Facebook
TwitterAs of 10/22/2020, this dataset is no longer being updated and has been replaced with a new dataset, which can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2 This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 PCR diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity). A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case. These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities. These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).
Facebook
TwitterBy Data Society [source]
This dataset contains key demographic, health status indicators and leading cause of death data to help us understand the current trends and health outcomes in communities across the United States. By looking at this data, it can be seen how different states, counties and populations have changed over time. With this data we can analyze levels of national health services use such as vaccination rates or mammography rates; review leading causes of death to create public policy initiatives; as well as identify risk factors for specific conditions that may be associated with certain populations or regions. The information from these files includes State FIPS Code, County FIPS Code, CHSI County Name, CHSI State Name, CHSI State Abbreviation, Influenza B (FluB) report count & expected cases rate per 100K population , Hepatitis A (HepA) Report Count & expected cases rate per 100K population , Hepatitis B (HepB) Report Count & expected cases rate per 100K population , Measles (Meas) Report Count & expected cases rate per 100K population , Pertussis(Pert) Report Count & expected case rate per 100K population , CRS report count & expected case rate per 100K population , Syphilis report count and expected case rate per 100k popuation. We also look at measures related to preventive care services such as Pap smear screen among women aged 18-64 years old check lower/upper confidence intervals seperately ; Mammogram checks among women aged 40-64 years old specified lower/upper conifence intervals separetly ; Colonosopy/ Proctoscpushy among men aged 50+ measured in lower/upper limits ; Pneumonia Vaccination amongst 65+ with loewr/upper confidence level detail Additionally we have some interesting trend indicating variables like measures of birth adn death which includes general fertility ratye ; Teen Birth Rate by Mother's age group etc Summary Measures covers mortality trend following life expectancy by sex&age categories Vressionable populations access info gives us insight into disablilty ratio + access to envtiromental issues due to poor quality housing facilities Finally Risk Factors cover speicfic hoslitic condtiions suchs asthma diagnosis prevelance cancer diabetes alcholic abuse smoking trends All these information give a good understanding on Healthy People 2020 target setings demograpihcally speaking hence will aid is generating more evience backed policies
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
What the Dataset Contains
This dataset contains valuable information about public health relevant to each county in the United States, broken down into 9 indicator domains: Demographics, Leading Causes of Death, Summary Measures of Health, Measures of Birth and Death Rates, Relative Health Importance, Vulnerable Populations and Environmental Health Conditions, Preventive Services Use Data from BRFSS Survey System Data , Risk Factors and Access to Care/Health Insurance Coverage & State Developed Types of Measurements such as CRS with Multiple Categories Identified for Each Type . The data includes indicators such as percentages or rates for influenza (FLU), hepatitis (HepA/B), measles(MEAS) pertussis(PERT), syphilis(Syphilis) , cervical cancer (CI_Min_Pap_Smear - CI_Max\Pap \Smear), breast cancer (CI\Min Mammogram - CI \Max \Mammogram ) proctoscopy (CI Min Proctoscopy - CI Max Proctoscopy ), pneumococcal vaccinations (Ci min Pneumo Vax - Ci max Pneumo Vax )and flu vaccinations (Ci min Flu Vac - Ci Max Flu Vac). Additionally , it provides information on leading causes of death at both county levels & national level including age-adjusted mortality rates due to suicide among teens aged between 15-19 yrs per 100000 population etc.. Furthermore , summary measures such as age adjusted percentage who consider their physical health fair or poor are provided; vulnerable populations related indicators like relative importance score for disabled adults ; preventive service use related ones ranging from self reported vaccination coverage among men40-64 yrs old against hepatitis B virus etc...
Getting Started With The Dataset
To get started with exploring this dataset first your need to understand what each column in the table represents: State FIPS Code identifies a unique identifier used by various US government agencies which denote states . County FIPS code denotes counties wi...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Gratis by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Gratis. The dataset can be utilized to understand the population distribution of Gratis by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Gratis. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Gratis.
