50 datasets found
  1. f

    Data from: Error and anomaly detection for intra-participant time-series...

    • tandf.figshare.com
    xlsx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David R. Mullineaux; Gareth Irwin (2023). Error and anomaly detection for intra-participant time-series data [Dataset]. http://doi.org/10.6084/m9.figshare.5189002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    David R. Mullineaux; Gareth Irwin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a ‘moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method for detecting trials with outliers in intra-participant time-series data. Outliers were detected through two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers assessed to justify whether to retain or remove those cycles. The method is effective in identifying trials with outliers in intra-participant time series data.

  2. s

    Outlier Set Two-step Method (OSTI)

    • orda.shef.ac.uk
    application/x-rar
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amal Sarfraz; Abigail Birnbaum; Flannery Dolan; Jonathan Lamontagne; Lyudmila Mihaylova; Charles Rouge (2025). Outlier Set Two-step Method (OSTI) [Dataset]. http://doi.org/10.15131/shef.data.28227974.v3
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    The University of Sheffield
    Authors
    Amal Sarfraz; Abigail Birnbaum; Flannery Dolan; Jonathan Lamontagne; Lyudmila Mihaylova; Charles Rouge
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These files are supplements to the paper titled 'A Robust Two-step Method for Detection of Outlier Sets'.This paper identifies and addresses the need for a robust method that identifies sets of points that collectively deviate from typical patterns in a dataset, which it calls "outlier sets'', while excluding individual points from detection. This new methodology, Outlier Set Two-step Identification (OSTI) employs a two-step approach to detect and label these outlier sets. First, it uses Gaussian Mixture Models for probabilistic clustering, identifying candidate outlier sets based on cluster weights below a predetermined threshold. Second, OSTI measures the Inter-cluster Mahalanobis distance between each candidate outlier set's centroid and the overall dataset mean. OSTI then tests the null hypothesis that this distance does not significantly differ from its theoretical chi-square distribution, enabling the formal detection of outlier sets. We test OSTI systematically on 8,000 synthetic 2D datasets across various inlier configurations and thousands of possible outlier set characteristics. Results show OSTI robustly and consistently detects outlier sets with an average F1 score of 0.92 and an average purity (the degree to which outlier sets identified correspond to those generated synthetically, i.e., our ground truth) of 98.58%. We also compare OSTI with state-of-the-art outlier detection methods, to illuminate how OSTI fills a gap as a tool for the exclusive detection of outlier sets.

  3. g

    Replication data for: Linear Models with Outliers: Choosing between...

    • datasearch.gesis.org
    • dataverse.harvard.edu
    • +1more
    Updated Jan 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harden, Jeffrey; Desmarais, Bruce (2020). Replication data for: Linear Models with Outliers: Choosing between Conditional-Mean and Conditional-Median Methods [Dataset]. https://datasearch.gesis.org/dataset/httpsdataverse.unc.eduoai--hdl1902.2911608
    Explore at:
    Dataset updated
    Jan 22, 2020
    Dataset provided by
    Odum Institute Dataverse Network
    Authors
    Harden, Jeffrey; Desmarais, Bruce
    Description

    State politics researchers commonly employ ordinary least squares (OLS) regression or one of its variants to test linear hypotheses. However, OLS is easily influenced by outliers and thus can produce misleading results when the error term distribution has heavy tails. Here we demonstrate that median regression (MR), an alternative to OLS that conditions the median of the dependent variable (rather than the mean) on the independent variables, can be a solution to this problem. Then we propose and validate a hypothesis test that applied researchers can use to select between OLS and MR in a given sample of data. Finally, we present two examples from state politics research in which (1) the test selects MR over OLS and (2) differences in results between the two methods could lead to different substantive inferences. We conclude that MR and the test we propose can improve linear models in state politics research.

  4. z

    Controlled Anomalies Time Series (CATS) Dataset

    • zenodo.org
    bin
    Updated Jul 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Fleith; Patrick Fleith (2024). Controlled Anomalies Time Series (CATS) Dataset [Dataset]. http://doi.org/10.5281/zenodo.7646897
    Explore at:
    binAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Solenix Engineering GmbH
    Authors
    Patrick Fleith; Patrick Fleith
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Controlled Anomalies Time Series (CATS) Dataset consists of commands, external stimuli, and telemetry readings of a simulated complex dynamical system with 200 injected anomalies.

    The CATS Dataset exhibits a set of desirable properties that make it very suitable for benchmarking Anomaly Detection Algorithms in Multivariate Time Series [1]:

