100+ datasets found
  1. Federal Reserve Interest Rates, 1954-Present

    • kaggle.com
    zip
    Updated Mar 16, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Reserve (2017). Federal Reserve Interest Rates, 1954-Present [Dataset]. https://www.kaggle.com/federalreserve/interest-rates
    Explore at:
    zip(7069 bytes)Available download formats
    Dataset updated
    Mar 16, 2017
    Dataset provided by
    Federal Reserve Systemhttp://www.federalreserve.gov/
    Authors
    Federal Reserve
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Federal Reserve sets interest rates to promote conditions that achieve the mandate set by the Congress — high employment, low and stable inflation, sustainable economic growth, and moderate long-term interest rates. Interest rates set by the Fed directly influence the cost of borrowing money. Lower interest rates encourage more people to obtain a mortgage for a new home or to borrow money for an automobile or for home improvement. Lower rates encourage businesses to borrow funds to invest in expansion such as purchasing new equipment, updating plants, or hiring more workers. Higher interest rates restrain such borrowing by consumers and businesses.

    Content

    This dataset includes data on the economic conditions in the United States on a monthly basis since 1954. The federal funds rate is the interest rate at which depository institutions trade federal funds (balances held at Federal Reserve Banks) with each other overnight. The rate that the borrowing institution pays to the lending institution is determined between the two banks; the weighted average rate for all of these types of negotiations is called the effective federal funds rate. The effective federal funds rate is determined by the market but is influenced by the Federal Reserve through open market operations to reach the federal funds rate target. The Federal Open Market Committee (FOMC) meets eight times a year to determine the federal funds target rate; the target rate transitioned to a target range with an upper and lower limit in December 2008. The real gross domestic product is calculated as the seasonally adjusted quarterly rate of change in the gross domestic product based on chained 2009 dollars. The unemployment rate represents the number of unemployed as a seasonally adjusted percentage of the labor force. The inflation rate reflects the monthly change in the Consumer Price Index of products excluding food and energy.

    Acknowledgements

    The interest rate data was published by the Federal Reserve Bank of St. Louis' economic data portal. The gross domestic product data was provided by the US Bureau of Economic Analysis; the unemployment and consumer price index data was provided by the US Bureau of Labor Statistics.

    Inspiration

    How does economic growth, unemployment, and inflation impact the Federal Reserve's interest rates decisions? How has the interest rate policy changed over time? Can you predict the Federal Reserve's next decision? Will the target range set in March 2017 be increased, decreased, or remain the same?

  2. T

    United States Fed Funds Interest Rate

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Fed Funds Interest Rate [Dataset]. https://tradingeconomics.com/united-states/interest-rate
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 4, 1971 - Oct 29, 2025
    Area covered
    United States
    Description

    The benchmark interest rate in the United States was last recorded at 4 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  3. FRED-interest-rate-spreads

    • kaggle.com
    zip
    Updated May 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SamAffolter (2024). FRED-interest-rate-spreads [Dataset]. https://www.kaggle.com/datasets/samaffolter/fred-interest-rate-spreads
    Explore at:
    zip(243036 bytes)Available download formats
    Dataset updated
    May 23, 2024
    Authors
    SamAffolter
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Source is Federal Reserve Bank of St. Louis. Retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/"NAME OF MEASURE" Column names are "Name of Measure" from FRED's catalog.

    Group 1: Yield Curve Indicators These focus on the shape of the Treasury yield curve, comparing longer-term to shorter-term rates. They are primarily used to: Signal Economic Expectations: A normal curve (longer-term rates higher) suggests expectations of growth and possibly inflation. A flattening or inverted curve (short-term rates near or above long-term) could signal a potential slowdown or recession.

