Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Wilbur, WA population pyramid, which represents the Wilbur population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Wilbur Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 1997 the Kyrgyz Republic Demographic and Health Survey (KRDHS) is a nationally representative survey of 3,848 women age 15-49. Fieldwork was conducted from August to November 1997. The KRDHS was sponsored by the Ministry of Health (MOH), and was funded by the United States Agency for International Development. The Research Institute of Obstetrics and Pediatrics implemented the survey with technical assistance from the Demographic and Health Surveys (DHS) program. The purpose of the KRDHS was to provide data to the MOH on factors which determine the health status of women and children such as fertility, contraception, induced abortion, maternal care, infant mortality, nutritional status, and anemia. Some statistics presented in this report are currently available to the MOH from other sources. For example, the MOH collects and regularly publishes information on fertility, contraception, induced abortion and infant mortality. However, the survey presents information on these indices in a manner which is not currently available, i.e., by population subgroups such as those defined by age, marital duration, education, and ethnicity. Additionally, the survey provides statistics on some issues not previously available in the Kyrgyz Republic: for example, breastfeeding practices and anemia status of women and children. When considered together, existing MOH data and the KRDHS data provide a more complete picture of the health conditions in the Kyrgyz Republic than was previously available. A secondary objective of the survey was to enhance the capabilities of institutions in the Kyrgyz Republic to collect, process, and analyze population and health data. MAIN FINDINGS FERTILITY Fertility Rates. Survey results indicate a total fertility rate (TFR) for all of the Kyrgyz Republic of 3.4 children per woman. Fertility levels differ for different population groups. The TFR for women living in urban areas (2.3 children per woman) is substantially lower than for women living in rural areas (3.9). The TFR for Kyrgyz women (3.6 children per woman) is higher than for women of Russian ethnicity (1.5) but lower than Uzbek women (4.2). Among the regions of the Kyrgyz Republic, the TFR is lowest in Bishkek City (1.7 children per woman), and the highest in the East Region (4.3), and intermediate in the North and South Regions (3.1 and3.9, respectively). Time Trends. The KRDHS data show that fertility has declined in the Kyrgyz Republic in recent years. The decline in fertility from 5-9 to 0-4 years prior to the survey increases with age, from an 8 percent decline among 20-24 year olds to a 38 percent decline among 35-39 year olds. The declining trend in fertility can be seen by comparing the completed family size of women near the end of their childbearing years with the current TFR. Completed family size among women 40-49 is 4.6 children which is more than one child greater than the current TFR (3.4). Birth Intervals. Overall, 30 percent of births in the Kyrgyz Republic take place within 24 months of the previous birth. The median birth interval is 31.9 months. Age at Onset of Childbearing. The median age at which women in the Kyrgyz Republic begin childbearing has been holding steady over the past two decades at approximately 21.6 years. Most women have their first birth while in their early twenties, although about 20 percent of women give birth before age 20. Nearly half of married women in the Kyrgyz Republic (45 percent) do not want to have more children. Additional one-quarter of women (26 percent) want to delay their next birth by at least two years. These are the women who are potentially in need of some method of family planning. FAMILY PLANNING Ever Use. Among currently married women, 83 percent report having used a method of contraception at some time. The women most likely to have ever used a method of contraception are those age 30-44 (among both currently married and all women). Current Use. Overall, among currently married women, 60 percent report that they are currently using a contraceptive method. About half (49 percent) are using a modern method of contraception and another 11 percent are using a traditional method. The IUD is by far the most commonly used method; 38 percent of currently married women are using the IUD. Other modern methods of contraception account for only a small amount of use among currently married women: pills (2 percent), condoms (6 percent), and injectables and female sterilization (1 and 2 percent, respectively). Thus, the practice of family planning in the Kyrgyz Republic places high reliance on a single method, the IUD. Source of Methods. The vast majority of women obtain their contraceptives through the public sector (97 percent): 35 percent from a government hospital, and 36 percent from a women counseling center. The source of supply of the method depends on the method being used. For example, most women using IUDs obtain them at women counseling centers (42 percent) or hospitals (39 percent). Government pharmacies supply 46 