    • Multivariate (17 variables) including sensors reading and control signals. It simulates the operational behaviour of an arbitrary complex system including:
      • 4 Deliberate Actuations / Control Commands sent by a simulated operator / controller, for instance, commands of an operator to turn ON/OFF some equipment.
      • 3 Environmental Stimuli / External Forces acting on the system and affecting its behaviour, for instance, the wind affecting the orientation of a large ground antenna.
      • 10 Telemetry Readings representing the observable states of the complex system by means of sensors, for instance, a position, a temperature, a pressure, a voltage, current, humidity, velocity, acceleration, etc.
    • 5 million timestamps. Sensors readings are at 1Hz sampling frequency.
      • 1 million nominal observations (the first 1 million datapoints). This is suitable to start learning the "normal" behaviour.
      • 4 million observations that include both nominal and anomalous segments. This is suitable to evaluate both semi-supervised approaches (novelty detection) as well as unsupervised approaches (outlier detection).
    • 200 anomalous segments. One anomalous segment may contain several successive anomalous observations / timestamps. Only the last 4 million observations contain anomalous segments.
    • Different types of anomalies to understand what anomaly types can be detected by different approaches.
    • Fine control over ground truth. As this is a simulated system with deliberate anomaly injection, the start and end time of the anomalous behaviour is known very precisely. In contrast to real world datasets, there is no risk that the ground truth contains mislabelled segments which is often the case for real data.
    • Obvious anomalies. The simulated anomalies have been designed to be "easy" to be detected for human eyes (i.e., there are very large spikes or oscillations), hence also detectable for most algorithms. It makes this synthetic dataset useful for screening tasks (i.e., to eliminate algorithms that are not capable to detect those obvious anomalies). However, during our initial experiments, the dataset turned out to be challenging enough even for state-of-the-art anomaly detection approaches, making it suitable also for regular benchmark studies.
    • Context provided. Some variables can only be considered anomalous in relation to other behaviours. A typical example consists of a light and switch pair. The light being either on or off is nominal, the same goes for the switch, but having the switch on and the light off shall be considered anomalous. In the CATS dataset, users can choose (or not) to use the available context, and external stimuli, to test the usefulness of the context for detecting anomalies in this simulation.
    • Pure signal ideal for robustness-to-noise analysis. The simulated signals are provided without noise: while this may seem unrealistic at first, it is an advantage since users of the dataset can decide to add on top of the provided series any type of noise and choose an amplitude. This makes it well suited to test how sensitive and robust detection algorithms are against various levels of noise.
    • No missing data. You can drop whatever data you want to assess the impact of missing values on your detector with respect to a clean baseline.

    [1] Example Benchmark of Anomaly Detection in Time Series: “Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly Detection in Time Series: A Comprehensive Evaluation. PVLDB, 15(9): 1779 - 1797, 2022. doi:10.14778/3538598.3538602”

    About Solenix

    Solenix is an international company providing software engineering, consulting services and software products for the space market. Solenix is a dynamic company that brings innovative technologies and concepts to the aerospace market, keeping up to date with technical advancements and actively promoting spin-in and spin-out technology activities. We combine modern solutions which complement conventional practices. We aspire to achieve maximum customer satisfaction by fostering collaboration, constructivism, and flexibility.

  5. Predictive Validity Data Set

    • figshare.com
    txt
    Updated Dec 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonio Abeyta (2022). Predictive Validity Data Set [Dataset]. http://doi.org/10.6084/m9.figshare.17030021.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 18, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Antonio Abeyta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Verbal and Quantitative Reasoning GRE scores and percentiles were collected by querying the student database for the appropriate information. Any student records that were missing data such as GRE scores or grade point average were removed from the study before the data were analyzed. The GRE Scores of entering doctoral students from 2007-2012 were collected and analyzed. A total of 528 student records were reviewed. Ninety-six records were removed from the data because of a lack of GRE scores. Thirty-nine of these records belonged to MD/PhD applicants who were not required to take the GRE to be reviewed for admission. Fifty-seven more records were removed because they did not have an admissions committee score in the database. After 2011, the GRE’s scoring system was changed from a scale of 200-800 points per section to 130-170 points per section. As a result, 12 more records were removed because their scores were representative of the new scoring system and therefore were not able to be compared to the older scores based on raw score. After removal of these 96 records from our analyses, a total of 420 student records remained which included students that were currently enrolled, left the doctoral program without a degree, or left the doctoral program with an MS degree. To maintain consistency in the participants, we removed 100 additional records so that our analyses only considered students that had graduated with a doctoral degree. In addition, thirty-nine admissions scores were identified as outliers by statistical analysis software and removed for a final data set of 286 (see Outliers below). Outliers We used the automated ROUT method included in the PRISM software to test the data for the presence of outliers which could skew our data. The false discovery rate for outlier detection (Q) was set to 1%. After removing the 96 students without a GRE score, 432 students were reviewed for the presence of outliers. ROUT detected 39 outliers that were removed before statistical analysis was performed. Sample See detailed description in the Participants section. Linear regression analysis was used to examine potential trends between GRE scores, GRE percentiles, normalized admissions scores or GPA and outcomes between selected student groups. The D’Agostino & Pearson omnibus and Shapiro-Wilk normality tests were used to test for normality regarding outcomes in the sample. The Pearson correlation coefficient was calculated to determine the relationship between GRE scores, GRE percentiles, admissions scores or GPA (undergraduate and graduate) and time to degree. Candidacy exam results were divided into students who either passed or failed the exam. A Mann-Whitney test was then used to test for statistically significant differences between mean GRE scores, percentiles, and undergraduate GPA and candidacy exam results. Other variables were also observed such as gender, race, ethnicity, and citizenship status within the samples. Predictive Metrics. The input variables used in this study were GPA and scores and percentiles of applicants on both the Quantitative and Verbal Reasoning GRE sections. GRE scores and percentiles were examined to normalize variances that could occur between tests. Performance Metrics. The output variables used in the statistical analyses of each data set were either the amount of time it took for each student to earn their doctoral degree, or the student’s candidacy examination result.

