100+ datasets found
  1. Clickstream Data for Online Shopping

    • kaggle.com
    Updated Apr 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bojan Tunguz (2021). Clickstream Data for Online Shopping [Dataset]. https://www.kaggle.com/tunguz/clickstream-data-for-online-shopping/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 13, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bojan Tunguz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Source:

    Mariusz Šapczyński, Cracow University of Economics, Poland, lapczynm '@' uek.krakow.pl Sylwester Białowąs, Poznan University of Economics and Business, Poland, sylwester.bialowas '@' ue.poznan.pl

    Data Set Information:

    The dataset contains information on clickstream from online store offering clothing for pregnant women. Data are from five months of 2008 and include, among others, product category, location of the photo on the page, country of origin of the IP address and product price in US dollars.

    Attribute Information:

    The dataset contains 14 variables described in a separate file (See 'Data set description')

    Relevant Papers:

    N/A

    Citation Request:

    If you use this dataset, please cite:

    Šapczyński M., Białowąs S. (2013) Discovering Patterns of Users' Behaviour in an E-shop - Comparison of Consumer Buying Behaviours in Poland and Other European Countries, “Studia Ekonomiczne†, nr 151, “La société de l'information : perspective européenne et globale : les usages et les risques d'Internet pour les citoyens et les consommateurs†, p. 144-153

    Data description ìe-shop clothing 2008î

    Variables:

    1. YEAR (2008)

    ========================================================

    2. MONTH -> from April (4) to August (8)

    ========================================================

    3. DAY -> day number of the month

    ========================================================

    4. ORDER -> sequence of clicks during one session

    ========================================================

    5. COUNTRY -> variable indicating the country of origin of the IP address with the

    following categories:

    1-Australia 2-Austria 3-Belgium 4-British Virgin Islands 5-Cayman Islands 6-Christmas Island 7-Croatia 8-Cyprus 9-Czech Republic 10-Denmark 11-Estonia 12-unidentified 13-Faroe Islands 14-Finland 15-France 16-Germany 17-Greece 18-Hungary 19-Iceland 20-India 21-Ireland 22-Italy 23-Latvia 24-Lithuania 25-Luxembourg 26-Mexico 27-Netherlands 28-Norway 29-Poland 30-Portugal 31-Romania 32-Russia 33-San Marino 34-Slovakia 35-Slovenia 36-Spain 37-Sweden 38-Switzerland 39-Ukraine 40-United Arab Emirates 41-United Kingdom 42-USA 43-biz (.biz) 44-com (.com) 45-int (.int) 46-net (.net) 47-org (*.org)

    ========================================================

    6. SESSION ID -> variable indicating session id (short record)

    ========================================================

    7. PAGE 1 (MAIN CATEGORY) -> concerns the main product category:

    1-trousers 2-skirts 3-blouses 4-sale

    ========================================================

    8. PAGE 2 (CLOTHING MODEL) -> contains information about the code for each product

    (217 products)

    ========================================================

    9. COLOUR -> colour of product

    1-beige 2-black 3-blue 4-brown 5-burgundy 6-gray 7-green 8-navy blue 9-of many colors 10-olive 11-pink 12-red 13-violet 14-white

    ========================================================

    10. LOCATION -> photo location on the page, the screen has been divided into six parts:

    1-top left 2-top in the middle 3-top right 4-bottom left 5-bottom in the middle 6-bottom right

    ========================================================

    11. MODEL PHOTOGRAPHY -> variable with two categories:

    1-en face 2-profile

    ========================================================

    12. PRICE -> price in US dollars

    ========================================================

    13. PRICE 2 -> variable informing whether the price of a particular product is higher than

    the average price for the entire product category

    1-yes 2-no

    ========================================================

    14. PAGE -> page number within the e-store website (from 1 to 5)

    ++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  2. Linear Regression E-commerce Dataset

    • kaggle.com
    zip
    Updated Sep 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurabh Kolawale (2019). Linear Regression E-commerce Dataset [Dataset]. https://www.kaggle.com/datasets/kolawale/focusing-on-mobile-app-or-website
    Explore at:
    zip(44169 bytes)Available download formats
    Dataset updated
    Sep 16, 2019
    Authors
    Saurabh Kolawale
    Description

    This dataset is having data of customers who buys clothes online. The store offers in-store style and clothing advice sessions. Customers come in to the store, have sessions/meetings with a personal stylist, then they can go home and order either on a mobile app or website for the clothes they want.

    The company is trying to decide whether to focus their efforts on their mobile app experience or their website.

  3. Consumer opinions on conversational AI for customer service 2024

    • statista.com
    • tokrwards.com
    • +1more
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Consumer opinions on conversational AI for customer service 2024 [Dataset]. https://www.statista.com/topics/871/online-shopping/
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    One of the reasons behind AI-powered customer service is the preference for conversational AI over phone calls. In 2024, 82 percent of consumers stated they would use a chatbot instead of waiting for a customer representative to take their call. An outstanding 96 percent of surveyed shoppers believed that more companies should opt for chatbots over traditional customer support services.

  4. E-Commerce Sales Dataset

    • kaggle.com
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). E-Commerce Sales Dataset [Dataset]. https://www.kaggle.com/datasets/thedevastator/unlock-profits-with-e-commerce-sales-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    Description

    E-Commerce Sales Dataset

    Analyzing and Maximizing Online Business Performance

    By ANil [source]

    About this dataset

    This dataset provides an in-depth look at the profitability of e-commerce sales. It contains data on a variety of sales channels, including Shiprocket and INCREFF, as well as financial information on related expenses and profits. The columns contain data such as SKU codes, design numbers, stock levels, product categories, sizes and colors. In addition to this we have included the MRPs across multiple stores like Ajio MRP , Amazon MRP , Amazon FBA MRP , Flipkart MRP , Limeroad MRP Myntra MRP and PaytmMRP along with other key parameters like amount paid by customer for the purchase , rate per piece for every individual transaction Also we have added transactional parameters like Date of sale months category fulfilledby B2b Status Qty Currency Gross amt . This is a must-have dataset for anyone trying to uncover the profitability of e-commerce sales in today's marketplace

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides a comprehensive overview of e-commerce sales data from different channels covering a variety of products. Using this dataset, retailers and digital marketers can measure the performance of their campaigns more accurately and efficiently.