Key observations
Largest age group (population): Male # 0-4 years (74) | Female # 25-29 years (74). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gratis Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Tell City, IN population pyramid, which represents the Tell City population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Tell City Population by Age. You can refer the same here
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The following datasets contain the crime rate for cities in the United States. The four datasets are separated based on population ranges.
File names: - 'crime_40 _60.csv': dataset for population ranging from 40,000 to 60,000. - 'crime_60 _100.csv': dataset for population ranging from 60,000 to 100,000. - 'crime_100 _250.csv': dataset for population ranging from 100,000 to 250,000. - 'crime_250 _plus.csv': dataset for population greater than 250,000.
For file: crime_40 _60.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ The following datasets contain the crime rate for cities in the United States. The four datasets are separated based on population ranges.
File names: - 'crime_40 _60.csv': dataset for population ranging from 40,000 to 60,000. - 'crime_60 _100.csv': dataset for population ranging from 60,000 to 100,000. - 'crime_100 _250.csv': dataset for population ranging from 100,000 to 250,000. - 'crime_250 _plus.csv': dataset for population greater than 250,000.
For file: crime_40 _60.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_60 _100.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_100 _250.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_250 _plus.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'total_crime': total crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'total_violent _crime': total violent crime - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft - 'tot_prop _crime': total property crime - 'arson': arson
Photo by David von Diemar on Unsplash
Facebook
TwitterInformation about the rates of cancer deaths in each state is reported. The data shows the total rate as well as rates based on sex, age, and race. Rates are also shown for three specific kinds of cancer: breast cancer, colorectal cancer, and lung cancer.
| Key | List of... | Comment | Example Value |
|---|---|---|---|
| State | String | The name of a U.S. State (e.g., Virginia) | "Alabama" |
| Total.Rate | Float | Total Cancer Deaths (Rate per 100,000 Population, 2007-2013) 214.2 | 214.2 |
| Total.Number | Float | Total Cancer Deaths (2007-2013) | 71529.0 |
| Total.Population | Float | Cumulative Population (Denominator Total_Cancer deaths total_) 2007-2013 | 33387205.0 |
| Rates.Age.< 18 | Float | Total Cancer Deaths (Under 18 Years, Rate per 100,000 Population, 2007-2013) | 2.0 |
| Rates.Age.18-45 | Float | Total Cancer Deaths (18 to 44 Years, Rate per 100,000 Population, 2007-2013) | 18.5 |
| Rates.Age.45-64 | Float | Total Cancer Deaths (45 to 64 Years, Rate per 100,000 Population, 2007-2013) | 244.7 |
| Rates.Age.> 64 | Float | Total Cancer Deaths (65 Years and Over, Rate per 100,000 Population, 2007-2013) | 1017.8 |
| Rates.Age and Sex.Female.< 18 | Float | Female under 18 | 2.0 |
| Rates.Age and Sex.Male.< 18 | Float | Male under 18 | 2.1 |
| Rates.Age and Sex.Female.18 - 45 | Float | Female 18 - 45 | 20.1 |
| Rates.Age and Sex.Male.18 - 45 | Float | Male 18 - 45 | 16.8 |
| Rates.Age and Sex.Female.45 - 64 | Float | Female 45 to 64 Years | 201.0 |
| Rates.Age and Sex.Male.45 - 64 | Float | Male 45 to 64 Years | 291.5 |
| Rates.Age and Sex.Female.> 64 | Float | Female 65 Years and Over | 803.6 |
| Rates.Age and Sex.Male.> 64 | Float | Male 65 Years and Over | 1308.6 |
| Rates.Race.White | Float | Total Cancer Deaths (White, Rate per 100,000 Population, 2007-2013) | 186.1 |
| Rates.Race.White non-Hispanic | Float | Total Cancer Deaths (White non-Hispanic, Rate per 100,000 Population, 2007-2013) | 187.5 |
| Rates.Race.Black | Float | Total Cancer Deaths (Black or African American, Rate per 100,000 Population, 2007-2013) | 216.1 |
| Rates.Race.Asian | Float | Total Cancer Deaths (Asian or Pacific Islander, Rate per 100,000 Population, 2007-2013) | 81.3 |
| Rates.Race.Indigenous | Float | Total Cancer Deaths (American Indian or Alaska Native, Rate per 100,000 Population, 2007-2013) | 69.9 |
| Rates.Race and Sex.Female.White | Float | Female: White | 149.2 |
| Rates.Race and Sex.Female.White non-Hispanic | Float | Female: White non-Hispanic | 150.2 |
| Rates.Race and Sex.Female.Black | Float | Female: Black or African American | 167.2 |
| Rates.Race and Sex.Female.Black non-Hispanic | Float | Female: Black or African American non-Hispanic | 167.9 |
| Rates.Race and Sex.Female.Asian | Float | Female: Asian or Pacific Islander | 84.9 |
| Rates.Race and Sex.Female.Indigenous | Float | Female: American Indian or Alaska Native | 53.8 |
| ... |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Tell City by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Tell City. The dataset can be utilized to understand the population distribution of Tell City by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Tell City. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Tell City.