percent of pill users and 75 percent of condom users. Pill users also obtain supplies from women counseling centers or (33 percent). Fertility Preferences. A majority of women in the Kyrgyz Republic (45 percent) indicated that they desire no more children. By age 25-29, 20 percent want no more children, and by age 30-34, nearly half (46 percent) want no more children. Thus, many women come to the preference to stop childbearing at relatively young ages-when they have 20 or more potential years of childbearing ahead of them. For some of these women, the most appropriate method of contraception may be a long-acting method such as female sterilization. However, there is a deficiency of use of this method in the Kyrgyz Republic. In the interests of providing a broad range of safe and effective methods, information about and access to sterilization should be increased so that individual women can make informed decisions about using this method. INDUCED ABORTION Abortion Rates. From the KRDHS data, the total abortion rate (TAR)-the number of abortions a woman will have in her lifetime based on the currently prevailing abortion rates-was calculated. For the Kyrgyz Republic, the TAR for the period from mid-1994 to mid-1997 is 1.6 abortions per woman. The TAR for the Kyrgyz Republic is lower than recent estimates of the TAR for other areas of the former Soviet Union such as Kazakhstan (1.8), and Yekaterinburg and Perm in Russia (2.3 and 2.8, respectively), but higher than for Uzbekistan (0.7). The TAR is higher in urban areas (2.1 abortions per woman) than in rural areas (1.3). The TAR in Bishkek City is 2.0 which is two times higher than in other regions of the Kyrgyz Republic. Additionally the TAR is substantially lower among ethnic Kyrgyz women (1.3) than among women of Uzbek and Russian ethnicities (1.9 and 2.2 percent, respectively). INFANT MORTALITY In the KRDHS, infant mortality data were collected based on the international definition of a live birth which, irrespective of the duration of pregnancy, is a birth that breathes or shows any sign of life (United Nations, 1992). Mortality Rates. For the five-year period before the survey (i.e., approximately mid-1992 to mid1997), infant mortality in the Kyrgyz Republic is estimated at 61 infant deaths per 1,000 births. The estimates of neonatal and postneonatal mortality are 32 and 30 per 1,000. The MOH publishes infant mortality rates annually but the definition of a live birth used by the MOH differs from that used in the survey. As is the case in most of the republics of the former Soviet Union, a pregnancy that terminates at less than 28 weeks of gestation is considered premature and is classified as a late miscarriage even if signs of life are present at the time of delivery. Thus, some events classified as late miscarriages in the MOH system would be classified as live births and infant deaths according to the definitions used in the KRDHS. Infant mortality rates based on the MOH data for the years 1983 through 1996 show a persistent declining trend throughout the period, starting at about 40 per 1,000 in the early 1980s and declining to 26 per 1,000 in 1996. This time trend is similar to that displayed by the rates estimated from the KRDHS. Thus, the estimates from both the KRDHS and the Ministry document a substantial decline in infant mortality; 25 percent over the period from 1982-87 to 1992-97 according to the KRDHS and 28 percent over the period from 1983-87 to 1993-96 according to the MOH estimates. This is strong evidence of improvements in infant survivorship in recent years in the Kyrgyz Republic. It should be noted that the rates from the survey are much higher than the MOH rates. For example, the KRDHS estimate of 61 per 1,000 for the period 1992-97 is twice the MOH estimate of 29 per 1,000 for 1993-96. Certainly, one factor leading to this difference are the differences in the definitions of a live birth and infant death in the KRDHS survey and in the MOH protocols. A thorough assessment of the difference between the two estimates would need to take into consideration the sampling variability of the survey's estimate. However, given the magnitude of the difference, it is likely that it arises from a combination of definitional and methodological differences between the survey and MOH registration system. MATERNAL AND CHILD HEALTH The Kyrgyz Republic has a well-developed health system with an extensive infrastructure of facilities that provide maternal care services. This system includes special delivery hospitals, the obstetrics and gynecology departments of general hospitals, women counseling centers, and doctor's assistant/midwife posts (FAPs). There is an extensive network of FAPs throughout the rural areas. Delivery. Virtually all births in the Kyrgyz Republic (96 percent) are delivered at health facilities: 95 percent in delivery hospitals and another 1 percent in either general hospitals
http://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApplyhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApply
