type have been added from March 2017. For further information about Commonwealth Rent Assistance and Income Units see the Data Descriptions and Glossary included in the dataset.
From December 2022, the "DSS Expanded Benefit and Payment Recipient Demographics – quarterly data" publication has introduced expanded reporting populations for income support recipients. As a result, the reporting population for Jobseeker Payment and Special Benefit has changed to include recipients who are current but on zero rate of payment and those who are suspended from payment. The reporting population for ABSTUDY, Austudy, Parenting Payment and Youth Allowance has changed to include those who are suspended from payment. The expanded report will replace the standard report after June 2023.
Additional data for DSS Expanded Benefit and Payment Recipient Demographics – quarterly data includes:
• A new contents page to assist users locate the information within the spreadsheet
• Additional data for the ‘Suspended’ population in the ‘Payment by Rate’ tab to enable users to calculate the old reporting rules.
• Additional information on the Employment Earning by ‘Income Free Area’ tab.
From December 2022, Services Australia have implemented a change in the Centrelink payment system to recognise gender other than the sex assigned at birth or during infancy, or as a gender which is not exclusively male or female. To protect the privacy of individuals and comply with confidentialisation policy, persons identifying as ‘non-binary’ will initially be grouped with ‘females’ in the period immediately following implementation of this change. The Department will monitor the implications of this change and will publish the ‘non-binary’ gender category as soon as privacy and confidentialisation considerations allow.
Local Government Area has been updated to reflect the Australian Statistical Geography Standard (ASGS) 2022 boundaries from June 2023.
Commonwealth Electorate Division has been updated to reflect the Australian Statistical Geography Standard (ASGS) 2021 boundaries from June 2023.
SA2 has been updated to reflect the Australian Statistical Geography Standard (ASGS) 2021 boundaries from June 2023.
From December 2021, the following are included in the report:
selected payments by work capacity, by various demographic breakdowns
rental type and homeownership
Family Tax Benefit recipients and children by payment type
Commonwealth Rent Assistance by proportion eligible for the maximum rate
an age breakdown for Age Pension recipients
For further information, please see the Glossary.
From June 2021, data on the Paid Parental Leave Scheme is included yearly in June releases. This includes both Parental Leave Pay and Dad and Partner Pay, across multiple breakdowns. Please see Glossary for further information.
From March 2017 the DSS demographic dataset will include top 25 countries of birth. For further information see the glossary.
From March 2016 machine readable files containing the three geographic breakdowns have also been published for use in National Map, links to these datasets are below:
Pre June 2014 Quarter Data contains:
Selected DSS payment data by
Geography: state/territory; electorate; postcode and LGA
Demographic: age, sex and Indigenous/non-Indigenous
Note: JobSeeker Payment replaced Newstart Allowance and other working age payments from 20 March 2020, for further details see: https://www.dss.gov.au/benefits-payments/jobseeker-payment
For data on DSS payment demographics as at June 2013 or earlier, the department has published data which was produced annually. Data is provided by payment type containing timeseries’, state, gender, age range, and various other demographics. Links to these publications are below:
Concession card data in the March and June 2020 quarters have been re-stated to address an over-count in reported cardholder numbers.
28/06/2024 – The March 2024 and December 2023 reports were republished with updated data in the ‘Carer Receivers by Med Condition’ section, updates are exclusive to the ‘Care Receivers of Carer Payment recipients’ table, under ‘Intellectual / Learning’ and ‘Circulatory System’ conditions only.