Key observations
Largest age group (population): Male # 25-29 years (373) | Female # 55-59 years (402). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Tell City Population by Gender. You can refer the same here
Facebook
TwitterThis is a source dataset for a Let's Get Healthy California indicator at "https://letsgethealthy.ca.gov/. This table displays the prevalence of diabetes in California. It contains data for California only. The data are from the California Behavioral Risk Factor Surveillance Survey (BRFSS). The California BRFSS is an annual cross-sectional health-related telephone survey that collects data about California residents regarding their health-related risk behaviors, chronic health conditions, and use of preventive services. The BRFSS is conducted by Public Health Survey Research Program of California State University, Sacramento under contract from CDPH. This prevalence rate does not include pre-diabetes, or gestational diabetes. This is based on the question: "Has a doctor, or nurse or other health professional ever told you that you have diabetes?" The sample size for 2014 was 8,832. NOTE: Denominator data and weighting was taken from the California Department of Finance, not U.S. Census. Values may therefore differ from what has been published in the national BRFSS data tables by the Centers for Disease Control and Prevention (CDC) or other federal agencies.
Facebook
TwitterAs of 9/12/2024, we have resumed reporting on COVID-19 hospitalization data using a San Francisco specific dataset. These new data differ slightly from previous hospitalization data sources but the overall patterns and trends in hospitalizations remain consistent. You can access the previous data here.
A. SUMMARY This dataset includes information on COVID+ hospital admissions for San Francisco residents into San Francisco hospitals. Specifically, the dataset includes the count and rate of COVID+ hospital admissions per 100,000. The data are reported by week.
B. HOW THE DATASET IS CREATED Hospital admission data is reported to the San Francisco Department of Public Health (SFDPH) via the COVID Hospital Data Repository (CHDR), a system created via health officer order C19-16. The data includes all San Francisco hospitals except for the San Francisco VA Medical Center.
San Francisco population estimates are pulled from a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2018-2022 5-year American Community Survey (ACS).
C. UPDATE PROCESS Data updates weekly on Wednesday with data for the past Wednesday-Tuesday (one week lag). Data may change as more current information becomes available.
D. HOW TO USE THIS DATASET New admissions are the count of COVID+ hospital admissions among San Francisco residents to San Francisco hospitals by week.
The admission rate per 100,000 is calculated by multiplying the count of admissions each week by 100,000 and dividing by the population estimate.
E. CHANGE LOG
Facebook
TwitterThe T-100 Domestic Market and Segment Data dataset was downloaded on April 08, 2025 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The database includes data obtained from a 100 percent census of BTS Form 41 schedule submissions by large certificated air carriers. It shows 2024 statistics for all domestic airports operated by US carriers, and all information are totals for the year. This dataset is a combination of both T-100 Market and T-100 Segments datasets. The T-100 Market includes enplanement data, and T-100 Segment data includes arrivals, departures, freight, and mail. Data is by origin airport. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529081
Facebook
TwitterNOTE: This dataset has been retired and marked as historical-only.