Thematic maps of the population. Share of population by age group in the total population in 2020, 2040, 2070. % change in population by age group in 2020 compared to 2040 and 2070. Youth and old-age dependency ratios 2020, 2040 and 2070. The youth quotient indicates the number of persons under the age of 20 per 100 persons between the ages of 20 and 65, the old-age quotient indicates the number of persons aged 65 and older per 100 persons between the ages of 20 and 65. The data come from the sixth regionalized population projection (medium variant). This projection is based on the results of the population update as at 31. December 2020. The birth rate will rise from 1.57 today to 1.6 children per woman by 2025. It will remain constant until 2070. Life expectancy will increase from 83 to 85 years for women today and from 79 to 82 years for men by 2040. By 2070, a further increase is assumed for women to 87 years and for men to 85 years. The projection assumes that the net migration will increase from 17,300 to +20,000 persons per year by 2025. It will remain at this level until 2030. The balance will then fall to +15,000 persons by 2040. This corresponds roughly to the long-term net migration recorded by Rhineland-Palatinate on average per year between 1951 and 2020. From 2040 onwards, the balance will remain constant until the end of the forecasting period. Population under 20 years 2070, % change from 2070.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Ukraine Demographic and Health Survey (UDHS) is a nationally representative survey of 6,841 women age 15-49 and 3,178 men age 15-49. Survey fieldwork was conducted during the period July through November 2007. The UDHS was conducted by the Ukrainian Center for Social Reforms in close collaboration with the State Statistical Committee of Ukraine. The MEASURE DHS Project provided technical support for the survey. The U.S. Agency for International Development/Kyiv Regional Mission to Ukraine, Moldova, and Belarus provided funding. The survey is a nationally representative sample survey designed to provide information on population and health issues in Ukraine. The primary goal of the survey was to develop a single integrated set of demographic and health data for the population of the Ukraine. The UDHS was conducted from July to November 2007 by the Ukrainian Center for Social Reforms (UCSR) in close collaboration with the State Statistical Committee (SSC) of Ukraine, which provided organizational and methodological support. Macro International Inc. provided technical assistance for the survey through the MEASURE DHS project. USAID/Kyiv Regional Mission to Ukraine, Moldova and Belarus provided funding for the survey through the MEASURE DHS project. MEASURE DHS is sponsored by the United States Agency for International Development (USAID) to assist countries worldwide in obtaining information on key population and health indicators. The 2007 UDHS collected national- and regional-level data on fertility and contraceptive use, maternal health, adult health and life style, infant and child mortality, tuberculosis, and HIV/AIDS and other sexually transmitted diseases. The survey obtained detailed information on these issues from women of reproductive age and, on certain topics, from men as well. The results of the 2007 UDHS are intended to provide the information needed to evaluate existing social programs and to design new strategies for improving the health of Ukrainians and health services for the people of Ukraine. The 2007 UDHS also contributes to the growing international database on demographic and health-related variables. MAIN RESULTS Fertility rates. A useful index of the level of fertility is the total fertility rate (TFR), which indicates the number of children a woman would have if she passed through the childbearing ages at the current age-specific fertility rates (ASFR). The TFR, estimated for the three-year period preceding the survey, is 1.2 children per woman. This is below replacement level. Contraception : Knowledge and ever use. Knowledge of contraception is widespread in Ukraine. Among married women, knowledge of at least one method is universal (99 percent). On average, married women reported knowledge of seven methods of contraception. Eighty-nine percent of married women have used a method of contraception at some time. Abortion rates. The use of abortion can be measured by the total abortion rate (TAR), which indicates the number of abortions a woman would have in her lifetime if she passed through her childbearing years at the current age-specific abortion rates. The UDHS estimate of the TAR indicates that a woman in Ukraine will have an average of 0.4 abortions during her lifetime. This rate is considerably lower than the comparable rate in the 1999 Ukraine Reproductive Health Survey (URHS) of 1.6. Despite this decline, among pregnancies ending in the three years preceding the survey, one in four pregnancies (25 percent) ended in an induced abortion. Antenatal care. Ukraine has a well-developed health system with an extensive infrastructure of facilities that provide maternal care services. Overall, the levels of antenatal care and delivery assistance are high. Virtually all mothers receive antenatal care from professional health providers (doctors, nurses, and midwives) with negligible differences between urban and rural areas. Seventy-five percent of pregnant women have six or more antenatal care visits; 27 