    Group 2: Monetary Policy and Market Expectations These spreads look at the difference between Treasury yields and the Federal Funds Rate, the primary tool of monetary policy. They indicate: Market vs. Fed Outlook: Widening spreads could suggest the market expects faster rate hikes or higher long-term inflation than the Fed is signaling. Narrowing spreads could mean the opposite. Risk-Taking: When these spreads widen, it can be a sign of investors moving from safe Treasuries to riskier assets in search of yield.

    Group 3: Credit Risk and Market Sentiment These spreads focus on corporate bond yields relative to Treasuries, highlighting the added compensation investors require for holding riskier corporate debt. They signal: Credit Conditions: Widening spreads suggest deteriorating credit conditions or lower risk tolerance among investors. Narrowing spreads suggest the opposite. Economic Confidence: Investors often demand higher premiums for corporate bonds during economic uncertainty, widening these spreads.

    Group 4: Breakeven Inflation Rates The breakeven inflation rate represents a measure of expected inflation derived from 30-Year Treasury Constant Maturity Securities (BC_30YEAR) and 30-Year Treasury Inflation-Indexed Constant Maturity Securities (TC_30YEAR). The latest value implies what market participants expect inflation to be in the next 30 years, on average.

  4. T

    Japan Interest Rate

    • tradingeconomics.com
    • ru.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Interest Rate [Dataset]. https://tradingeconomics.com/japan/interest-rate
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Oct 30, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 2, 1972 - Oct 30, 2025
    Area covered
    Japan
    Description

    The benchmark interest rate in Japan was last recorded at 0.50 percent. This dataset provides - Japan Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  5. United States Interest Rate Forecast Dataset

    • focus-economics.com
    html
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FocusEconomics (2025). United States Interest Rate Forecast Dataset [Dataset]. https://www.focus-economics.com/country-indicator/united-states/interest-rate/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 29, 2025
    Dataset authored and provided by
    FocusEconomics
    License

    https://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/

    Time period covered
    2014 - 2025
    Area covered
    United States
    Variables measured
    forecast, united_states_interest_rate
    Description

    Monthly and long-term United States Interest Rate data: historical series and analyst forecasts curated by FocusEconomics.

  6. US Financial Indicators - 1974 to 2024

    • kaggle.com
    zip
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhishek Bhatnagar (2024). US Financial Indicators - 1974 to 2024 [Dataset]. https://www.kaggle.com/datasets/abhishekb7/us-financial-indicators-1974-to-2024
    Explore at:
    zip(15336 bytes)Available download formats
    Dataset updated
    Nov 25, 2024
    Authors
    Abhishek Bhatnagar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    U.S. Economic and Financial Dataset

    Dataset Description

    This dataset combines historical U.S. economic and financial indicators, spanning the last 50 years, to facilitate time series analysis and uncover patterns in macroeconomic trends. It is designed for exploring relationships between interest rates, inflation, economic growth, stock market performance, and industrial production.

    Key Features

    • Frequency: Monthly
    • Time Period: Last 50 years from Nov-24
    • Sources:
      • Federal Reserve Economic Data (FRED)
      • Yahoo Finance

    Dataset Feature Description

    1. Interest Rate (Interest_Rate):

      • The effective federal funds rate, representing the interest rate at which depository institutions trade federal funds overnight.
    2. Inflation (Inflation):

      • The Consumer Price Index for All Urban Consumers, an indicator of inflation trends.
    3. GDP (GDP):

      • Real GDP measures the inflation-adjusted value of goods and services produced in the U.S.
    4. Unemployment Rate (Unemployment):

      • The percentage of the labor force that is unemployed and actively seeking work.
    5. Stock Market Performance (S&P500):

      • Monthly average of the adjusted close price, representing stock market trends.
    6. Industrial Production (Ind_Prod):

      • A measure of real output in the industrial sector, including manufacturing, mining, and utilities.