    The following steps help users make the most out of this dataset: - Analyze the general sales trends by examining info such as month, category, currency, stock level, and customer for each sale. This will give you an idea about how your e-commerce business is performing in each channel.
    - Review the Shiprocket and INCREF data to compare and analyze profitability via different fulfilment methods. This comparison would enable you to make better decisions towards maximizing profit while minimizing costs associated with each method’s referral fees and fulfillment rates.
    - Compare prices between various channels such as Amazon FBA MRP, Myntra MRP, Ajio MRP etc using the corresponding columns for each store (Amazon MRP etc). You can judge which stores are offering more profitable margins without compromising on quality by analyzing these pricing points in combination with other information related to product sales (TP1/TP2 - cost per piece).
    - Look at customer specific data such as TP 1/TP 2 combination wise Gross Amount or Rate info in terms price per piece or total gross amount generated by any SKU dispersed over multiple customers with relevant dates associated to track individual item performance relative to others within its category over time periods shortlisted/filtered appropriately.. Have an eye on items commonly utilized against offers or promotional discounts offered hence crafting strategies towards inventory optimization leading up-selling operations.?
    - Finally Use Overall ‘Stock’ details along all the P & L Data including Yearly Expenses_IIGF information record for takeaways which might be aimed towards essential cost cutting measures like switching amongst delivery options carefully chosen out of Shiprocket & INCREFF leadings away from manual inspections catering savings under support personnel outsourcing structures.?

    By employing a comprehensive understanding on how our internal subsidiaries perform globally unless attached respective audits may provide us remarkably lower operational costs servicing confidence; costing far lesser than being incurred taking into account entire pallet shipments tracking sheets representing current level supply chains efficiencies achieved internally., then one may finally scale profits exponentially increases cut down unseen losses followed up introducing newer marketing campaigns necessarily tailored according playing around multiple goods based spectrums due powerful backing suitable transportation boundaries set carefully

    Research Ideas

    • Analysing the difference in profitability between sales made through Shiprocket and INCREFF. This data can be used to see where the biggest profit margins lie, and strategize accordingly.
    • Examining the Complete Cost structure of a product with all its components and their contribution towards revenue or profitability, i.e., TP 1 & 2, MRP Old & Final MRP Old together with Platform based MRP - Amazon, Myntra and Paytm etc., Currency based Profit Margin etc.
    • Building a predictive model using Machine Learning by leveraging historical data to predict future sales volume and profits for e-commerce products across multiple categories/devices/platforms such as Amazon, Flipkart, Myntra etc as well providing m...
  5. Ecommerce Market Data | South-east Asia E-commerce Contacts | 170M Profiles...

    • datarade.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai, Ecommerce Market Data | South-east Asia E-commerce Contacts | 170M Profiles | Verified Accuracy | Best Price Guarantee [Dataset]. https://datarade.ai/data-products/ecommerce-market-data-south-east-asia-e-commerce-contacts-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset provided by
    Area covered
    Iraq, Yemen, Sri Lanka, Syrian Arab Republic, Timor-Leste, Philippines, Nepal, Israel, Lebanon, Qatar, South East Asia
    Description

    Success.ai’s Ecommerce Market Data for South-east Asia E-commerce Contacts provides a robust and accurate dataset tailored for businesses and organizations looking to connect with professionals in the fast-growing e-commerce industry across South-east Asia. Covering roles such as e-commerce managers, digital strategists, logistics experts, and online marketplace leaders, this dataset offers verified contact details, professional insights, and actionable market data.

    With access to over 170 million verified profiles globally, Success.ai ensures your outreach, marketing, and research strategies are powered by accurate, continuously updated, and AI-validated data. Backed by our Best Price Guarantee, this solution empowers you to excel in one of the world’s most dynamic e-commerce regions.

    Why Choose Success.ai’s Ecommerce Market Data?

    1. Verified Contact Data for Precision Outreach

      • Access verified work emails, phone numbers, and LinkedIn profiles of e-commerce professionals across South-east Asia.
      • AI-driven validation ensures 99% accuracy, reducing communication inefficiencies and enhancing engagement rates.
    2. Comprehensive Coverage of South-east Asia’s E-commerce Market

      • Includes professionals from key e-commerce hubs such as Singapore, Indonesia, Thailand, Vietnam, Malaysia, and the Philippines.
      • Gain insights into regional consumer trends, logistics challenges, and online marketplace dynamics.
    3. Continuously Updated Datasets

      • Real-time updates capture changes in professional roles, company expansions, and market conditions.
      • Stay aligned with industry trends and emerging opportunities in South-east Asia’s e-commerce sector.
    4. Ethical and Compliant

      • Fully adheres to GDPR, CCPA, and other global data privacy regulations, ensuring responsible and lawful data usage.

    Data Highlights:

    • 170M+ Verified Global Profiles: Engage with e-commerce professionals and decision-makers across South-east Asia.
    • Verified Contact Details: Gain work emails, phone numbers, and LinkedIn profiles for precision targeting.
    • Regional Insights: Understand key trends in e-commerce, logistics, and consumer preferences in South-east Asia.
    • Leadership Insights: Connect with online marketplace leaders, logistics managers, and digital marketing professionals driving innovation in the sector.

    Key Features of the Dataset:

    1. Comprehensive Professional Profiles in E-commerce

      • Identify and connect with professionals managing e-commerce platforms, online marketplaces, and logistics operations.
      • Target individuals responsible for digital marketing, supply chain management, and e-commerce strategies.
    2. Advanced Filters for Precision Campaigns

      • Filter professionals by industry focus (apparel, electronics, food delivery), geographic location, or job function.
      • Tailor campaigns to align with specific business goals, such as logistics optimization, consumer engagement, or market entry.
    3. Regional and Market-specific Insights

      • Leverage data on e-commerce trends, regional consumer behaviors, and logistics challenges unique to South-east Asia.
      • Refine marketing strategies and business plans based on actionable insights from the region.
    4. AI-Driven Enrichment

      • Profiles enriched with actionable data enable personalized messaging, highlight unique value propositions, and improve engagement outcomes.