  6. d

    Monthly OpenET Image Collections (v2.0) Summarized by 12-Digit Hydrologic...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Monthly OpenET Image Collections (v2.0) Summarized by 12-Digit Hydrologic Unit Codes, 2008-2023 [Dataset]. https://catalog.data.gov/dataset/monthly-openet-image-collections-v2-0-summarized-by-12-digit-hydrologic-unit-codes-2008-20
    Explore at:
    Dataset updated
    Nov 23, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    This dataset provides monthly summaries of evapotranspiration (ET) data from OpenET v2.0 image collections for the period 2008-2023 for all National Watershed Boundary Dataset subwatersheds (12-digit hydrologic unit codes [HUC12s]) in the US that overlap the spatial extent of OpenET datasets. For each HUC12, this dataset contains spatial aggregation statistics (minimum, mean, median, and maximum) for each of the ET variables from each of the publicly available image collections from OpenET for the six available models (DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, SIMS, SSEBop) and the Ensemble image collection, which is a pixel-wise ensemble of all 6 individual models after filtering and removal of outliers according to the median absolute deviation approach (Melton and others, 2022). Data are available in this data release in two different formats: comma-separated values (CSV) and parquet, a high-performance format that is optimized for storage and processing of columnar data. CSV files containing data for each 4-digit HUC are grouped by 2-digit HUCs for easier access of regional data, and the single parquet file provides convenient access to the entire dataset. For each of the ET models (DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, SIMS, SSEBop), variables in the model-specific CSV data files include: -huc12: The 12-digit hydrologic unit code -ET: Actual evapotranspiration (in millimeters) over the HUC12 area in the month calculated as the sum of daily ET interpolated between Landsat overpasses -statistic: Max, mean, median, or min. Statistic used in the spatial aggregation within each HUC12. For example, maximum ET is the maximum monthly pixel ET value occurring within the HUC12 boundary after summing daily ET in the month -year: 4-digit year -month: 2-digit month -count: Number of Landsat overpasses included in the ET calculation in the month -et_coverage_pct: Integer percentage of the HUC12 with ET data, which can be used to determine how representative the ET statistic is of the entire HUC12 -count_coverage_pct: Integer percentage of the HUC12 with count data, which can be different than the et_coverage_pct value because the “count” band in the source image collection extends beyond the “et” band in the eastern portion of the image collection extent For the Ensemble data, these additional variables are included in the CSV files: -et_mad: Ensemble ET value, computed as the mean of the ensemble after filtering outliers using the median absolute deviation (MAD) -et_mad_count: The number of models used to compute the ensemble ET value after filtering for outliers using the MAD -et_mad_max: The maximum value in the ensemble range, after filtering for outliers using the MAD -et_mad_min: The minimum value in the ensemble range, after filtering for outliers using the MAD -et_sam: A simple arithmetic mean (across the 6 models) of actual ET average without outlier removal Below are the locations of each OpenET image collection used in this summary: DisALEXI: https://developers.google.com/earth-engine/datasets/catalog/OpenET_DISALEXI_CONUS_GRIDMET_MONTHLY_v2_0 eeMETRIC: https://developers.google.com/earth-engine/datasets/catalog/OpenET_EEMETRIC_CONUS_GRIDMET_MONTHLY_v2_0 geeSEBAL: https://developers.google.com/earth-engine/datasets/catalog/OpenET_GEESEBAL_CONUS_GRIDMET_MONTHLY_v2_0 PT-JPL: https://developers.google.com/earth-engine/datasets/catalog/OpenET_PTJPL_CONUS_GRIDMET_MONTHLY_v2_0 SIMS: https://developers.google.com/earth-engine/datasets/catalog/OpenET_SIMS_CONUS_GRIDMET_MONTHLY_v2_0 SSEBop: https://developers.google.com/earth-engine/datasets/catalog/OpenET_SSEBOP_CONUS_GRIDMET_MONTHLY_v2_0 Ensemble: https://developers.google.com/earth-engine/datasets/catalog/OpenET_ENSEMBLE_CONUS_GRIDMET_MONTHLY_v2_0

  7. f

    Data from: PCP-SAFT Parameters of Pure Substances Using Large Experimental...

    • acs.figshare.com
    zip
    Updated Sep 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timm Esper; Gernot Bauer; Philipp Rehner; Joachim Gross (2023). PCP-SAFT Parameters of Pure Substances Using Large Experimental Databases [Dataset]. http://doi.org/10.1021/acs.iecr.3c02255.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 6, 2023
    Dataset provided by
    ACS Publications
    Authors
    Timm Esper; Gernot Bauer; Philipp Rehner; Joachim Gross
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This work reports pure component parameters for the PCP-SAFT equation of state for 1842 substances using a total of approximately 551 172 experimental data points for vapor pressure and liquid density. We utilize data from commercial and public databases in combination with an automated workflow to assign chemical identifiers to all substances, remove duplicate data sets, and filter unsuited data. The use of raw experimental data, as opposed to pseudoexperimental data from empirical correlations, requires means to identify and remove outliers, especially for vapor pressure data. We apply robust regression using a Huber loss function. For identifying and removing outliers, the empirical Wagner equation for vapor pressure is adjusted to experimental data, because the Wagner equation is mathematically rather flexible and is thus not subject to a systematic model bias. For adjusting model parameters of the PCP-SAFT model, nonpolar, dipolar and associating substances are distinguished. The resulting substance-specific parameters of the PCP-SAFT equation of state yield in a mean absolute relative deviation of the of 2.73% for vapor pressure and 0.52% for liquid densities (2.56% and 0.47% for nonpolar substances, 2.67% and 0.61% for dipolar substances, and 3.24% and 0.54% for associating substances) when evaluated against outlier-removed data. All parameters are provided as JSON and CSV files.