    Dataset Statistics

    1. Total Entries: 599
    2. Columns: 6
    3. Memory usage: 37.54 kB
    4. Data types: float64

    Feature Overview

    • Columns:
      • Interest_Rate: Monthly Federal Funds Rate (%)
      • Inflation: CPI (All Urban Consumers, Index)
      • GDP: Real GDP (Billions of Chained 2012 Dollars)
      • Unemployment: Unemployment Rate (%)
      • Ind_Prod: Industrial Production Index (2017=100)
      • S&P500: Monthly Average of S&P 500 Adjusted Close Prices

    Executive Summary

    This project explores the interconnected dynamics of key macroeconomic indicators and financial market trends over the past 50 years, leveraging data from the Federal Reserve Economic Data (FRED) and Yahoo Finance. The dataset integrates critical variables such as the Federal Funds Rate, Inflation (CPI), Real GDP, Unemployment Rate, Industrial Production, and the S&P 500 Index, providing a holistic view of the U.S. economy and financial markets.

    The analysis focuses on uncovering relationships between these variables through time-series visualization, correlation analysis, and trend decomposition. Key findings are included in the Insights section. This project serves as a robust resource for understanding long-term economic trends, policy impacts, and market behavior. It is particularly valuable for students, researchers, policymakers, and financial analysts seeking to connect macroeconomic theory with real-world data.

    Potential Use Cases

    • Economic Analysis: Examine relationships between interest rates, inflation, GDP, and unemployment.
    • Stock Market Prediction: Study how macroeconomic indicators influence stock market trends.
    • Time Series Modeling: Perform ARIMA, VAR, or other models to forecast economic trends.
    • Cyclic Pattern Analysis: Identify how economic shocks and recoveries impact key indicators.

    Snap of Power Analysis

    imagehttps://github.com/user-attachments/assets/1b40e0ca-7d2e-4fbc-8cfd-df3f09e4fdb8">

    To ensure sufficient power, the dataset covers last 50 years of monthly data i.e., around 600 entries.

    Key Insights derived through EDA, time-series visualization, correlation analysis, and trend decomposition

    • Interest Rate and Inflation Dynamics: The interest Rate and inflation exhibit an inverse relationship, especially during periods of aggressive monetary tightening by the Federal Reserve.
    • Economic Growth and Market Performance: GDP growth and the S&P 500 Index show a positive correlation, reflecting how market performance often aligns with overall economic health.
    • Labor Market and Industrial Output: Unemployment and industrial production demonstrate a strong inverse relationship. Higher industrial output is typically associated with lower unemployment
    • Market Behavior During Economic Shocks: The S&P 500 experienced sharp declines during significant crises, such as the 2008 financial crash and the COVID-19 pandemic in 2020. These events also triggered increased unemployment and contractions in GDP, highlighting the interplay between markets and the broader economy.
    • Correlation Highlights: S&P 500 and GDP have a strong positive correlation. Interest rates negatively correlate with GDP and inflation, reflecting monetary policy impacts. Unemployment is negatively correlated with industrial production but positively correlated with interest rates.

    Link to GitHub Repo

    https:/...

  7. T

    United Kingdom Interest Rate

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United Kingdom Interest Rate [Dataset]. https://tradingeconomics.com/united-kingdom/interest-rate
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 20, 1971 - Nov 6, 2025
    Area covered
    United Kingdom
    Description

    The benchmark interest rate in the United Kingdom was last recorded at 4 percent. This dataset provides - United Kingdom Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  8. T

    Sweden Interest Rate

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Sweden Interest Rate [Dataset]. https://tradingeconomics.com/sweden/interest-rate
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Nov 5, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 26, 1994 - Nov 5, 2025
    Area covered
    Sweden
    Description

    The benchmark interest rate in Sweden was last recorded at 1.75 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  9. Historical Prime Rates and Related Significant

    • kaggle.com
    zip
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Historical Prime Rates and Related Significant [Dataset]. https://www.kaggle.com/datasets/thedevastator/historical-prime-rates-and-related-significant-e
    Explore at:
    zip(645 bytes)Available download formats
    Dataset updated
    Jan 12, 2023
    Authors
    The Devastator
    Description