    Strategic Use Cases:

    1. Marketing Campaigns and Digital Outreach

      • Promote e-commerce solutions, logistics services, or online marketing tools to professionals in South-east Asia’s e-commerce industry.
      • Use verified contact data for multi-channel outreach, including email, phone, and digital campaigns.
    2. Market Research and Competitive Analysis

      • Analyze e-commerce trends and consumer preferences across South-east Asia to refine product offerings and marketing strategies.
      • Benchmark against competitors to identify growth opportunities and high-demand solutions.
    3. Partnership Development and Vendor Collaboration

      • Build relationships with e-commerce platforms, logistics providers, and digital marketing agencies exploring strategic partnerships.
      • Foster collaborations that enhance consumer experiences, improve delivery efficiency, or expand market reach.
    4. Recruitment and Talent Acquisition

      • Target HR professionals and hiring managers in the e-commerce industry seeking candidates for logistics, digital marketing, and platform management roles.
      • Provide workforce optimization platforms or training solutions tailored to the sector.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality e-commerce market data at competitive prices, ensuring strong ROI for your marketing, sales, and business development initiatives.
    2. Seamless Integration

      • Integrate verified e-commerce data into CRM systems, analytics ...
  6. d

    Ecommerce Data | Store Location Data | Global Coverage | 60M+ Contacts |...

    • datarade.ai
    Updated Jan 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Exellius Systems (2024). Ecommerce Data | Store Location Data | Global Coverage | 60M+ Contacts | (Verified E-mail, Direct Dails)| Decision Makers Contacts| 20+ Attributes [Dataset]. https://datarade.ai/data-products/ecommerce-data-ecommerce-store-data-global-coverage-200-exellius-systems
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 24, 2024
    Dataset authored and provided by
    Exellius Systems
    Area covered
    Spain, Seychelles, Gabon, Congo (Democratic Republic of the), Lithuania, Jersey, Heard Island and McDonald Islands, Saint Vincent and the Grenadines, Namibia, Iran (Islamic Republic of)
    Description

    Revolutionize Customer Engagement with Our Comprehensive Ecommerce Data

    Our Ecommerce Data is designed to elevate your customer engagement strategies, providing you with unparalleled insights and precision targeting capabilities. With over 61 million global contacts, this dataset goes beyond conventional data, offering a unique blend of shopping cart links, business emails, phone numbers, and LinkedIn profiles. This comprehensive approach ensures that your marketing strategies are not just effective but also highly personalized, enabling you to connect with your audience on a deeper level.

    What Makes Our Ecommerce Data Stand Out?

    • Unique Features for Enhanced Targeting
      Our Ecommerce Data is distinguished by its depth and precision. Unlike many other datasets, it includes shopping cart links—a rare and valuable feature that provides you with direct insights into consumer behavior and purchasing intent. This information allows you to tailor your marketing efforts with unprecedented accuracy. Additionally, the integration of business emails, phone numbers, and LinkedIn profiles adds multiple layers to traditional contact data, enriching your understanding of clients and enabling more personalized engagement.

    • Robust and Reliable Data Sourcing
      We pride ourselves on our dual-sourcing strategy that ensures the highest levels of data accuracy and relevance:

      • Real-Time Information from 10 Active Publication Sites: Our databases are continuously updated with the latest information, sourced from ten active publication sites that provide real-time data.
      • Dedicated Contact Discovery Team: Complementing our automated sources, our dedicated Contact Discovery Team conducts thorough research and investigations, ensuring that every piece of data is accurate and reliable. This two-pronged approach guarantees that our Ecommerce Data is both up-to-date and relevant, providing you with a solid foundation for your business strategies.

      Primary Use Cases Across Industries

    Our Ecommerce Data is versatile and can be leveraged across various industries for multiple applications: - Precision Targeting in Marketing: Create personalized marketing campaigns based on detailed shopping cart activities, ensuring that your outreach resonates with individual customer preferences. - Sales Enrichment: Sales teams can benefit from enriched client profiles that include comprehensive contact information, enabling them to connect with key decision-makers more effectively. - Market Research and Analytics: Research and analytics departments can use this data for in-depth market studies and trend analyses, gaining valuable insights into consumer behavior and market dynamics.

    Global Coverage for Comprehensive Engagement

    Our Ecommerce Data spans across the globe, providing you with extensive reach and the ability to engage with customers in diverse regions: - North America: United States, Canada, Mexico - Europe: United Kingdom, Germany, France, Italy, Spain, Netherlands, Sweden, and more - Asia: China, Japan, India, South Korea, Singapore, Malaysia, and more - South America: Brazil, Argentina, Chile, Colombia, and more - Africa: South Africa, Nigeria, Kenya, Egypt, and more - Australia and Oceania: Australia, New Zealand - Middle East: United Arab Emirates, Saudi Arabia, Israel, Qatar, and more

    Comprehensive Employee and Revenue Size Information

    Our dataset also includes detailed information on: - Employee Size: Whether you’re targeting small businesses or large corporations, our data covers all employee sizes, from startups to global enterprises. - Revenue Size: Gain insights into companies across various revenue brackets, enabling you to segment the market more effectively and target your efforts where they will have the most impact.

    Seamless Integration into Broader Data Offerings

    Our Ecommerce Data is not just a standalone product; it is a critical piece of our broader data ecosystem. It seamlessly integrates with our comprehensive suite of business and consumer datasets, offering you a holistic approach to data-driven decision-making: - Tailored Packages: Choose customized data packages that meet your specific business needs, combining Ecommerce Data with other relevant datasets for a complete view of your market. - Holistic Insights: Whether you are looking for industry-specific details or a broader market overview, our integrated data solutions provide you with the insights necessary to stay ahead of the competition and make informed business decisions.

    Elevate Your Business Decisions with Our Ecommerce Data

    In essence, our Ecommerce Data is more than just a collection of contacts—it’s a strategic tool designed to give you a competitive edge in understanding and engaging your target audience. By leveraging the power of this comprehensive dataset, you can elevate your business decisions, enhance customer interactions, and navigate the digital landscape with confidence and insight.