  8. H

    The Social Cost of Carbon: Trends, Outliers and Catastrophes [Dataset]

    • data.niaid.nih.gov
    xls, zip
    Updated Nov 25, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Richard S.J. Tol (2009). The Social Cost of Carbon: Trends, Outliers and Catastrophes [Dataset] [Dataset]. http://doi.org/10.7910/DVN/LGIF0V
    Explore at:
    xls, zipAvailable download formats
    Dataset updated
    Nov 25, 2009
    Dataset provided by
    Economic and Social Research Institute, Dublin
    Authors
    Richard S.J. Tol
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Global
    Description

    211 estimates of the social cost of carbon are included in a meta-analysis. The results confirm that a lower discount rate implies a higher estimate; and that higher estimates are found in the gray literature. It is also found that there is a downward trend in the economic impact estimates of the climate; that the Stern Review’s estimates of the social cost of carbon is an outlier; and that the right tail of the distribution is fat. There is a fair chance that the annual climate liability exceeds the annual income of many people.

  9. API security: Access behavior anomaly dataset

    • kaggle.com
    Updated Nov 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ravi Guntur (2021). API security: Access behavior anomaly dataset [Dataset]. https://www.kaggle.com/datasets/tangodelta/api-access-behaviour-anomaly-dataset/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 22, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ravi Guntur
    License

    http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

    Description

    Context

    Distributed micro-services based applications are typically accessed via APIs. These APIs are used either by apps or they can be accessed directly by programmatic means. Many a time API access is abused by attackers trying to exploit the business logic exposed by these APIs. The way normal users access these APIs is different from how the attackers access these APIs. Many applications have 100s of APIs that are called in specific order and depending on various factors such as browser refreshes, session refreshes, network errors, or programmatic access these behaviors are not static and can vary for the same user. API calls in long running sessions form access graphs that need to be analysed in order to discover attack patterns and anomalies. Graphs dont lend themselves to numerical computation. We address this issue and provide a dataset where user access behavior is qualified as numerical features. In addition we provide a dataset where raw API call graphs are provided. Supporting the use of these datasets two notebooks on classification, node embeddings and clustering are also provided.

    About the dataset

    There are 4 files provided. Two files are in CSV format and two files are in JSON format. The files in CSV format are user behavior graphs represented as behavior metrics. The JSON files are the actual API call graphs. The two datasets can be joined on a key so that those who want to combine graphs with metrics could do so in novel ways.

    What is new in this dataset

    This data set captures API access patterns in terms of behavior metrics. Behaviors are captured by tracking users' API call graphs which are then summarized in terms of metrics. In some sense a categorical sequence of entities has been reduced to numerical metrics.

    CSV dataset

    There are two files provided. One called supervised_dataset.csv has behaviors labeled as normal or outlier. The second file called remaining_behavior_ext.csv has a larger number of samples that are not labeled but has additional insights as well as a classification created by another algorithm.

    What is each row

    Each row is one instance of an observed behavior that has been manually classified as normal or outlier

    JSON dataset

    There are two files provided to correspond to the two CSV files

    What is each item

    Each item has an _id field that can be used to join against the CSV data sets. Then we have the API behavior graph represented as a list of edges.

    Inspiration

    1. To model the classification label with a skewed distribution of normal and abnormal cases and with very few labeled samples available. Use supervised_dataset.csv
    2. To verify where the predicted class differs from the class determined by a second algorithm. Use remaining_behavior_ext.csv
  10. H

    Replication Data for: Cluster analysis in practice: Dealing with outliers in...

    • dataverse.harvard.edu
    docx, tsv +1
    Updated Aug 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2020). Replication Data for: Cluster analysis in practice: Dealing with outliers in managerial research [Dataset]. http://doi.org/10.7910/DVN/CN9BEU
    Explore at:
    tsv(510699), docx(27452112), type/x-r-syntax(7277), type/x-r-syntax(3497)Available download formats
    Dataset updated
    Aug 31, 2020
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Context: in recent years, cluster analysis has stimulated researchers to explore new ways to understand data behavior. The computational ease of this method and its ability to generate consistent outputs, even in small datasets, explains that to some extent. However, researchers are often mistaken in holding that clustering is a terrain in which anything goes. The literature shows the opposite: they must be careful, especially regarding the effect of outliers on cluster formation. Objective: in this tutorial paper, we contribute to this discussion by presenting four clustering techniques and their respective advantages and disadvantages in the treatment of outliers. Methods: for that, we worked from a managerial dataset and analyzed it using k-means, PAM, DBSCAN, and FCM techniques. Conclusion: we concluded that researchers need to have a more diversified repertoire of clustering techniques. After all, this would give them two relevant empirical alternatives: choose the most appropriate technique for their research objectives or adopt a multi-method approach.

  11. f

    The 12 outliers identified in the Tonga dataset.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Nov 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mayfield, Anderson B.; Dempsey, Alexandra C.; Chen, Chii-Shiarng (2017). The 12 outliers identified in the Tonga dataset. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001760878
    Explore at:
    Dataset updated
    Nov 1, 2017
    Authors
    Mayfield, Anderson B.; Dempsey, Alexandra C.; Chen, Chii-Shiarng
    Description

    Gene expression data have been presented as non-normalized (2-Ct*109) in all but the last six rows; this allows for the back-calculation of the raw threshold cycle (Ct) values so that interested individuals can readily estimate the typical range of expression of each gene. Values representing aberrant levels for a particular parameter (z-score>2.5) have been highlighted in bold. When there was a statistically significant difference (student’s t-test, p<0.05) between the outlier and non-outlier averages for a parameter (instead using normalized gene expression data), the lower of the two values has been underlined. All samples hosted Symbiodinium of clade C only unless noted otherwise. The mean Mahalanobis distance did not differ between Pocillopora damicornis and P. acuta (student’s t-test, p>0.05). SA = surface area. GCP = genome copy proportion. Ma Dis = Mahalanobis distance. “.” = missing data.