    Historical Prime Rates and Related Significant Events 1956-Present

    Understanding Lending and Economic Trends

    By Brandon Gadoci [source]

    About this dataset

    This dataset looks back at the history of lending rates from 1956 to present and investigates the effects of significant historical events on prime lending rate. The data, which was sourced from trusted sources, provides an insight into how major political and economic developments have influenced the cost of borrowing in different countries. By examining which events had an impact on interest rates and by how much, this dataset could prove invaluable for researchers looking to understand historical financial trends or for investors trying to understand past market behaviour. Take a step back in time with this comprehensive collection of lending data – it could be the key to unlocking greater insights into our financial history!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains historical prime rates from 1956 to present, as well as significant events that may have affected the prime lending rate. With this data, you can analyze changes in the average majority prime rate charged by banks and any events that may have contributed to this change.

    To get started with this dataset, you'll want to make sure you understand the columns it contains: Year: This is the year of the data point. (Integer)
    Average Majority Prime Rate Charged By Banks: This is average prime rate charged by banks in the majority of he year for a given time period. (Float)
    Significant Events: Significant events that may have impacted or shifted the Prime Lending Rate during a certain period or throughout history. (String)

    You can then use this information to begin exploring and comparing periods where there were drastic shifts inside of one year within this data set as it provides an overall view intoprime lending during these different times periods along with what plausible external or internal factors could’ve caused them. To do so, you can use descriptive statistics such a means and medians, along with graphing tools such as line charts and scatter plots to observe any correlations between fluctuations inPrime Lending Rates and Significant Events taking place concurrently at different points in time throughout history over six decades §§ when both economic states seem prosperous or abysmal for comparison purposes so we can identify driving forces behind certain trends inside our data set

    Research Ideas

    • Create a timeline visualization of major prime rate events in the US to show the influence of various political and economic factors on interest rates.
    • Superimpose this data over monthly trends of mortgage and auto loan interest rates to illustrate the impact that movements in the prime lending rate have on consumer borrowing.
    • Determine which banks currently offer loans with the lowest prime rates, by tracking historic trends against current market conditions for lenders

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: historical_prime rate.csv | Column name | Description | |:-------------------------------------------------|:---------------------------------------------------------------------------| | Year | Year of the average majority prime rate charged by banks. (Integer) | | Average majority prime rate charged by banks | The average majority prime rate charged by banks in a given year. (Float) | | Significant Events | Significant events that may have had an effect on the prime rate. (String) |

    Acknowledgements

    If you use this dataset in your research, please cr...

  10. F

    Data from: Effective Federal Funds Rate

    • fred.stlouisfed.org
    json
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Effective Federal Funds Rate [Dataset]. https://fred.stlouisfed.org/series/EFFR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 2, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    View data of the Effective Federal Funds Rate, or the interest rate depository institutions charge each other for overnight loans of funds.

  11. WB Loan Average Interest Rate by Country / Economy

    • financesone.worldbank.org
    csv, json
    Updated Nov 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). WB Loan Average Interest Rate by Country / Economy [Dataset]. https://financesone.worldbank.org/wb-loan-average-interest-rate-by-country-economy/DS01597
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Nov 24, 2025
    Dataset authored and provided by
    World Bank Grouphttp://www.worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The International Bank for Reconstruction and Development (IBRD) loans are public and publicly guaranteed debt extended by the World Bank Group. IBRD loans are made to, or guaranteed by, countries that are members of IBRD. IBRD may also make loans to IFC. IBRD lends at market rates. Data are in U.S. dollars calculated using historical rates. This dataset contains the latest available snapshot of the Statement of Loans. The World Bank complies with all sanctions applicable to World Bank transactions.