  7. d

    Consumer Behavior Data | US | Online Consumer Behavior Database

    • datarade.ai
    Updated Nov 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VisitIQ™ (2024). Consumer Behavior Data | US | Online Consumer Behavior Database [Dataset]. https://datarade.ai/data-products/consumer-behavior-data-visitiq-us-online-consumer-behavi-visitiq
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Nov 15, 2024
    Dataset authored and provided by
    VisitIQ™
    Area covered
    United States of America
    Description

    In today’s rapidly evolving digital landscape, understanding consumer behavior has never been more crucial for businesses seeking to thrive. Our Consumer Behavior Data database serves as an essential tool, offering a wealth of comprehensive insights into the current trends and preferences of online consumers across the United States. This robust database is meticulously designed to provide a detailed and nuanced view of consumer activities, preferences, and attitudes, making it an invaluable asset for marketers, researchers, and business strategists.

    Extensive Coverage of Consumer Data Our database is packed with thousands of indexes that cover a broad spectrum of consumer-related information. This extensive coverage ensures that users can delve deeply into various facets of consumer behavior, gaining a holistic understanding of what drives online purchasing decisions and how consumers interact with products and brands. The database includes:

    Product Consumption: Detailed records of what products consumers are buying, how frequently they purchase these items, and the spending patterns associated with these products. This data allows businesses to identify popular products, emerging trends, and seasonal variations in consumer purchasing behavior. Lifestyle Preferences: Insights into the lifestyles of consumers, including their hobbies, interests, and activities. Understanding lifestyle preferences helps businesses tailor their marketing strategies to resonate with the values and passions of their target audiences. For example, a company selling fitness equipment can use this data to identify consumers who prioritize health and wellness.

    Product Ownership: Information on the types of products that consumers already own. This data is crucial for businesses looking to introduce complementary products or upgrades. For instance, a tech company could use product ownership data to target consumers who already own older versions of their gadgets, offering them incentives to upgrade to the latest models.

    Attitudes and Beliefs: Insights into consumer attitudes, opinions, and beliefs about various products, brands, and market trends. This qualitative data is vital for understanding the emotional and psychological drivers behind consumer behavior. It helps businesses craft compelling narratives and brand messages that align with the values and beliefs of their target audience.

  8. Consumers that would shop mostly online vs. offline worldwide 2023, by...

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Consumers that would shop mostly online vs. offline worldwide 2023, by country [Dataset]. https://www.statista.com/statistics/1384193/mostly-online-vs-offline-shopping-worldwide/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2023 - Mar 2023
    Area covered
    Worldwide
    Description

    As of early 2023, approximately ** percent of consumers in the United States said they would prefer to shop mostly online rather than in-store, making it the country with highest online shopping preference. In contrast, more shoppers preferred visiting physical stores in countries such as Austria, Finland, and New Zealand.

  9. E-Tailing Customer Survey in India

    • kaggle.com
    Updated Jun 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pushpal Tayal (2020). E-Tailing Customer Survey in India [Dataset]. https://www.kaggle.com/pushpaltayal/etailing-customer-survey-in-india/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 5, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Pushpal Tayal
    Area covered
    India
    Description

    This dataset contains survey responses of 430 online shopping customers collected through google forms.

    Columns: 1. Name 2. E-mail ID 3. Age 4. Gender 5. City (from which you do online shopping) 6. State
    7. Highest Education received 8. Profession
    9. Annual Income
    10. Which among the following E-Commerce Website have you ever opened?
    11. Which shopping platforms did you shop from, in the last one year?
    12. Which online shopping website do you use the most? Please specify the reason why you didn’t stick to one particular platform. 13. How many online shopping orders do you place annually?
    14. What is your “Average Cart Value”?
    15. What is the maximum cart value you ever shopped?
    16. Thinking of the last time you put items in your shopping cart but did not finish the online purchase, which of the following describes why you didn’t complete the transaction? 17. Which device do you use for Online Shopping?
    18. Which of the following value-addition services do you like the most on online shopping platform?
    19. Which factors enhance your convenience for online shopping? Why do you prefer Offline shopping over Online Shopping? 20. Will you be more attracted to the platform with content in the native language? 21. Which payment option do you prefer the most while making an online purchase?
    22. Do you prefer pre-online payment if there is an extra discount on it?
    23. Will you buy a subscription service offered by an online shopping platform that includes one-day delivery, exclusive deals, and offers, video streaming?

    Tasks: The following tasks can be achieved on the dataset: 1. Customer profiling of Online shoppers. What they like and what they don't? 2. Prescriptive analysis to improve online shopping experience 3. Machine Learning model to analyse factors that most influence online shoppers.

    Happy Analysing:)))

  10. Amazon Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Mar 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). Amazon Dataset [Dataset]. https://brightdata.com/products/datasets/amazon
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Mar 31, 2022
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Gain extensive insights with our Amazon datasets, encompassing detailed product information including pricing, reviews, ratings, brand names, product categories, sellers, ASINs, images, and much more. Ideal for market researchers, data analysts, and eCommerce professionals looking to excel in the competitive online marketplace. Over 425M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:

    Title Asin Main Image Brand Name Description Availability Subcategory Categories Parent Asin Type Product Type Name Model Number Manufacturer Color Size Date First Available Released Model Year Item Model Number Part Number Price Total Reviews Total Ratings Average Rating Features Best Sellers Rank Subcategory Buybox Buybox Seller Id Buybox Is Amazon Images Product URL And more

  11. Most popular categories for online purchases in India 2025

    • statista.com
    • tokrwards.com
    Updated Aug 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most popular categories for online purchases in India 2025 [Dataset]. https://www.statista.com/forecasts/823376/most-popular-categories-for-online-purchases-in-india
    Explore at:
    Dataset updated
    Aug 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2024 - Jun 2025
    Area covered
    India
    Description

    The variety of products that can be purchased online is continuously growing. Among Indian consumers the two most popular categories for online purchases are ******** and *****. ** percent and ** percent of consumers respectively chose these answers in our representative online survey. The survey was conducted online among 5,463 respondents in India, in 2025. Looking to gain valuable insights about customers of online shops across the globe? Check out our reports about consumers of online shops worldwide. These reports offer the readers a comprehensive overview of customers of eCommerce brands: who they are; what they like; what they think; and how to reach them.