  12. g

    ELKI Multi-View Clustering Data Sets Based on the Amsterdam Library of...

    • elki-project.github.io
    • explore.openaire.eu
    • +2more
    Updated Sep 2, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erich Schubert; Arthur Zimek (2011). ELKI Multi-View Clustering Data Sets Based on the Amsterdam Library of Object Images (ALOI) [Dataset]. http://doi.org/10.5281/zenodo.6355684
    Explore at:
    Dataset updated
    Sep 2, 2011
    Dataset provided by
    University of Southern Denmark, Denmark
    TU Dortmund University
    Authors
    Erich Schubert; Arthur Zimek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Amsterdam Library of Object Images" is a collection of 110250 images of 1000 small objects, taken under various light conditions and rotation angles. All objects were placed on a black background. Thus the images are taken under rather uniform conditions, which means there is little uncontrolled bias in the data set (unless mixed with other sources). They do however not resemble a "typical" image collection. The data set has a rather unique property for its size: there are around 100 different images of each object, so it is well suited for clustering. By downsampling some objects it can also be used for outlier detection. For multi-view research, we offer a number of different feature vector sets for evaluating this data set.

  13. f

    Data from: S1 Data set -

    • plos.figshare.com
    xlsx
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nassim Dehouche; Sorawit Viravan; Ubolrat Santawat; Nungruethai Torsuwan; Sakuna Taijan; Atthakorn Intharakosum; Yongyut Sirivatanauksorn (2023). S1 Data set - [Dataset]. http://doi.org/10.1371/journal.pone.0288239.s012
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Nassim Dehouche; Sorawit Viravan; Ubolrat Santawat; Nungruethai Torsuwan; Sakuna Taijan; Atthakorn Intharakosum; Yongyut Sirivatanauksorn
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe typical hospital Length of Stay (LOS) distribution is known to be right-skewed, to vary considerably across Diagnosis Related Groups (DRGs), and to contain markedly high values, in significant proportions. These very long stays are often considered outliers, and thin-tailed statistical distributions are assumed. However, resource consumption and planning occur at the level of medical specialty departments covering multiple DRGs, and when considered at this decision-making scale, extreme LOS values represent a significant component of the distribution of LOS (the right tail) that determines many of its statistical properties.ObjectiveTo build actionable statistical models of LOS for resource planning at the level of healthcare units.MethodsThrough a study of 46, 364 electronic health records over four medical specialty departments (Pediatrics, Obstetrics/Gynecology, Surgery, and Rehabilitation Medicine) in the largest hospital in Thailand (Siriraj Hospital in Bangkok), we show that the distribution of LOS exhibits a tail behavior that is consistent with a subexponential distribution. We analyze some empirical properties of such a distribution that are of relevance to cost and resource planning, notably the concentration of resource consumption among a minority of admissions/patients, an increasing residual LOS, where the longer a patient has been admitted, the longer they would be expected to remain admitted, and a slow convergence of the Law of Large Numbers, making empirical estimates of moments (e.g. mean, variance) unreliable.ResultsWe propose a novel Beta-Geometric model that shows a good fit with observed data and reproduces these empirical properties of LOS. Finally, we use our findings to make practical recommendations regarding the pricing and management of LOS.

  14. h

    Restricted Boltzmann Machine for Missing Data Imputation in Biomedical...

    • datahub.hku.hk
    Updated Aug 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wen Ma (2020). Restricted Boltzmann Machine for Missing Data Imputation in Biomedical Datasets [Dataset]. http://doi.org/10.25442/hku.12752549.v1
    Explore at:
    Dataset updated
    Aug 13, 2020
    Dataset provided by
    HKU Data Repository
    Authors
    Wen Ma
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description
    1. NCCTG Lung cancer datasetSurvival in patients with advanced lung cancer from the North Central Cancer Treatment Group. Performance scores rate how well the patient can perform usual daily activities.2.CNV measurements of CNV of GBM This dataset records the information about copy number variation of Glioblastoma (GBM).Abstract:In biology and medicine, conservative patient and data collection malpractice can lead to missing or incorrect values in patient registries, which can affect both diagnosis and prognosis. Insufficient or biased patient information significantly impedes the sensitivity and accuracy of predicting cancer survival. In bioinformatics, making a best guess of the missing values and identifying the incorrect values are collectively called “imputation”. Existing imputation methods work by establishing a model based on the data mechanism of the missing values. Existing imputation methods work well under two assumptions: 1) the data is missing completely at random, and 2) the percentage of missing values is not high. These are not cases found in biomedical datasets, such as the Cancer Genome Atlas Glioblastoma Copy-Number Variant dataset (TCGA: 108 columns), or the North Central Cancer Treatment Group Lung Cancer (NCCTG) dataset (NCCTG: 9 columns). We tested six existing imputation methods, but only two of them worked with these datasets: The Last Observation Carried Forward (LOCF) and K-nearest Algorithm (KNN). Predictive Mean Matching (PMM) and Classification and Regression Trees (CART) worked only with the NCCTG lung cancer dataset with fewer columns, except when the dataset contains 45% missing data. The quality of the imputed values using existing methods is bad because they do not meet the two assumptions.In our study, we propose a Restricted Boltzmann Machine (RBM)-based imputation method to cope with low randomness and the high percentage of the missing values. RBM is an undirected, probabilistic and parameterized two-layer neural network model, which is often used for extracting abstract information from data, especially for high-dimensional data with unknown or non-standard distributions. In our benchmarks, we applied our method to two cancer datasets: 1) NCCTG, and 2) TCGA. The running time, root mean squared error (RMSE) of the different methods were gauged. The benchmarks for the NCCTG dataset show that our method performs better than other methods when there is 5% missing data in the dataset, with 4.64 RMSE lower than the best KNN. For the TCGA dataset, our method achieved 0.78 RMSE lower than the best KNN.In addition to imputation, RBM can achieve simultaneous predictions. We compared the RBM model with four traditional prediction methods. The running time and area under the curve (AUC) were measured to evaluate the performance. Our RBM-based approach outperformed traditional methods. Specifically, the AUC was up to 19.8% higher than the multivariate logistic regression model in the NCCTG lung cancer dataset, and the AUC was higher than the Cox proportional hazard regression model, with 28.1% in the TCGA dataset.Apart from imputation and prediction, RBM models can detect outliers in one pass by allowing the reconstruction of all the inputs in the visible layer with in a single backward pass. Our results show that RBM models have achieved higher precision and recall on detecting outliers than other methods.
  15. e