  12. T

    United States 30-Year Mortgage Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States 30-Year Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/30-year-mortgage-rate
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Nov 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 1971 - Nov 26, 2025
    Area covered
    United States
    Description

    30 Year Mortgage Rate in the United States decreased to 6.23 percent in November 26 from 6.26 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.

  13. d

    5.04 Bond Rating (summary)

    • catalog.data.gov
    • open.tempe.gov
    • +9more
    Updated Nov 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). 5.04 Bond Rating (summary) [Dataset]. https://catalog.data.gov/dataset/5-04-bond-rating-summary-b40cc
    Explore at:
    Dataset updated
    Nov 1, 2025
    Dataset provided by
    City of Tempe
    Description

    An important indicator of the financial strength of a governmental entity is its bond rating. The bond rating is similar to the credit score of an individual – the higher the score, the better the ability to borrow money to finance purchases at a lower interest rate. Similarly, the higher the bond rating for a governmental entity, the more opportunities to borrow money for capital needs at lower interest rates. A high bond rating is an excellent indicator of the overall financial health of a government.This measure is obtained each year when the city seeks to issue bonds to finance its’ projects. As part of this process, bond ratings are always obtained from the rating agencies: Standard & Poor’s. Fitch Ratings and Moody's Investor Service. This page provides data for the Bond Rating performance measure. Bond ratings are a reflection of the financial strength of an entity. A high rating means an entity can issue bonds to finance capital projects at lower interest rates; lower rates result in less interest to be paid on the repayment of the bonds. Ultimately, this lowers the costs of our capital projects to our taxpayers. The performance measure dashboard is available at 5.04 Bond Rating. Additional Information Source: Standard & Poors, Moody's Investor Service, and Fitch Ratings are the major bond rating agencies in the United States and are widely used by governmental and non-governmental entities throughout the country.Contact: Jerry HartContact E-Mail: Jerry_Hart@tempe.govData Source Type: ExcelPreparation Method: ManualPublish Frequency: AnnuallyPublish Method: ManualData Dictionary

  14. Lending Club Loan Data Analysis

    • kaggle.com
    zip
    Updated May 24, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vikas Chellaboina (2021). Lending Club Loan Data Analysis [Dataset]. https://www.kaggle.com/datasets/urstrulyvikas/lending-club-loan-data-analysis/code
    Explore at:
    zip(218250 bytes)Available download formats
    Dataset updated
    May 24, 2021
    Authors
    Vikas Chellaboina
    Description

    DESCRIPTION

    Create a model that predicts whether or not a loan will be default using the historical data.

    Problem Statement:

    For companies like Lending Club correctly predicting whether or not a loan will be a default is very important. In this project, using the historical data from 2007 to 2015, you have to build a deep learning model to predict the chance of default for future loans. As you will see later this dataset is highly imbalanced and includes a lot of features that make this problem more challenging.

    Domain: Finance

    Analysis to be done: Perform data preprocessing and build a deep learning prediction model.

    Content:

    Dataset columns and definition:

    credit.policy: 1 if the customer meets the credit underwriting criteria of LendingClub.com, and 0 otherwise.

    purpose: The purpose of the loan (takes values "credit_card", "debt_consolidation", "educational", "major_purchase", "small_business", and "all_other").

    int.rate: The interest rate of the loan, as a proportion (a rate of 11% would be stored as 0.11). Borrowers judged by LendingClub.com to be more risky are assigned higher interest rates.

    installment: The monthly installments owed by the borrower if the loan is funded.

    log.annual.inc: The natural log of the self-reported annual income of the borrower.

    dti: The debt-to-income ratio of the borrower (amount of debt divided by annual income).

    fico: The FICO credit score of the borrower.

    days.with.cr.line: The number of days the borrower has had a credit line.

    revol.bal: The borrower's revolving balance (amount unpaid at the end of the credit card billing cycle).

    revol.util: The borrower's revolving line utilization rate (the amount of the credit line used relative to total credit available).

    inq.last.6mths: The borrower's number of inquiries by creditors in the last 6 months.

    delinq.2yrs: The number of times the borrower had been 30+ days past due on a payment in the past 2 years.

    pub.rec: The borrower's number of derogatory public records (bankruptcy filings, tax liens, or judgments).