  12. E-Shop Clothing Dataset

    • kaggle.com
    Updated Aug 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aditya Wisnugraha S (2021). E-Shop Clothing Dataset [Dataset]. https://www.kaggle.com/datasets/adityawisnugrahas/eshop-clothing-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 1, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aditya Wisnugraha S
    Description

    Data description “e-shop clothing 2008”

    Variables:

    1. YEAR (2008)

    ========================================================

    1. MONTH -> from April (4) to August (8)

    ========================================================

    1. DAY -> day number of the month

    ========================================================

    1. ORDER -> sequence of clicks during one session

    ========================================================

    1. COUNTRY -> variable indicating the country of origin of the IP address with the following categories:

    1-Australia 2-Austria 3-Belgium 4-British Virgin Islands 5-Cayman Islands 6-Christmas Island 7-Croatia 8-Cyprus 9-Czech Republic 10-Denmark 11-Estonia 12-unidentified 13-Faroe Islands 14-Finland 15-France 16-Germany 17-Greece 18-Hungary 19-Iceland 20-India 21-Ireland 22-Italy 23-Latvia 24-Lithuania 25-Luxembourg 26-Mexico 27-Netherlands 28-Norway 29-Poland 30-Portugal 31-Romania 32-Russia 33-San Marino 34-Slovakia 35-Slovenia 36-Spain 37-Sweden 38-Switzerland 39-Ukraine 40-United Arab Emirates 41-United Kingdom 42-USA 43-biz (.biz) 44-com (.com) 45-int (.int) 46-net (.net) 47-org (*.org)

    ========================================================

    1. SESSION ID -> variable indicating session id (short record)

    ========================================================

    1. PAGE 1 (MAIN CATEGORY) -> concerns the main product category: 1-trousers 2-skirts 3-blouses 4-sale

    ========================================================

    1. PAGE 2 (CLOTHING MODEL) -> contains information about the code for each product (217 products)

    ========================================================

    1. COLOUR -> colour of product

    1-beige 2-black 3-blue 4-brown 5-burgundy 6-gray 7-green 8-navy blue 9-of many colors 10-olive 11-pink 12-red 13-violet 14-white

    ========================================================

    1. LOCATION -> photo location on the page, the screen has been divided into six parts:

    1-top left 2-top in the middle 3-top right 4-bottom left 5-bottom in the middle 6-bottom right

    ========================================================

    1. MODEL PHOTOGRAPHY -> variable with two categories:

    1-en face 2-profile

    ========================================================

    1. PRICE -> price in US dollars

    ========================================================

    1. PRICE 2 -> variable informing whether the price of a particular product is higher than the average price for the entire product category

    1-yes 2-no

    ========================================================

    1. PAGE -> page number within the e-store website (from 1 to 5)

    ++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    I want to know how to solve this data regarding any problem (clustering, regression, classification, EDA)

    Source: https://archive.ics.uci.edu/ml/datasets/clickstream+data+for+online+shopping

  13. Company Datasets for Business Profiling

    • datarade.ai
    Updated Feb 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oxylabs (2017). Company Datasets for Business Profiling [Dataset]. https://datarade.ai/data-products/company-datasets-for-business-profiling-oxylabs
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Feb 23, 2017
    Dataset authored and provided by
    Oxylabs
    Area covered
    Isle of Man, Andorra, Nepal, Moldova (Republic of), Taiwan, Tunisia, Northern Mariana Islands, Canada, British Indian Ocean Territory, Bangladesh
    Description

    Company Datasets for valuable business insights!

    Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.

    These datasets are sourced from top industry providers, ensuring you have access to high-quality information:

    • Owler: Gain valuable business insights and competitive intelligence. -AngelList: Receive fresh startup data transformed into actionable insights. -CrunchBase: Access clean, parsed, and ready-to-use business data from private and public companies. -Craft.co: Make data-informed business decisions with Craft.co's company datasets. -Product Hunt: Harness the Product Hunt dataset, a leader in curating the best new products.

    We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:

    • Company name;
    • Size;
    • Founding date;
    • Location;
    • Industry;
    • Revenue;
    • Employee count;
    • Competitors.

    You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.

    Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.

    With Oxylabs Datasets, you can count on:

    • Fresh and accurate data collected and parsed by our expert web scraping team.
    • Time and resource savings, allowing you to focus on data analysis and achieving your business goals.
    • A customized approach tailored to your specific business needs.
    • Legal compliance in line with GDPR and CCPA standards, thanks to our membership in the Ethical Web Data Collection Initiative.

    Pricing Options:

    Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.

    Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.

    Experience a seamless journey with Oxylabs:

    • Understanding your data needs: We work closely to understand your business nature and daily operations, defining your unique data requirements.
    • Developing a customized solution: Our experts create a custom framework to extract public data using our in-house web scraping infrastructure.
    • Delivering data sample: We provide a sample for your feedback on data quality and the entire delivery process.
    • Continuous data delivery: We continuously collect public data and deliver custom datasets per the agreed frequency.

    Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!

  14. D

    Exhibit of Datasets

    • ssh.datastations.nl
    pdf
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    P.K. Doorn; L. Breure; P.K. Doorn; L. Breure (2024). Exhibit of Datasets [Dataset]. http://doi.org/10.17026/SS/TLTMIR
    Explore at:
    pdf(6387646), pdf(2009614), pdf(21694737), pdf(7119932), pdf(7368953), pdf(2266022), pdf(5957611), pdf(2372244), pdf(3506939), pdf(7233056), pdf(3825954), pdf(1165676), pdf(2683520), pdf(602628), pdf(1968819), pdf(12429754), pdf(1802813), pdf(8847011), pdf(8196391), pdf(559663), pdf(4024461), pdf(1992824), pdf(1541567), pdf(2404227)Available download formats
    Dataset updated
    Sep 2, 2024
    Dataset provided by
    DANS Data Station Social Sciences and Humanities
    Authors
    P.K. Doorn; L. Breure; P.K. Doorn; L. Breure
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2016 - 2020
    Dataset funded by
    Data Archiving and Networked Services
    Description