This dataset is a companion to the COVID-19 Daily Cases and Deaths dataset (https://data.cityofchicago.org/d/naz8-j4nc). The major difference in this dataset is that the case, death, and hospitalization corresponding rates per 100,000 population are not those for the single date indicated. They are rolling averages for the seven-day period ending on that date. This rolling average is used to account for fluctuations that may occur in the data, such as fewer cases being reported on weekends, and small numbers. The intent is to give a more representative view of the ongoing COVID-19 experience, less affected by what is essentially noise in the data.
All rates are per 100,000 population in the indicated group, or Chicago, as a whole, for “Total” columns.
Only Chicago residents are included based on the home address as provided by the medical provider.
Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the date the test specimen was collected. Deaths among cases are aggregated by day of death. Hospitalizations are reported by date of first hospital admission. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation.
Denominators are from the U.S. Census Bureau American Community Survey 1-year estimate for 2018 and can be seen in the Citywide, 2018 row of the Chicago Population Counts dataset (https://data.cityofchicago.org/d/85cm-7uqa).
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects cases and deaths currently known to CDPH.
Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases and deaths, sources used, how cases and deaths are associated to a specific date, and similar factors.
Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, U.S. Census Bureau American Community Survey
Facebook
TwitterBy Makeover Monday [source]
This dataset contains data on the number of STD cases in the US. The data includes the disease, the code for the disease, the state where the STD was found, the year the STD was found, the gender of the person with the STD, their age, and more. This dataset can help us to understand how STDs spread and how to prevent them
This dataset contains data on the number of STD cases in the US. The data is broken down by state, disease, gender, and age
- Determining where STD rates are highest and lowest in the US and finding possible reasons for these differences
- Finding out if there are any trends in STD rates over time
- Comparing STD rates between different groups of people (e.g. men vs women, different age groups)
Makeover Monday [source]
License
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: STD Cases.csv | Column name | Description | |:------------------|:----------------------------------------------------------------| | Disease | The name of the STD. (String) | | Disease Code | The code for the STD. (String) | | State | The state where the STD was found. (String) | | Year | The year the STD was found. (Integer) | | Gender | The gender of the person with the STD. (String) | | Age | The age of the person with the STD. (Integer) | | Age Code | The code for the age group of the person with the STD. (String) | | STD Cases | The number of STD cases. (Integer) | | Population | The population of the state where the STD was found. (Integer) | | Rate per 100K | The rate of STD cases per 100,000 people. (Float) |
If you use this dataset in your research, please credit Makeover Monday [source]
Facebook
TwitterBy Data Exercises [source]
This dataset is a comprehensive collection of data from county-level cancer mortality and incidence rates in the United States between 2000-2014. This data provides an unprecedented level of detail into cancer cases, deaths, and trends at a local level. The included columns include County, FIPS, age-adjusted death rate, average death rate per year, recent trend (2) in death rates, recent 5-year trend (2) in death rates and average annual count for each county. This dataset can be used to provide deep insight into the patterns and effects of cancer on communities as well as help inform policy decisions related to mitigating risk factors or increasing preventive measures such as screenings. With this comprehensive set of records from across the United States over 15 years, you will be able to make informed decisions regarding individual patient care or policy development within your own community!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides comprehensive US county-level cancer mortality and incidence rates from 2000 to 2014. It includes the mortality and incidence rate for each county, as well as whether the county met the objective of 45.5 deaths per 100,000 people. It also provides information on recent trends in death rates and average annual counts of cases over the five year period studied.
This dataset can be extremely useful to researchers looking to study trends in cancer death rates across counties. By using this data, researchers will be able to gain valuable insight into how different counties are performing in terms of providing treatment and prevention services for cancer patients and whether preventative measures and healthcare access are having an effect on reducing cancer mortality rates over time. This data can also be used to inform policy makers about counties needing more target prevention efforts or additional resources for providing better healthcare access within at risk communities.