    Steps to perform:

    Perform exploratory data analysis and feature engineering and then apply feature engineering. Follow up with a deep learning model to predict whether or not the loan will be default using the historical data.

    Tasks:

    1. Feature Transformation

    Transform categorical values into numerical values (discrete)

    1. Exploratory data analysis of different factors of the dataset.

    2. Additional Feature Engineering

    You will check the correlation between features and will drop those features which have a strong correlation

    This will help reduce the number of features and will leave you with the most relevant features

    1. Modeling

    After applying EDA and feature engineering, you are now ready to build the predictive models

    In this part, you will create a deep learning model using Keras with Tensorflow backend

  15. T

    Brazil Interest Rate

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Brazil Interest Rate [Dataset]. https://tradingeconomics.com/brazil/interest-rate
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Sep 17, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 5, 1999 - Nov 5, 2025
    Area covered
    Brazil
    Description

    The benchmark interest rate in Brazil was last recorded at 15 percent. This dataset provides - Brazil Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  16. Realistic Loan Approval Dataset | US & Canada

    • kaggle.com
    zip
    Updated Nov 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Parth Patel2130 (2025). Realistic Loan Approval Dataset | US & Canada [Dataset]. https://www.kaggle.com/datasets/parthpatel2130/realistic-loan-approval-dataset-us-and-canada
    Explore at:
    zip(1717268 bytes)Available download formats
    Dataset updated
    Nov 1, 2025
    Authors
    Parth Patel2130
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Canada, United States
    Description

    🏦 Synthetic Loan Approval Dataset

    A Realistic, High-Quality Dataset for Credit Risk Modelling

    🎯 Why This Dataset?

    Most loan datasets on Kaggle have unrealistic patterns where:

    1. ❌ Credit scores don't matter
    2. ❌ Approval logic is backwards
    3. ❌ Models learn nonsense patterns

    Unlike most loan datasets available online, this one is built on real banking criteria from US and Canadian financial institutions. Drawing from 3 years of hands-on finance industry experience, the dataset incorporates realistic correlations and business logic that reflect how actual lending decisions are made. This makes it perfect for data scientists looking to build portfolio projects that showcase not just coding ability, but genuine understanding of credit risk modelling.

    📊 Dataset Overview

    MetricValue
    Total Records50,000
    Features20 (customer_id + 18 predictors + 1 target)
    Target Distribution55% Approved, 45% Rejected
    Missing Values0 (Complete dataset)
    Product TypesCredit Card, Personal Loan, Line of Credit
    MarketUnited States & Canada
    Use CaseBinary Classification (Approved/Rejected)

    🔑 Key Features

    Identifier:

    -Customer ID (unique identifier for each application)

    Demographics:

    -Age, Occupation Status, Years Employed

    Financial Profile:

    -Annual Income, Credit Score, Credit History Length -Savings/Assets, Current Debt

    Credit Behaviour:

    -Defaults on File, Delinquencies, Derogatory Marks

    Loan Request:

    -Product Type, Loan Intent, Loan Amount, Interest Rate

    Calculated Ratios:

    -Debt-to-Income, Loan-to-Income, Payment-to-Income

    💡 What Makes This Dataset Special?