percent have 15 or more ANC visits. The percentage is slightly higher in rural areas than in urban areas (78 percent compared with 73 percent). However, a smaller proportion of rural women than urban women have 15 or more antenatal care visits (23 percent and 29 percent, respectively). HIV/AIDS and other sexually transmitted infections : The currently low level of HIV infection in Ukraine provides a unique window of opportunity for early targeted interventions to prevent further spread of the disease. However, the increases in the cumulative incidence of HIV infection suggest that this window of opportunity is rapidly closing. Adult Health : The major causes of death in Ukraine are similar to those in industrialized countries (cardiovascular diseases, cancer, and accidents), but there is also a rising incidence of certain infectious diseases, such as multidrug-resistant tuberculosis. Women's status : Sixty-four percent of married women make decisions on their own about their own health care, 33 percent decide jointly with their husband/partner, and 1 percent say that their husband or someone else is the primary decisionmaker about the woman's own health care. Domestic Violence : Overall, 17 percent of women age 15-49 experienced some type of physical violence between age 15 and the time of the survey. Nine percent of all women experienced at least one episode of violence in the 12 months preceding the survey. One percent of the women said they had often been subjected to violent physical acts during the past year. Overall, the data indicate that husbands are the main perpetrators of physical violence against women. Human Trafficking : The UDHS collected information on respondents' awareness of human trafficking in Ukraine and, if applicable, knowledge about any household members who had been the victim of human trafficking during the three years preceding the survey. More than half (52 percent) of respondents to the household questionnaire reported that they had heard of a person experiencing this problem and 10 percent reported that they knew personally someone who had experienced human trafficking.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These population projections were prepared by the Australian Bureau of Statistics (ABS) for Geoscience Australia. The projections are not official ABS data and are owned by Geoscience Australia. These projections are for Statistical Areas Level 2 (SA2s) and Local Government Areas (LGAs), and are projected out from a base population as at 30 June 2022, by age and sex. Projections are for 30 June 2023 to 2032, with results disaggregated by age and sex.
Method
The cohort-component method was used for these projections. In this method, the base population is projected forward annually by calculating the effect of births, deaths and migration (the components) within each age-sex cohort according to the specified fertility, mortality and overseas and internal migration assumptions.
The projected usual resident population by single year of age and sex was produced in four successive stages – national, state/territory, capital city/rest of state, and finally SA2s. Assumptions were made for each level and the resulting projected components and population are constrained to the geographic level above for each year.
These projections were derived from a combination of assumptions published in Population Projections, Australia, 2022 (base) to 2071 on 23 November 2023, and historical patterns observed within each state/territory.
Projections – capital city/rest of state regions The base population is 30 June 2022 Estimated Resident Population (ERP) as published in National, state and territory population, June 2022. For fertility, the total fertility rate (at the national level) is based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, of 1.6 babies per woman being phased in from 2022 levels over five years to 2027, before remaining steady for the remainder of the projection span. Observed state/territory, and greater capital city level fertility differentials were applied to the national data so that established trends in the state and capital city/rest of state relativities were preserved. Mortality rates are based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, and assume that mortality rates will continue to decline across Australia with state/territory differentials persisting. State/territory and capital city/rest of state differentials were used to ensure projected deaths are consistent with the historical trend. Annual net overseas migration (NOM) is based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, with an assumed gain (at the national level) of 400,000 in 2022-23, increasing to 315,000 in 2023-24, then declining to 225,000 in 2026-27, after which NOM is assumed to remain constant. State and capital city/rest of state shares are based on a weighted average of NOM data from 2010 to 2019 at the state and territory level to account for the impact of COVID-19. For internal migration, net gains and losses from states and territories and capital city/rest of state regions are based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, and assume that net interstate migration will trend towards long-term historic average flows.