    The Exhibit of Datasets was an experimental project with the aim of providing concise introductions to research datasets in the humanities and social sciences deposited in a trusted repository and thus made accessible for the long term. The Exhibit consists of so-called 'showcases', short webpages summarizing and supplementing the corresponding data papers, published in the Research Data Journal for the Humanities and Social Sciences. The showcase is a quick introduction to such a dataset, a bit longer than an abstract, with illustrations, interactive graphs and other multimedia (if available). As a rule it also offers the option to get acquainted with the data itself, through an interactive online spreadsheet, a data sample or link to the online database of a research project. Usually, access to these datasets requires several time consuming actions, such as downloading data, installing the appropriate software and correctly uploading the data into these programs. This makes it difficult for interested parties to quickly assess the possibilities for reuse in other projects. The Exhibit aimed to help visitors of the website to get the right information at a glance by: - Attracting attention to (recently) acquired deposits: showing why data are interesting. - Providing a concise overview of the dataset's scope and research background; more details are to be found, for example, in the associated data paper in the Research Data Journal (RDJ). - Bringing together references to the location of the dataset and to more detailed information elsewhere, such as the project website of the data producers. - Allowing visitors to explore (a sample of) the data without downloading and installing associated software at first (see below). - Publishing related multimedia content, such as videos, animated maps, slideshows etc., which are currently difficult to include in online journals as RDJ. - Making it easier to review the dataset. The Exhibit would also have been the right place to publish these reviews in the same way as a webshop publishes consumer reviews of a product, but this could not yet be achieved within the limited duration of the project. Note (1) The text of the showcase is a summary of the corresponding data paper in RDJ, and as such a compilation made by the Exhibit editor. In some cases a section 'Quick start in Reusing Data' is added, whose text is written entirely by the editor. (2) Various hyperlinks such as those to pages within the Exhibit website will no longer work. The interactive Zoho spreadsheets are also no longer available because this facility has been discontinued.

  15. LinkedIn Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data, LinkedIn Datasets [Dataset]. https://brightdata.com/products/datasets/linkedin
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 17, 2021
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Unlock the full potential of LinkedIn data with our extensive dataset that combines profiles, company information, and job listings into one powerful resource for business decision-making, strategic hiring, competitive analysis, and market trend insights. This all-encompassing dataset is ideal for professionals, recruiters, analysts, and marketers aiming to enhance their strategies and operations across various business functions. Dataset Features

    Profiles: Dive into detailed public profiles featuring names, titles, positions, experience, education, skills, and more. Utilize this data for talent sourcing, lead generation, and investment signaling, with a refresh rate ensuring up to 30 million records per month. Companies: Access comprehensive company data including ID, country, industry, size, number of followers, website details, subsidiaries, and posts. Tailored subsets by industry or region provide invaluable insights for CRM enrichment, competitive intelligence, and understanding the startup ecosystem, updated monthly with up to 40 million records. Job Listings: Explore current job opportunities detailed with job titles, company names, locations, and employment specifics such as seniority levels and employment functions. This dataset includes direct application links and real-time application numbers, serving as a crucial tool for job seekers and analysts looking to understand industry trends and the job market dynamics.

    Customizable Subsets for Specific Needs Our LinkedIn dataset offers the flexibility to tailor the dataset according to your specific business requirements. Whether you need comprehensive insights across all data points or are focused on specific segments like job listings, company profiles, or individual professional details, we can customize the dataset to match your needs. This modular approach ensures that you get only the data that is most relevant to your objectives, maximizing efficiency and relevance in your strategic applications. Popular Use Cases

    Strategic Hiring and Recruiting: Track talent movement, identify growth opportunities, and enhance your recruiting efforts with targeted data. Market Analysis and Competitive Intelligence: Gain a competitive edge by analyzing company growth, industry trends, and strategic opportunities. Lead Generation and CRM Enrichment: Enrich your database with up-to-date company and professional data for targeted marketing and sales strategies. Job Market Insights and Trends: Leverage detailed job listings for a nuanced understanding of employment trends and opportunities, facilitating effective job matching and market analysis. AI-Driven Predictive Analytics: Utilize AI algorithms to analyze large datasets for predicting industry shifts, optimizing business operations, and enhancing decision-making processes based on actionable data insights.

    Whether you are mapping out competitive landscapes, sourcing new talent, or analyzing job market trends, our LinkedIn dataset provides the tools you need to succeed. Customize your access to fit specific needs, ensuring that you have the most relevant and timely data at your fingertips.

  16. TikTok global quarterly downloads 2018-2024

    • statista.com
    • es.statista.com
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department, TikTok global quarterly downloads 2018-2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    In the fourth quarter of 2024, TikTok generated around 186 million downloads from users worldwide. Initially launched in China first by ByteDance as Douyin, the short-video format was popularized by TikTok and took over the global social media environment in 2020. In the first quarter of 2020, TikTok downloads peaked at over 313.5 million worldwide, up by 62.3 percent compared to the first quarter of 2019.

                  TikTok interactions: is there a magic formula for content success?
    
                  In 2024, TikTok registered an engagement rate of approximately 4.64 percent on video content hosted on its platform. During the same examined year, the social video app recorded over 1,100 interactions on average. These interactions were primarily composed of likes, while only recording less than 20 comments per piece of content on average in 2024.
                  The platform has been actively monitoring the issue of fake interactions, as it removed around 236 million fake likes during the first quarter of 2024. Though there is no secret formula to get the maximum of these metrics, recommended video length can possibly contribute to the success of content on TikTok.
                  It was recommended that tiny TikTok accounts with up to 500 followers post videos that are around 2.6 minutes long as of the first quarter of 2024. While, the ideal video duration for huge TikTok accounts with over 50,000 followers was 7.28 minutes. The average length of TikTok videos posted by the creators in 2024 was around 43 seconds.
    
                  What’s trending on TikTok Shop?
    
                  Since its launch in September 2023, TikTok Shop has become one of the most popular online shopping platforms, offering consumers a wide variety of products. In 2023, TikTok shops featuring beauty and personal care items sold over 370 million products worldwide.
                  TikTok shops featuring womenswear and underwear, as well as food and beverages, followed with 285 and 138 million products sold, respectively. Similarly, in the United States market, health and beauty products were the most-selling items,
                  accounting for 85 percent of sales made via the TikTok Shop feature during the first month of its launch. In 2023, Indonesia was the market with the largest number of TikTok Shops, hosting over 20 percent of all TikTok Shops. Thailand and Vietnam followed with 18.29 and 17.54 percent of the total shops listed on the famous short video platform, respectively.
    