    1️⃣ Real-World Approval Logic The dataset implements actual banking criteria: - DTI ratio > 50% = automatic rejection - Defaults on file = instant reject - Credit score bands match real lending thresholds - Employment verification for loans ≥$20K

    2️⃣ Realistic Correlations - Higher income → Better credit scores - Older applicants → Longer credit history - Students → Lower income, special treatment for small loans - Loan intent affects approval (Education best, Debt Consolidation worst)

    3️⃣ Product-Specific Rules - Credit Cards: More lenient, higher limits - Personal Loans: Standard criteria, up to $100K - Line of Credit: Capped at $50K, manual review for high amounts

    4️⃣ Edge Cases Included - Young applicants (age 18) building first credit - Students with thin credit files - Self-employed with variable income - High debt-to-income ratios - Multiple delinquencies

    🎓 Perfect For - Machine Learning Practice: Binary classification with real patterns - Credit Risk Modelling: Learn actual lending criteria - Portfolio Projects: Build impressive, explainable models - Feature Engineering: Rich dataset with meaningful relationships - Business Analytics: Understand financial decision-making

    📈 Quick Stats

    Approval Rates by Product - Credit Card: 60.4% more lenient) - Personal Loan: 46.9 (standard) - Line of Credit: 52.6% (moderate)

    Loan Intent (Best → Worst Approval Odds) 1. Education (63% approved) 2. Personal (58% approved) 3. Medical/Home (52% approved) 4. Business (48% approved) 5. Debt Consolidation (40% approved)

    Credit Score Distribution - Mean: 644 - Range: 300-850 - Realistic bell curve around 600-700

    Income Distribution - Mean: $50,063 - Median: $41,608 - Range: $15K - $250K

    🎯 Expected Model Performance

    With proper feature engineering and tuning: - Accuracy: 75-85% - ROC-AUC: 0.80-0.90 - F1-Score: 0.75-0.85

    Important: Feature importance should show: 1. Credit Score (most important) 2. Debt-to-Income Ratio 3. Delinquencies 4. Loan Amount 5. Income

    If your model shows different patterns, something's wrong!

    🏆 Use Cases & Projects

    Beginner - Binary classification with XGBoost/Random Forest - EDA and visualization practice - Feature importance analysis

    Intermediate - Custom threshold optimization (profit maximization) - Cost-sensitive learning (false positive vs false negative) - Ensemble methods and stacking

    Advanced - Explainable AI (SHAP, LIME) - Fairness analysis across demographics - Production-ready API with FastAPI/Flask - Streamlit deployment with business rules

    ⚠️ Important Notes

    This is SYNTHETIC Data - Generated based on real banking criteria - No real customer data was used - Safe for public sharing and portfolio use

    Limitations - Simplified approval logic (real banks use 100+ factors) - No temporal component (no time series) - Single country/currency assumed (USD) - No external factors (economy, market conditions)

    Educational Purpose This dataset is designed for: - Learning credit risk modeling - Portfolio projects - ML practice - Understanding lending criteria

    NOT for: - Actual lending decisions - Financial advice - Production use without validation

    🤝 Contributing

    Found an issue? Have suggestions? - Open an issue on GitHub - Suggest i...

  17. Japan Interest Rate Forecast Dataset

    • focus-economics.com
    html
    Updated Nov 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FocusEconomics (2025). Japan Interest Rate Forecast Dataset [Dataset]. https://www.focus-economics.com/country-indicator/japan/interest-rate/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 4, 2025
    Dataset authored and provided by
    FocusEconomics
    License

    https://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/

    Time period covered
    2014 - 2025
    Area covered
    Japan
    Variables measured
    forecast, japan_interest_rate
    Description

    Monthly and long-term Japan Interest Rate data: historical series and analyst forecasts curated by FocusEconomics.

  18. C

    Average, highest and lowest mortgage interest rates

    • ckan.mobidatalab.eu
    Updated Jul 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OverheidNl (2023). Average, highest and lowest mortgage interest rates [Dataset]. https://ckan.mobidatalab.eu/dataset/3018-gemiddelde-hoogste-en-laagste-hypotheekrente
    Explore at:
    http://publications.europa.eu/resource/authority/file-type/atom, http://publications.europa.eu/resource/authority/file-type/jsonAvailable download formats
    Dataset updated
    Jul 12, 2023
    Dataset provided by
    OverheidNl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Average mortgage interest; highest and lowest interest rates Data available: annual figures from 1993, monthly figures from 1994. Discontinued; There will be no more updates. Info service: http://www.cbs.nl/infoservice. Copyright (c) Statistics Netherlands. Reproduction is permitted, provided Statistics Netherlands is cited as the source.

