Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.
A computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490
This data asset was created in response to House Report 117-401, which stated, "The Committee directs the USAID Administrator, in consultation with the Director of the Office of Personnel Management and the Director of the Office of Management and Budget, to submit a report to the appropriate congressional committees, not later than 180 days after enactment of this Act, on USAID's workforce data that includes disaggregated demographic data and other information regarding the diversity of the workforce of USAID. Such report shall include the following data to the maximum extent practicable and permissible by law: 1) demographic data of USAID workforce disaggregated by grade or grade-equivalent; 2) assessment of agency compliance with the Equal Employment Opportunity Commission Management Directive 715; and 3) data on the overall number of individuals who are part of the workforce, including all U.S. Direct Hires, personnel under personal services contracts, and Locally Employed staff at USAID. The report shall also be published on a publicly available website of USAID in a searchable database format." This data asset fulfills the final part of this requirement, to publish the data in a searchable database format. The data are compiled from USAID's 2021 MD-715 report, available at https://www.usaid.gov/reports/md-715. The original data source is the system National Finance Center Insight owned by the Treasury Department.
The Decennial Census provides population estimates and demographic information on residents of the United States.
The Census Summary Files contain detailed tables on responses to the decennial census. Data tables in Summary File 1 provide information on population and housing characteristics, including cross-tabulations of age, sex, households, families, relationship to householder, housing units, detailed race and Hispanic or Latino origin groups, and group quarters for the total population. Summary File 2 contains data tables on population and housing characteristics as reported by housing unit.
Researchers at NYU Langone Health can find guidance for the use and analysis of Census Bureau data on the Population Health Data Hub (listed under "Other Resources"), which is accessible only through the intranet portal with a valid Kerberos ID (KID).
Pursuant to Local Laws 126, 127, and 128 of 2016, certain demographic data is collected voluntarily and anonymously by persons voluntarily seeking social services. This data can be used by agencies and the public to better understand the demographic makeup of client populations and to better understand and serve residents of all backgrounds and identities.
The data presented here has been collected through either electronic form or paper surveys offered at the point of application for services. These surveys are anonymous.
Each record represents an anonymized demographic profile of an individual applicant for social services, disaggregated by response option, agency, and program. Response options include information regarding ancestry, race, primary and secondary languages, English proficiency, gender identity, and sexual orientation.
Idiosyncrasies or Limitations:
Note that while the dataset contains the total number of individuals who have identified their ancestry or languages spoke, because such data is collected anonymously, there may be instances of a single individual completing multiple voluntary surveys. Additionally, the survey being both voluntary and anonymous has advantages as well as disadvantages: it increases the likelihood of full and honest answers, but since it is not connected to the individual case, it does not directly inform delivery of services to the applicant. The paper and online versions of the survey ask the same questions but free-form text is handled differently. Free-form text fields are expected to be entered in English although the form is available in several languages. Surveys are presented in 11 languages.
Paper Surveys
1. Are optional
2. Survey taker is expected to specify agency that provides service
2. Survey taker can skip or elect not to answer questions
3. Invalid/unreadable data may be entered for survey date or date may be skipped
4. OCRing of free-form tet fields may fail.
5. Analytical value of free-form text answers is unclear
Online Survey
1. Are optional
2. Agency is defaulted based on the URL
3. Some questions must be answered
4. Date of survey is automated
https://www.icpsr.umich.edu/web/ICPSR/studies/38777/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38777/terms
The 2010 Census Production Settings Redistricting Data (P.L. 94-171) Demonstration Noisy Measurement Files are an intermediate output of the 2020 Census Disclosure Avoidance System (DAS) TopDown Algorithm (TDA) (as described in Abowd, J. et al [2022], and implemented in https://github.com/uscensusbureau/DAS_2020_Redistricting_Production_Code). The NMF was produced using the official "production settings," the final set of algorithmic parameters and privacy-loss budget allocations that were used to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File and the 2020 Census Demographic and Housing Characteristics File. The NMF consists of the full set of privacy-protected statistical queries (counts of individuals or housing units with particular combinations of characteristics) of confidential 2010 Census data relating to the redistricting data portion of the 2010 Demonstration Data Products Suite - Redistricting and Demographic and Housing Characteristics File - Production Settings (2023-04-03). These statistical queries, called "noisy measurements" were produced under the zero-Concentrated Differential Privacy framework (Bun, M. and Steinke, T [2016]; see also Dwork C. and Roth, A. [2014]) implemented via the discrete Gaussian mechanism (Cannone C., et al., [2023]), which added positive or negative integer-valued noise to each of the resulting counts. The noisy measurements are an intermediate stage of the TDA prior to the post-processing the TDA then performs to ensure internal and hierarchical consistency within the resulting tables. The Census Bureau has released these 2010 Census demonstration data to enable data users to evaluate the expected impact of disclosure avoidance variability on 2020 Census data. The 2010 Census