  17. Data from: Bibliographic dataset characterizing studies that use online...

    • zenodo.org
    • portalcientifico.unav.edu
    bin, csv
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joan E. Ball-Damerow; Joan E. Ball-Damerow; Laura Brenskelle; Laura Brenskelle; Narayani Barve; Narayani Barve; Raphael LaFrance; Pamela S. Soltis; Petra Sierwald; Petra Sierwald; Rüdiger Bieler; Rüdiger Bieler; Arturo Ariño; Arturo Ariño; Robert Guralnick; Robert Guralnick; Raphael LaFrance; Pamela S. Soltis (2020). Bibliographic dataset characterizing studies that use online biodiversity databases [Dataset]. http://doi.org/10.5281/zenodo.2589439
    Explore at:
    csv, binAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Joan E. Ball-Damerow; Joan E. Ball-Damerow; Laura Brenskelle; Laura Brenskelle; Narayani Barve; Narayani Barve; Raphael LaFrance; Pamela S. Soltis; Petra Sierwald; Petra Sierwald; Rüdiger Bieler; Rüdiger Bieler; Arturo Ariño; Arturo Ariño; Robert Guralnick; Robert Guralnick; Raphael LaFrance; Pamela S. Soltis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes bibliographic information for 501 papers that were published from 2010-April 2017 (time of search) and use online biodiversity databases for research purposes. Our overarching goal in this study is to determine how research uses of biodiversity data developed during a time of unprecedented growth of online data resources. We also determine uses with the highest number of citations, how online occurrence data are linked to other data types, and if/how data quality is addressed. Specifically, we address the following questions:

    1.) What primary biodiversity databases have been cited in published research, and which

    databases have been cited most often?

    2.) Is the biodiversity research community citing databases appropriately, and are

    the cited databases currently accessible online?

    3.) What are the most common uses, general taxa addressed, and data linkages, and how

    have they changed over time?

    4.) What uses have the highest impact, as measured through the mean number of citations

    per year?

    5.) Are certain uses applied more often for plants/invertebrates/vertebrates?

    6.) Are links to specific data types associated more often with particular uses?

    7.) How often are major data quality issues addressed?

    8.) What data quality issues tend to be addressed for the top uses?

    Relevant papers for this analysis include those that use online and openly accessible primary occurrence records, or those that add data to an online database. Google Scholar (GS) provides full-text indexing, which was important to identify data sources that often appear buried in the methods section of a paper. Our search was therefore restricted to GS. All authors discussed and agreed upon representative search terms, which were relatively broad to capture a variety of databases hosting primary occurrence records. The terms included: “species occurrence” database (8,800 results), “natural history collection” database (634 results), herbarium database (16,500 results), “biodiversity database” (3,350 results), “primary biodiversity data” database (483 results), “museum collection” database (4,480 results), “digital accessible information” database (10 results), and “digital accessible knowledge” database (52 results)--note that quotations are used as part of the search terms where specific phrases are needed in whole. We downloaded all records returned by each search (or the first 500 if there were more) into a Zotero reference management database. About one third of the 2500 papers in the final dataset were relevant. Three of the authors with specialized knowledge of the field characterized relevant papers using a standardized tagging protocol based on a series of key topics of interest. We developed a list of potential tags and descriptions for each topic, including: database(s) used, database accessibility, scale of study, region of study, taxa addressed, research use of data, other data types linked to species occurrence data, data quality issues addressed, authors, institutions, and funding sources. Each tagged paper was thoroughly checked by a second tagger.

    The final dataset of tagged papers allow us to quantify general areas of research made possible by the expansion of online species occurrence databases, and trends over time. Analyses of this data will be published in a separate quantitative review.

  18. eCommerce purchase history from electronics store

    • kaggle.com
    Updated Nov 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Kechinov (2020). eCommerce purchase history from electronics store [Dataset]. https://www.kaggle.com/mkechinov/ecommerce-purchase-history-from-electronics-store/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 21, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Michael Kechinov
    Description

    About

    This file contains purchase data from April 2020 to November 2020 from a large home appliances and electronics online store.

    Each row in the file represents an event. All events are related to products and users. Each event is like many-to-many relation between products and users.

    Data collected by Open CDP project. Feel free to use open source customer data platform.

    More datasets

    Checkout another datasets:

    1. https://www.kaggle.com/mkechinov/ecommerce-behavior-data-from-multi-category-store
    2. https://www.kaggle.com/mkechinov/ecommerce-purchase-history-from-electronics-store - you're reading it right now
    3. https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop
    4. https://www.kaggle.com/mkechinov/ecommerce-purchase-history-from-jewelry-store
    5. https://www.kaggle.com/mkechinov/ecommerce-events-history-in-electronics-store
    6. [NEW] https://www.kaggle.com/datasets/mkechinov/direct-messaging

    Multiple purchases per session

    A session can have multiple purchase events. It's ok, because it's a single order.

    Many thanks

    Thanks to REES46 Marketing Platform for this dataset.

    Using datasets in your works, books, education materials

    You can use this dataset for free. Just mention the source of it: link to this page and link to REES46 Marketing Platform.

  19. FCA: Consumer investments data review 2020 - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jan 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2021). FCA: Consumer investments data review 2020 - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/fca-consumer-investments-data-review-2020
    Explore at:
    Dataset updated
    Jan 18, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    A summary of the FCA's work to tackle consumer harm in the investment market, between 1 January and 31 October 2020. Most of the consumer investment market meets the goals of retail investors. But there are some areas where the market is causing real consumer harm. Some of the most serious harms the FCA sees relates to investments outside its regulatory perimeter and online scams, many based overseas. The FCA is also seeing a concerted and conscious effort to promote higher risk investments that are not appropriate for the people being targeted. Most retail investors’ needs can and should be met by more straightforward, mass-market investments. The FCA research shows that consumers, particularly the more vulnerable, are less likely to understand the risks, read the small print and don’t know what to do when things go wrong. These consumers can also often neither afford the loss nor recover from it. Preventing this consumer harm is a key focus for us. The FCA seeks to prevent dishonest firms and individuals entering the perimeter and to act against firms and individuals we authorise who cause consumers harm. The FCA's Business Plan 2020/21 sets out its aim to change this market so that consumers have access to investment products that are appropriate, they can make effective decisions and the firms it authorises operate to high standards. The FCA aims to deliver a consumer investment market that works well for the millions of people who stand to benefit from it and the businesses for which it provides essential funding. As part of this, the FCA's Call for Input (CFI) on Consumer Investments looks at areas where the consumer investment market is not working well for customers and seeks views on what changes it can make to improve protections and outcomes in this market. What products or services fall under the FCA’s remit, and to what extent, is a complex question. The FCA's Perimeter Report sets out its assessment of some of the areas where the boundary between what it regulates and what it doesn't regulate can cause acute consumer harm. Because its powers for investigation and enforcement are sometimes limited in these areas, the FCA works closely with other regulatory and law enforcement agencies who can often be better placed to take action. Like other public services, the FCA makes difficult choices about where to prioritise its efforts to reduce consumer harm. This publication – the first in a regular series – offers greater transparency about the FCA's activities. It focuses on the period between 1 January and 31 October 2020.