  19. Canada Mortgage and Housing Corporation, conventional mortgage lending rate,...

    • www150.statcan.gc.ca
    • thelearningbarn.org
    • +3more
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Canada Mortgage and Housing Corporation, conventional mortgage lending rate, 5-year term [Dataset]. http://doi.org/10.25318/3410014501-eng
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...).

  20. Brazil Interest Rate Forecast Dataset

    • focus-economics.com
    html
    Updated Nov 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FocusEconomics (2025). Brazil Interest Rate Forecast Dataset [Dataset]. https://www.focus-economics.com/country-indicator/brazil/interest-rate/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 12, 2025
    Dataset authored and provided by
    FocusEconomics
    License

    https://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/

    Time period covered
    2014 - 2025
    Area covered
    Brazil
    Variables measured
    forecast, brazil_interest_rate
    Description

    Monthly and long-term Brazil Interest Rate data: historical series and analyst forecasts curated by FocusEconomics.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Federal Reserve (2017). Federal Reserve Interest Rates, 1954-Present [Dataset]. https://www.kaggle.com/federalreserve/interest-rates
Organization logo

Federal Reserve Interest Rates, 1954-Present

Interest rates, economic growth, unemployment, and inflation data

Explore at:
zip(7069 bytes)Available download formats
Dataset updated
Mar 16, 2017
Dataset provided by
Federal Reserve Systemhttp://www.federalreserve.gov/
Authors
Federal Reserve
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Context

The Federal Reserve sets interest rates to promote conditions that achieve the mandate set by the Congress — high employment, low and stable inflation, sustainable economic growth, and moderate long-term interest rates. Interest rates set by the Fed directly influence the cost of borrowing money. Lower interest rates encourage more people to obtain a mortgage for a new home or to borrow money for an automobile or for home improvement. Lower rates encourage businesses to borrow funds to invest in expansion such as purchasing new equipment, updating plants, or hiring more workers. Higher interest rates restrain such borrowing by consumers and businesses.

Content

This dataset includes data on the economic conditions in the United States on a monthly basis since 1954. The federal funds rate is the interest rate at which depository institutions trade federal funds (balances held at Federal Reserve Banks) with each other overnight. The rate that the borrowing institution pays to the lending institution is determined between the two banks; the weighted average rate for all of these types of negotiations is called the effective federal funds rate. The effective federal funds rate is determined by the market but is influenced by the Federal Reserve through open market operations to reach the federal funds rate target. The Federal Open Market Committee (FOMC) meets eight times a year to determine the federal funds target rate; the target rate transitioned to a target range with an upper and lower limit in December 2008. The real gross domestic product is calculated as the seasonally adjusted quarterly rate of change in the gross domestic product based on chained 2009 dollars. The unemployment rate represents the number of unemployed as a seasonally adjusted percentage of the labor force. The inflation rate reflects the monthly change in the Consumer Price Index of products excluding food and energy.

Acknowledgements

The interest rate data was published by the Federal Reserve Bank of St. Louis' economic data portal. The gross domestic product data was provided by the US Bureau of Economic Analysis; the unemployment and consumer price index data was provided by the US Bureau of Labor Statistics.

Inspiration

How does economic growth, unemployment, and inflation impact the Federal Reserve's interest rates decisions? How has the interest rate policy changed over time? Can you predict the Federal Reserve's next decision? Will the target range set in March 2017 be increased, decreased, or remain the same?

Search
Clear search
Close search
Google apps
Main menu