Production Settings Redistricting Data (P.L. 94-171) Demonstration Noisy Measurement Files (2023-04-03) have been cleared for public dissemination by the Census Bureau Disclosure Review Board (CBDRB-FY22-DSEP-004). The data include zero-Concentrated Differentially Private (zCDP) (Bun, M. and Steinke, T [2016]) noisy measurements, implemented via the discrete Gaussian mechanism. These are estimated counts of individuals and housing units included in the 2010 Census Edited File (CEF), which includes confidential data initially collected in the 2010 Census of Population and Housing. The noisy measurements included in this file were subsequently post-processed by the TopDown Algorithm (TDA) to produce the 2010 Census Production Settings Privacy-Protected Microdata File - Redistricting (P.L. 94-171) and Demographic and Housing Characteristics File (2023-04-03) (https://www2.census.gov/programs-surveys/decennial/2020/program-management/data-product- planning/2010-demonstration-data-products/04 Demonstration_Data_Products_Suite/2023-04-03/). As these 2010 Census demonstration data are intended to support study of the design and expected impacts of the 2020 Disclosure Avoidance System, the 2010 CEF records were pre-processed before application of the zCDP framework. This pre-processing converted the 2010 CEF records into the input-file format, response codes, and tabulation categories used for the 2020 Census, which differ in substantive ways from the format, response codes, and tabulation categories originally used for the 2010 Census. The NMF provides estimates of counts of persons in the CEF by various characteristics and combinations of characteristics, including their reported race and ethnicity, whether they were of voting age, whether they resided in a housing unit or one of 7 group quarters types, and their census block of residence, after the addition of discrete Gaussian noise (with the scale parameter determined by the privacy-loss budget allocation for that particular query under zCDP). Noisy measurements of the counts of occupied and vacant housing units by census block are also included. Lastly, data on constraints--information into which no noise was infused by the Disclosure Avoidance System (DAS) and used by the TDA to post-process the noisy measurements into the 2010 Census Production Settings Privacy-Protected Microdata File - Redistricting (P.L. 94-171) and Demographic and Housing Characteristics File (2023-04-03) --are provided. These data are available for download (i.e. not restricted access). Due to their size, they must be downloaded through the link on this
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2023-05-11.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504866, Disclosure Review Board (DRB) approval number: CBDRB-FY23-0262)...Key Table Information:.Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series)...Data Items and Other Identifying Records:.Data include estimates on:.Number of nonemployer firms (firms without paid employees). Sales and receipts of nonemployer firms (reported in $1,000s of dollars)...These data are aggregated by the following demographic classifications of firm for:.All firms. Classifiable (firms classifiable by sex, ethnicity, race, and veteran status). . Sex. Female. Male. Equally male/female. . Ethnicity. Hispanic. Equally Hispanic/non-Hispanic. Non-Hispanic. . Race. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White). Equally minority/nonminority. Nonminority (Firms classified as non-Hispanic and White). . Veteran Status (defined as having served in any branch of the U.S. Armed Forces). Veteran. Equally veteran/nonveteran. Nonveteran. . . . Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status). ...The data are also shown by the following legal form of organization (LFO) categories:. S-Corporations. C-Corporations. Individual proprietorships. Partnerships...Data Notes:.. Business ownership is defined as having 51 percent or more of the stock or equity in the business. Data are provided for firms owned equally (50% / 50%) by men and women, by Hispanics and non-Hispanics, by minorities and nonminorities, and by veterans and nonveterans. Firms not classifiable by sex, ethnicity, race, and veteran status are counted and tabulated separately.. The detail may not add to the total or subtotal because a Hispanic firm may be of any race; because a firm could be tabulated in more than one racial group; or because the number of nonemployer firm's data are rounded.. For C-corporations, there is no tax form or business registry that clearly and unequivocally identifies all owners of this type of business. For this reason, the Census Bureau is unable to assign demographic characteristics for C-corporations. Data for C-corporations are included in the published tables but are not shown by the demographic characteristics of the firms....Industry and Geography Coverage:.The data are shown for the total for all sectors (00) and 2-digit NAICS code levels for:..United States. States and the District of Columbia. Metropolitan Statistical Areas...Data are also shown for the 3-digit NAICS code for:..United States...Data are excluded for the following NAICS industries:.Crop and Animal Production (NAICS 111 and 112). Rail Transportation (NAICS 482). Postal Service (NAICS 491). Monetary Authorities-Central Bank (NAICS 521). Funds, Trusts, and Other Financial Vehicles (NAICS 525). Management of Companies and Enterprises (NAICS 55). Private Households (NAICS 814). Public Administration (NAICS 92). Industries Not Classified (NAICS 99)...For more information about NAICS, see NAICS Codes & Understanding Industry Classification Systems. For information about geographies used by economic programs at the Census Bureau, see Economic Census: Economic Geographies...FTP Download:.Download the entire table at: https://www2.census.gov/programs-surveys/abs/data/2019/AB1900NESD03.zip...API Information:.Nonemployer Demographic Statistics data are housed in the Census Bureau API. For more information, see https://api.census.gov/data/2019/absnesd.html...Symbols:. D - Withheld to avoid disclosing data for individual companies; data are included in higher level totals. S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.. N - Not available or not comparable. X - Not applicable..The following symbols are used to identify the level of noise applied to the data:. G - Low noise: The cell valu...