    Key Characteristics of Algorithms' Dynamics Beyond Accuracy - Evaluation...

    • b2find.eudat.eu
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Key Characteristics of Algorithms' Dynamics Beyond Accuracy - Evaluation Tests (v2) - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/3524622d-2099-554c-826a-f2155c3f4bb4
    Explore at:
    Dataset updated
    Jul 31, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Key Characteristics of Algorithms' Dynamics Beyond Accuracy - Evaluation Tests (v2) conducted for the paper: What do anomaly scores actually mean? Key characteristics of algorithms' dynamics beyond accuracy by F. Iglesias, H. O. Marques, A. Zimek, T. Zseby Context and methodology Anomaly detection is intrinsic to a large number of data analysis applications today. Most of the algorithms used assign an outlierness score to each instance prior to establishing anomalies in a binary form. The experiments in this repository study how different algorithms generate different dynamics in the outlierness scores and react in very different ways to possible model perturbations that affect data. The study elaborated in the referred paper presents new indices and coefficients to assess the dynamics and explores the responses of the algorithms as a function of variations in these indices, revealing key aspects of the interdependence between algorithms, data geometries and the ability to discriminate anomalies. Therefeore, this repository reproduces the conducted experiments, which study eight algorithms (ABOD, HBOS, iForest, K-NN, LOF, OCSVM, SDO and GLOSH), submitted to seven perturbations related to: cardinality, dimensionality, outlier proportion, inlier-outlier density ratio, density layers, clusters and local outliers, and collects behavioural profiles with eleven measurements (Adjusted Average Precission, ROC-AUC, Perini's Confidence [1], Perini's Stability [2], S-curves, Discriminant Power, Robust Coefficients of Variations for Inliers and Outliers, Coherence, Bias and Robustness) under two types of normalization: linear and Gaussian, the latter aiming to standardize the outlierness scores issued by different algorithms [3]. This repository is framed within the research on the following domains: algorithm evaluation, outlier detection, anomaly detection, unsupervised learning, machine learning, data mining, data analysis. Datasets and algorithms can be used for experiment replication and for further evaluation and comparison. References [1] Perini, L., Vercruyssen, V., Davis, J.: Quantifying the confidence of anomaly detectors in their example-wise predictions. In: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Springer Verlag (2020). [2] Perini, L., Galvin, C., Vercruyssen, V.: A Ranking Stability Measure for Quantifying the Robustness of Anomaly Detection Methods. In: 2nd Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning @ ECML/PKDD (2020). [3] Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: Interpreting and unifying outlier scores. In: Proceedings of the 2011 SIAM International Conference on Data Mining (SDM), pp. 13–24 (2011) Technical details Experiments are tested Python 3.9.6. Provided scripts generate all synthetic data and results. We keep them in the repo for the sake of comparability and replicability ("outputs.zip" file). The file and folder structure is as follows: "compare_scores_group.py" is a Python script to extract new dynamic indices proposed in the paper. "generate_data.py" is a Python script to generate datasets used for evaluation. "latex_table.py" is a Python script to show results in a latex-table format. "merge_indices.py" is a Python script to merge accuracy and dynamic indices in the same table-structured summary. "metric_corr.py" is a Python script to calculate correlation estimations between indices. "outdet.py" is a Python script that runs outlier detection with different algorithms on diverse datasets. "perini_tests.py" is a Python script to run Perini's confidence and stability on all datasets and algorithms' performances. "scatterplots.py" is a Python script that generates scatter plots for comparing accuracy and dynamic performances. "README.md" provides explanations and step by step instructions for replication. "requirements.txt" contains references to required Python libraries and versions. "outputs.zip" contains all result tables, plots and synthetic data generated with the scripts. [data/real_data] contain CSV versions of the Wilt, Shuttle, Waveform and Cardiotocography datasets (inherited and adapted from the LMU repository) License The CC-BY license applies to all data generated with the "generated_data.py" script. All distributed code is under the GNU GPL license. For the "ExCeeD.py" and "stability.py" scripts, please consult and refer to the original sources provided above.

  16. e

    Hourly mean values of the horizontal component at the geomagnetic...