When using this dataset, it is important to pay close attention to any qualitative columns such as “Recent Trend” or “Recent 5-Year Trend (2)” that may provide insights into long term changes that may not be readily apparent when using quantitative variables such as age-adjusted death rate or average deaths per year over shorter periods of time like one year or five years respectively. Additionally, when studying differences between different counties it is important to take note of any standard FIPS code differences that may indicate that data was collected by a different source with a difference methodology than what was used in other areas studied
- Using this dataset, we can identify patterns in cancer mortality and incidence rates that are statistically significant to create treatment regimens or preventive measures specifically targeting those areas.
- This data can be useful for policymakers to target areas with elevated cancer mortality and incidence rates so they can allocate financial resources to these areas more efficiently.
- This dataset can be used to investigate which factors (such as pollution levels, access to medical care, genetic make up) may have an influence on the cancer mortality and incidence rates in different US counties
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: death .csv | Column name | Description | |:-------------------------------------------|:-------------------------------------------------------------------...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Tell Township, Pennsylvania population pyramid, which represents the Tell township population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Tell township Population by Age. You can refer the same here
Facebook
TwitterNotice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Facebook
TwitterThis dataset presents the age-adjusted death rates for the 10 leading causes of death in the United States beginning in 1999. Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia using demographic and medical characteristics. Age-adjusted death rates (per 100,000 population) are based on the 2000 U.S. standard population. Populations used for computing death rates after 2010 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of death classified by the International Classification of Diseases, Tenth Revision (ICD–10) are ranked according to the number of deaths assigned to rankable causes. Cause of death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.
Facebook
TwitterThis dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Facebook
TwitterThis dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Facebook
TwitterBy Health [source]
This dataset provides comprehensive information on the number and rate of infectious diseases in California. Focusing on counties, sexes, and various diseases between 2001-2014, it offers powerful insights into the health status of its citizens. Its data also reveals trends in the spread of common illnesses in this state. Whether you are an epidemiologist looking to inform public health policy or a researcher seeking to investigate particular illnesses within certain populations, this dataset contains all the necessary information to answer your questions. Explore it today and discover hidden stories waiting to be uncovered!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains counts and rates of infectious diseases in California by county, disease, sex, and year. This dataset can be used to generate trends to understand the changes in incidence of different types of diseases over time and across counties or between sexes.
To use this dataset: - Select the columns you are interested in exploring - these could include Disease, County, Sex or Year. - Filter out the rows that do not relate to your question - for example filtering by a specific county or disease. - Examine the average rate per 100000 people for each group you selected as well as its lower and upper confidence intervals (CI). - Use Rate as your dependent variable for analysis; Population is likely also important determining factors. Make sure to check if any Rates have 'unstable' flags.
- Visualise or statistically analyse your data using suitable methods such as descriptive statistics (means/medians/mode etc.)for comparison between 2+ groups or correlation/regression based models when comparing one variable to another over time etc.
- Analyzing the geographic spread of infectious diseases over time to identify areas in need of increased education, resources, and care.
- Comparing rates of disease by sex to identify and understand any gender-based differences in infectious disease cases.
- Using the Unstable column to determine whether a particular county or region needs further study of a certain type of infectious disease due to unusual spikes or drops in rate or count during a specific year
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: Infectious_Disease_Cases_by_County_Year_and_Sex_2001-2014.csv | Column name | Description | |:---------------|:---------------------------------------------------------------------------------------------------------------| | Disease | The type of infectious disease reported. (String) | | County | The county in California where the cases were reported. (String) | | Year | The year in which the cases were reported. (Integer) | | Sex | The gender of the individuals who contracted the disease. (String) | | Population | The population size of the county in which the cases were reported. (Integer) | | Rate | The rate of infection per 100 thousand people living in the county. (Float) | | CI.lower | The lower confidence interval associated with the rate of infection. (Float) | | CI.upper | The upper confidence interval associated with the rate of infection. (Float) ...
Facebook
TwitterAs of 10/22/2020, this dataset is no longer being updated and has been replaced with a new dataset, which can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2 This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 PCR diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity). A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case. These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities. These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).