  20. p

    Qatar Number Dataset

    • listtodata.com
    .csv, .xls, .txt
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    List to Data (2025). Qatar Number Dataset [Dataset]. https://listtodata.com/qatar-dataset
    Explore at:
    .csv, .xls, .txtAvailable download formats
    Dataset updated
    Jul 17, 2025
    Dataset authored and provided by
    List to Data
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2025 - Dec 31, 2025
    Area covered
    Qatar, Bahrain, Belgium
    Variables measured
    phone numbers, Email Address, full name, Address, City, State, gender,age,income,ip address,
    Description

    Qatar number dataset can directly send your offers, and it will indeed promote your business at the highest level. Even more, you can use this database on any CRM platform. All of these parts working together will give you a respectable profit margin. We can provide lists based on your needs and uphold all business rules. Qatar number dataset only contains authentic data. List to Data is one of the websites that can provide you with the most reliable information, as was previously said. Therefore, it is guaranteed that you will receive nearly no bounce-back data from this source. We are here to help our clients grow their online businesses. Also, you can get a good and instant return on investment(ROI). Qatar phone data is now a basic need for businesses. Without telemarketing and SMS marketing no one can grow at this time. So, this database is heavily required at this time. From all across the world, our organization has gathered millions of phone number lists for both businesses and consumers. To launch your business in Qatar, you can acquire this dataset. Qatar phone data will come to you at an extremely low budget and will solve your marketing issue. To make it more simple you can choose your targeted database while launching your items. We also create contact directories using business area categories. List to Data is aware of updating the database, therefore if any false information was ever added, we promptly removed it. Qatar phone number list is a genuine dataset. This will provide you with the best and most increasingly effective details when you conduct internet marketing. After purchase, you can instantly download the file, which will come to you in an Excel or CSV format. If anyone wants to make a huge profit they can ignore the Qatar phone number list. In the end, Qatar phone number list is the product that you need now. You can also view the other products on our website and get more information there. Although the product is an easy-to-buy service, the price is also fixed. This contact address will indeed generate more revenue for you, and you can see your business at the top in a short amount of time.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bojan Tunguz (2021). Clickstream Data for Online Shopping [Dataset]. https://www.kaggle.com/tunguz/clickstream-data-for-online-shopping/code
Organization logo

Clickstream Data for Online Shopping

clickstream data for online shopping Data Set

Explore at:
18 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Apr 13, 2021
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Bojan Tunguz
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Source:

Mariusz Šapczyński, Cracow University of Economics, Poland, lapczynm '@' uek.krakow.pl Sylwester Białowąs, Poznan University of Economics and Business, Poland, sylwester.bialowas '@' ue.poznan.pl

Data Set Information:

The dataset contains information on clickstream from online store offering clothing for pregnant women. Data are from five months of 2008 and include, among others, product category, location of the photo on the page, country of origin of the IP address and product price in US dollars.

Attribute Information:

The dataset contains 14 variables described in a separate file (See 'Data set description')

Relevant Papers:

N/A

Citation Request:

If you use this dataset, please cite:

Šapczyński M., Białowąs S. (2013) Discovering Patterns of Users' Behaviour in an E-shop - Comparison of Consumer Buying Behaviours in Poland and Other European Countries, “Studia Ekonomiczne†, nr 151, “La société de l'information : perspective européenne et globale : les usages et les risques d'Internet pour les citoyens et les consommateurs†, p. 144-153

Data description ìe-shop clothing 2008î

Variables:

1. YEAR (2008)

========================================================

2. MONTH -> from April (4) to August (8)

========================================================

3. DAY -> day number of the month

========================================================

4. ORDER -> sequence of clicks during one session

========================================================

5. COUNTRY -> variable indicating the country of origin of the IP address with the

following categories:

1-Australia 2-Austria 3-Belgium 4-British Virgin Islands 5-Cayman Islands 6-Christmas Island 7-Croatia 8-Cyprus 9-Czech Republic 10-Denmark 11-Estonia 12-unidentified 13-Faroe Islands 14-Finland 15-France 16-Germany 17-Greece 18-Hungary 19-Iceland 20-India 21-Ireland 22-Italy 23-Latvia 24-Lithuania 25-Luxembourg 26-Mexico 27-Netherlands 28-Norway 29-Poland 30-Portugal 31-Romania 32-Russia 33-San Marino 34-Slovakia 35-Slovenia 36-Spain 37-Sweden 38-Switzerland 39-Ukraine 40-United Arab Emirates 41-United Kingdom 42-USA 43-biz (.biz) 44-com (.com) 45-int (.int) 46-net (.net) 47-org (*.org)

========================================================

6. SESSION ID -> variable indicating session id (short record)

========================================================

7. PAGE 1 (MAIN CATEGORY) -> concerns the main product category:

1-trousers 2-skirts 3-blouses 4-sale

========================================================

8. PAGE 2 (CLOTHING MODEL) -> contains information about the code for each product

(217 products)

========================================================

9. COLOUR -> colour of product

1-beige 2-black 3-blue 4-brown 5-burgundy 6-gray 7-green 8-navy blue 9-of many colors 10-olive 11-pink 12-red 13-violet 14-white

========================================================

10. LOCATION -> photo location on the page, the screen has been divided into six parts:

1-top left 2-top in the middle 3-top right 4-bottom left 5-bottom in the middle 6-bottom right

========================================================

11. MODEL PHOTOGRAPHY -> variable with two categories:

1-en face 2-profile

========================================================

12. PRICE -> price in US dollars

========================================================

13. PRICE 2 -> variable informing whether the price of a particular product is higher than

the average price for the entire product category

1-yes 2-no

========================================================

14. PAGE -> page number within the e-store website (from 1 to 5)

++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Search
Clear search
Close search
Google apps
Main menu