    • b2find.eudat.eu
    Updated Oct 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Hourly mean values of the horizontal component at the geomagnetic observatory Huancayo (HUA), 1958 to 2013 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/a946feb2-ea5a-5577-b493-f9b891d8fc2a
    Explore at:
    Dataset updated
    Oct 21, 2023
    Description

    The dataset contains hourly mean values (HMV) of the horizontal magnetic field component H as measured at the geomagnetic observatory Huancayo for 1958 to 2013. Huancayo observatory (IAGA code HUA) is operated by Instituto Geofisico del Peru. This dataset is based on and partly supersedes the data publication Matzka et al. (2017a), which is described in Matzka et al. (2017b). It will be superseded by another data publication (Soares et al., in preparation) that we intend to publish at GFZ Data Services as well as the World Data Centres for Geomagnetism. As already described in Matzka et al. (2017a, 2017b), the HMVs were taken from the World Data Centre Kyoto (WDC Kyoto) and data gaps (in total some 19 years from the 1960ies, 1970ies and 1980ies) were filled in by typing handwritten records of the HMV at GFZ. These handwritten records were monthly tables that were received as digital images from geomagnetic observatory Huancayo or that were received as microfilms from World Data Centre Boulder. We also produced digital images of these microfilms. The values from the WDC Kyoto are definitive values; the monthly tables presumably also contain definitive values. Corrections to HUA HMVs from WDC Kyoto: There is a known error in the time stamping of the HUA HMVs prior to 1948 (before 1948 the data was reported in local time, rather than universal time). This error is corrected in the present dataset. Also, an attempt was made to correct for a jump in the HMV time series at this time. Further corrections, made to the dataset by Matzka et al. (2017a), are mostly the correction or deletion of outliers and the correction of shifts in the data. Again, please note that a dataset based on the data provided here will be submitted to the World Data Centres for Geomagnetism at a later stage and will have some additional modifications (Soares et al., in preparation). The data file is in ASCII format and contains blank-separated first the year (YYYY), the month (MM), the day (DD) followed by the 24 HMVs of H (format HHHHH) in nanotesla (nT), starting with the HMV for 00 to 01 universal time. Geomagnetic observatories are described in e.g. Jankowski and Sucksdorf (1996), in Matzka et al., (2010) and Matzka (2016).

  17. g

    11BU RV Belgica CTD profiles data | gimi9.com

    • gimi9.com
    Updated Jun 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). 11BU RV Belgica CTD profiles data | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_bmdc-be-dataset-2940/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Description

    This datasets is a summary of the CTD profiles measured with the RV Belgica. It provides general meta-information such as the campaign code, the date of measurement and the geographical information. An important information is the profile quality flag that describes the validity of the data. A quality flag = 2 means the data is generally good although some outliers can still be present. A quality flag = 4 means the data should not be trusted. 1 meter binned data can be download on the SeaDataNet CDI portal (enter the cruise_id in the search bar) ONLY for the good quality profiles. Full acquisition frequency datasets are available on request to BMDC.

  18. Integrated Building Health Management - Dataset - NASA Open Data Portal

    • data.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Integrated Building Health Management - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/integrated-building-health-management
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Abstract: Building health management is an important part in running an efficient and cost-effective building. Many problems in a building’s system can go undetected for long periods of time, leading to expensive repairs or wasted resources. This project aims to help detect and diagnose the building‘s health with data driven methods throughout the day. Orca and IMS are two state of the art algorithms that observe an array of building health sensors and provide feedback on the overall system’s health as well as localize the problem to one, or possibly two, components. With this level of feedback the hope is to quickly identify problems and provide appropriate maintenance while reducing the number of complaints and service calls. Introduction: To prepare these technologies for the new installation, the proposed methods are being tested on a current system that behaves similarly to the future green building. Building 241 was determined to best resemble the proposed building 232 and therefore was chosen for this study. Building 241 is currently outfitted with 34 sensors that monitor the heating & cooling temperatures for the air and water systems as well as other various subsystem states. The daily sensor recordings were logged and sent to the IDU group for analysis. The period of analysis was focused from July 1st through August 10th 2009. Methodology: The two algorithms used for analysis were Orca and IMS. Both methods look for anomalies using a distanced based scoring approach. Orca has the ability to use a single data set and find outliers within that data set. This tactic was applied to each day. After scoring each time sample throughout a given day the Orca score profiles were compared by computing the correlation against all other days. Days with high overall correlations were considered normal however days with lower overall correlations were more anomalous. IMS, on the other hand, needs a normal set of data to build a model, which can be applied to a set of test data to asses how anomaly the particular data set is. The typical days identified by Orca were used as the reference/training set for IMS, while all the other days were passed through IMS resulting in an anomaly score profile for each day. The mean of the IMS score profile was then calculated for each day to produce a summary IMS score. These summary scores were ranked and the top outliers were identified (see Figure 1). Once the anomalies were identified the contributing parameters were then ranked by the algorithm. Analysis: The contributing parameters identified by IMS were localized to the return air temperature duct system. -7/03/09 (Figure 2 & 3) AHU-1 Return Air Temperature (RAT) Calculated Average Return Air Temperature -7/19/09 (Figure 3 & 4) AHU-2 Return Air Temperature (RAT) Calculated Average Return Air Temperature IMS identified significantly higher temperatures compared to other days during the month of July and August. Conclusion: The proposed algorithms Orca and IMS have shown that they were able to pick up significant anomalies in the building system as well as diagnose the anomaly by identifying the sensor values that were anomalous. In the future these methods can be used on live streaming data and produce a real time anomaly score to help building maintenance with detection and diagnosis of problems.