Projections – Statistical Areas Level 2 The base population for each SA2 is the estimated resident population in each area by single year of age and sex, at 30 June 2022, as published in Regional population by age and sex, 2022 on 28 September 2023. The SA2-level fertility and mortality assumptions were derived by combining the medium scenario state/territory assumptions from Population Projections, Australia, 2022 (base) to 2071, with recent fertility and mortality trends in each SA2 based on annual births (by sex) and deaths (by age and sex) published in Regional Population, 2021-22 and Regional Population by Age and Sex, 2022. Assumed overseas and internal migration for each SA2 is based on SA2-specific annual overseas and internal arrivals and departures estimates published in Regional Population, 2021-22 and Regional Population by Age and Sex, 2022. The internal migration data was strengthened with SA2-specific data from the 2021 Census, based on the usual residence one year before Census night question. Assumptions were applied by SA2, age and sex. Assumptions were adjusted for some SA2s, to provide more plausible future population levels, and age and sex distribution changes, including areas where populations may not age over time, for example due to significant resident student and defence force populations. Most assumption adjustments were made via the internal migration component. For some SA2s with zero or a very small population base, but where significant population growth is expected, replacement migration age/sex profiles were applied. All SA2-level components and projected projections are constrained to the medium series of capital city/rest of state data in Population Projections, Australia, 2022 (base) to 2071.
Projections – Local Government Areas The base population for each LGA is the estimated resident population in each area by single year of age and sex, at 30 June 2022, as published in Regional population by age and sex, 2022 on 28 September 2023. Projections for 30 June 2023 to 2032 were created by converting from the SA2-level population projections to LGAs by age and sex. This was done using an age-specific population correspondence, where the data for each year of the projection span were converted based on 2021 population shares across SA2s. The LGA and SA2 projections are congruous in aggregation as well as in isolation. Unlike the projections prepared at SA2 level, no LGA-specific projection assumptions were used.
Nature of projections and considerations for usage The nature of the projection method and inherent fluctuations in population dynamics mean that care should be taken when using and interpreting the projection results. The projections are not forecasts, but rather illustrate future changes which would occur if the stated assumptions were to apply over the projection period. These projections do not attempt to allow for non-demographic factors such as major government policy decisions, economic factors, catastrophes, wars and pandemics, which may affect future demographic behaviour. To illustrate a range of possible outcomes, alternative projection series for national, state/territory and capital city/rest of state areas, using different combinations of fertility, mortality, overseas and internal migration assumptions, are prepared. Alternative series are published in Population Projections, Australia, 2022 (base) to 2071. Only one series of SA2-level projections was prepared for this product. Population projections can take account of planning and other decisions by governments known at the time the projections were derived, including sub-state projections published by each state and territory government. The ABS generally does not have access to the policies or decisions of commonwealth, state and local governments and businesses that assist in accurately forecasting small area populations. Migration, especially internal migration, accounts for the majority of projected population change for most SA2s. Volatile and unpredictable small area migration trends, especially in the short-term, can have a significant effect on longer-term projection results. Care therefore should be taken with SA2s with small total populations and very small age-sex cells, especially at older ages. While these projections are calculated at the single year of age level, small numbers, and fluctuations across individual ages in the base population and projection assumptions limit the reliability of SA2-level projections at single year of age level. These fluctuations reduce and reliability improves when the projection results are aggregated to broader age groups such as the five-year age bands in this product. For areas with small elderly populations, results aggregated to 65 and over are more reliable than for the individual age groups above 65. With the exception of areas with high planned population growth, SA2s with a base total population of less than 500 have generally been held constant for the projection period in this product as their populations are too small to be reliably projected at all, however their (small) age/sex distributions may change slightly. These SA2s are listed in the appendix. The base (2022) SA2 population estimates and post-2022 projections by age and sex include small artificial cells, including 1s and 2s. These are the result of a confidentialisation process and forced additivity, to control SA2 and capital city/rest of state age/sex totals, being applied to their original values. SA2s and LGAs in this product are based on the Australian Statistical Geography Standard (ASGS) boundaries as at the 2021 Census (ASGS Edition 3). For further information, see Australian Statistical Geography Standard (ASGS) Edition 3.
Made possible by the Digital Atlas of Australia The Digital Atlas of Australia is a key Australian Government initiative being led by Geoscience Australia, highlighted in the Data and Digital Government Strategy. It brings together trusted datasets from across government in an interactive, secure, and easy-to-use geospatial platform. The Australian Bureau of Statistics (ABS) is working in partnership with Geoscience Australia to establish a set of web services to make ABS data available in the Digital Atlas of Australia.