  19. v

    Integrated Building Health Management

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • catalog.data.gov
    • +1more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Integrated Building Health Management [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/integrated-building-health-management
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    Abstract: Building health management is an important part in running an efficient and cost-effective building. Many problems in a building’s system can go undetected for long periods of time, leading to expensive repairs or wasted resources. This project aims to help detect and diagnose the building‘s health with data driven methods throughout the day. Orca and IMS are two state of the art algorithms that observe an array of building health sensors and provide feedback on the overall system’s health as well as localize the problem to one, or possibly two, components. With this level of feedback the hope is to quickly identify problems and provide appropriate maintenance while reducing the number of complaints and service calls. Introduction: To prepare these technologies for the new installation, the proposed methods are being tested on a current system that behaves similarly to the future green building. Building 241 was determined to best resemble the proposed building 232 and therefore was chosen for this study. Building 241 is currently outfitted with 34 sensors that monitor the heating & cooling temperatures for the air and water systems as well as other various subsystem states. The daily sensor recordings were logged and sent to the IDU group for analysis. The period of analysis was focused from July 1st through August 10th 2009. Methodology: The two algorithms used for analysis were Orca and IMS. Both methods look for anomalies using a distanced based scoring approach. Orca has the ability to use a single data set and find outliers within that data set. This tactic was applied to each day. After scoring each time sample throughout a given day the Orca score profiles were compared by computing the correlation against all other days. Days with high overall correlations were considered normal however days with lower overall correlations were more anomalous. IMS, on the other hand, needs a normal set of data to build a model, which can be applied to a set of test data to asses how anomaly the particular data set is. The typical days identified by Orca were used as the reference/training set for IMS, while all the other days were passed through IMS resulting in an anomaly score profile for each day. The mean of the IMS score profile was then calculated for each day to produce a summary IMS score. These summary scores were ranked and the top outliers were identified (see Figure 1). Once the anomalies were identified the contributing parameters were then ranked by the algorithm. Analysis: The contributing parameters identified by IMS were localized to the return air temperature duct system. -7/03/09 (Figure 2 & 3) AHU-1 Return Air Temperature (RAT) Calculated Average Return Air Temperature -7/19/09 (Figure 3 & 4) AHU-2 Return Air Temperature (RAT) Calculated Average Return Air Temperature IMS identified significantly higher temperatures compared to other days during the month of July and August. Conclusion: The proposed algorithms Orca and IMS have shown that they were able to pick up significant anomalies in the building system as well as diagnose the anomaly by identifying the sensor values that were anomalous. In the future these methods can be used on live streaming data and produce a real time anomaly score to help building maintenance with detection and diagnosis of problems.

  20. u

    Results and analysis using the Lean Six-Sigma define, measure, analyze,...

    • researchdata.up.ac.za
    docx
    Updated Mar 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Modiehi Mophethe (2024). Results and analysis using the Lean Six-Sigma define, measure, analyze, improve, and control (DMAIC) Framework [Dataset]. http://doi.org/10.25403/UPresearchdata.25370374.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Mar 12, 2024
    Dataset provided by
    University of Pretoria
    Authors
    Modiehi Mophethe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This section presents a discussion of the research data. The data was received as secondary data however, it was originally collected using the time study techniques. Data validation is a crucial step in the data analysis process to ensure that the data is accurate, complete, and reliable. Descriptive statistics was used to validate the data. The mean, mode, standard deviation, variance and range determined provides a summary of the data distribution and assists in identifying outliers or unusual patterns. The data presented in the dataset show the measures of central tendency which includes the mean, median and the mode. The mean signifies the average value of each of the factors presented in the tables. This is the balance point of the dataset, the typical value and behaviour of the dataset. The median is the middle value of the dataset for each of the factors presented. This is the point where the dataset is divided into two parts, half of the values lie below this value and the other half lie above this value. This is important for skewed distributions. The mode shows the most common value in the dataset. It was used to describe the most typical observation. These values are important as they describe the central value around which the data is distributed. The mean, mode and median give an indication of a skewed distribution as they are not similar nor are they close to one another. In the dataset, the results and discussion of the results is also presented. This section focuses on the customisation of the DMAIC (Define, Measure, Analyse, Improve, Control) framework to address the specific concerns outlined in the problem statement. To gain a comprehensive understanding of the current process, value stream mapping was employed, which is further enhanced by measuring the factors that contribute to inefficiencies. These factors are then analysed and ranked based on their impact, utilising factor analysis. To mitigate the impact of the most influential factor on project inefficiencies, a solution is proposed using the EOQ (Economic Order Quantity) model. The implementation of the 'CiteOps' software facilitates improved scheduling, monitoring, and task delegation in the construction project through digitalisation. Furthermore, project progress and efficiency are monitored remotely and in real time. In summary, the DMAIC framework was tailored to suit the requirements of the specific project, incorporating techniques from inventory management, project management, and statistics to effectively minimise inefficiencies within the construction project.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
David R. Mullineaux; Gareth Irwin (2023). Error and anomaly detection for intra-participant time-series data [Dataset]. http://doi.org/10.6084/m9.figshare.5189002

Data from: Error and anomaly detection for intra-participant time-series data

Related Article
Explore at:
xlsxAvailable download formats
Dataset updated
Jun 1, 2023
Dataset provided by
Taylor & Francis
Authors
David R. Mullineaux; Gareth Irwin
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a ‘moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method for detecting trials with outliers in intra-participant time-series data. Outliers were detected through two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers assessed to justify whether to retain or remove those cycles. The method is effective in identifying trials with outliers in intra-participant time series data.

Search
Clear search
Close search
Google apps
Main menu