Contact the Australian Bureau of Statistics If you have questions or feedback about this web service, please email geography@abs.gov.au. To subscribe to updates about ABS web services and geospatial products, please complete this form. For information about how the ABS manages any personal information you provide view the ABS privacy policy.
Data and geography references Source data publication: Population Projections, Australia, 2022 (base)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
It is critical in sheep farming to accurately estimate ram fertility for maintaining reproductive effectiveness and for production profitability. However, there is currently a lack of reliable biomarkers to estimate semen quality and ram fertility, which is hindering advances in animal science and technology. The objective of this study was to uncover long non-coding RNAs (lncRNAs) in sperm from rams with distinct fertility phenotypes. Mature rams were allocated into two groups: high and low fertility (HF; n = 31; 94.5 ± 2.8%, LF; n = 25; 83.1 ± 5.73%; P = 0.028) according to the pregnancy rates sired by the rams (average pregnancy rate; 89.4 ± 7.2%). Total RNAs were isolated from sperm of the highest- and lowest-fertility rams (n = 4, pregnancy rate; 99.2 ± 1.6%, and 73.6 ± 4.4%, respectively) followed by next-generation sequencing of the transcripts. We uncovered 11,209 lncRNAs from the sperm of rams with HF and LF. In comparison to each other, there were 93 differentially expressed (DE) lncRNAs in sperm from the two distinct fertility phenotypes. Of these, 141 mRNAs were upregulated and 134 were downregulated between HF and LF, respectively. Genes commonly enriched for 9 + 2 motile cilium and sperm flagellum were ABHD2, AK1, CABS1, ROPN1, SEPTIN2, SLIRP, and TEKT3. Moreover, CABS1, CCDC39, CFAP97D1, ROPN1, SLIRP, TEKT3, and TTC12 were commonly enriched in flagellated sperm motility and sperm motility. Differentially expressed mRNAs were enriched in the top 16 KEGG pathways. Targets of the differentially expressed lncRNAs elucidate functions in cis and trans manner using the genetic context of the lncRNA locus, and lncRNA sequences revealed 471 mRNAs targets of 10 lncRNAs. This study illustrates the existence of potential lncRNA biomarkers that can be implemented in analyzing the quality of ram sperm and determining the sperm fertility and is used in breeding soundness exams for precision livestock farming to ensure food security on a global scale.
Objective: The aim of the present study is to report our experience on elective women fertility preservation before cancer treatment. Study Design: This is a single-center retrospective observational study, including all patients who underwent elective fertility preservation before oncological treatment between January 2001 and March 2019 at our Institute. Results: Of a total of 568 women who received fertility counseling, 244 (42.9%) underwent 252 oocyte retrieval cycles after controlled ovarian stimulation for cryopreservation. The majority of patients were diagnosed with breast cancer (59.9%), followed by women affected by Hodgkin's and non-Hodgkin's lymphoma (27.4%). A minority comprised patients diagnosed with other malignancies that affected soft tissues (2.8%), ovary borderline type (2.4%), digestive system (1.6%), leukemia (1.6%), uterine cervix (1.2%). The remaining 3.1% were affected by other cancer types. The mean age of the cohort was 31.3 ± 6.4 years and the mean oocyte retrieval was 13.5± 8.4. Of 11 women who returned to attempt a pregnancy, three performed two thawed cycles. We obtained four pregnancies from 24 embryo transfers (Pregnancy Rate 36.4% for couple): two miscarriages and two live births. Overall, 95.7% of oocytes are still in storage. Conclusions: A close collaboration between Cancer and Fertility Center in a tertiary care hospital is essential to provide a good health service in oncological patients. Offering fertility preservation is no longer considered optional and must be included in every therapeutic program for women who receive an oncological diagnosis in their reproductive age. Oocyte cryopreservation appears to be a good opportunity for fertility preservation. Our results, although they are obtained in a small sample, are encouraging, even if only 4.5% of patients returned to use their gametes.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Wilbur, WA population pyramid, which represents the Wilbur population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Wilbur Population by Age. You can refer the same here