These data were compiled to determine whether transient population dynamics substantially alter population growth rates of sagebrush after disturbance, impede resilience and restoration, and in turn drive ecosystem transformation. Data were collected from 2014-2016 on sagebrush population height distributions at 531 sites across the Great Basin that had burned and were subsequently reseeded by the BLM. These data include field data on sagebrush density in 6 size classes and site attributes (seeding year, sampling year, random site designation, elevation, seeding rate). Also included are modeled spring soil moisture data at each site from the year of seeding to sampling. This data release includes associated software code allows the inference of demographic rates (survival, reproduction, and individual growth) of sagebrush using Hamiltonian Monte Carlo approaches in Stan (https://mc-stan.org/).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Heterogeneities in contact networks have a major effect in determining whether a pathogen can become epidemic or persist at endemic levels. Epidemic models that determine which interventions can successfully prevent an outbreak need to account for social structure and mixing patterns. Contact patterns vary across age and locations (e.g. home, work, and school), and including them as predictors in transmission dynamic models of pathogens that spread socially will improve the models’ realism. Data from population-based contact diaries in eight European countries from the POLYMOD study were projected to 144 other countries using a Bayesian hierarchical model that estimated the proclivity of age-and-location-specific contact patterns for the countries, using Markov chain Monte Carlo simulation. Household level data from the Demographic and Health Surveys for nine lower-income countries and socio-demographic factors from several on-line databases for 152 countries were used to quantify similarity of countries to estimate contact patterns in the home, work, school and other locations for countries for which no contact data are available, accounting for demographic structure, household structure where known, and a variety of metrics including workforce participation and school enrolment. Contacts are highly assortative with age across all countries considered, but pronounced regional differences in the age-specific contacts at home were noticeable, with more inter-generational contacts in Asian countries than in other settings. Moreover, there were variations in contact patterns by location, with work-place contacts being least assortative. These variations led to differences in the effect of social distancing measures in an age structured epidemic model. Contacts have an important role in transmission dynamic models that use contact rates to characterize the spread of contact-transmissible diseases. This study provides estimates of mixing patterns for societies for which contact data such as POLYMOD are not yet available.
Report on Demographic Data in New York City Public Schools, 2020-21Enrollment counts are based on the November 13 Audited Register for 2020. Categories with total enrollment values of zero were omitted. Pre-K data includes students in 3-K. Data on students with disabilities, English language learners, and student poverty status are as of March 19, 2021. Due to missing demographic information in rare cases and suppression rules, demographic categories do not always add up to total enrollment and/or citywide totals. NYC DOE "Eligible for free or reduced-price lunch” counts are based on the number of students with families who have qualified for free or reduced-price lunch or are eligible for Human Resources Administration (HRA) benefits. English Language Arts and Math state assessment results for students in grade 9 are not available for inclusion in this report, as the spring 2020 exams did not take place. Spring 2021 ELA and Math test results are not included in this report for K-8 students in 2020-21. Due to the COVID-19 pandemic’s complete transformation of New York City’s school system during the 2020-21 school year, and in accordance with New York State guidance, the 2021 ELA and Math assessments were optional for students to take. As a result, 21.6% of students in grades 3-8 took the English assessment in 2021 and 20.5% of students in grades 3-8 took the Math assessment. These participation rates are not representative of New York City students and schools and are not comparable to prior years, so results are not included in this report. Dual Language enrollment includes English Language Learners and non-English Language Learners. Dual Language data are based on data from STARS; as a result, school participation and student enrollment in Dual Language programs may differ from the data in this report. STARS course scheduling and grade management software applications provide a dynamic internal data system for school use; while standard course codes exist, data are not always consistent from school to school. This report does not include enrollment at District 75 & 79 programs. Students enrolled at Young Adult Borough Centers are represented in the 9-12 District data but not the 9-12 School data. “Prior Year” data included in Comparison tabs refers to data from 2019-20. “Year-to-Year Change” data included in Comparison tabs indicates whether the demographics of a school or special program have grown more or less similar to its district or attendance zone (or school, for special programs) since 2019-20. Year-to-year changes must have been at least 1 percentage point to qualify as “More Similar” or “Less Similar”; changes less than 1 percentage point are categorized as “No Change”. The admissions method tab contains information on the admissions methods used for elementary, middle, and high school programs during the Fall 2020 admissions process. Fall 2020 selection criteria are included for all programs with academic screens, including middle and high school programs. Selection criteria data is based on school-reported information. Fall 2020 Diversity in Admissions priorities is included for applicable middle and high school programs. Note that the data on each school’s demographics and performance includes all students of the given subgroup who were enrolled in the school on November 13, 2020. Some of these students may not have been admitted under the admissions method(s) shown, as some students may have enrolled in the school outside the centralized admissions process (via waitlist, over-the-counter, or transfer), and schools may have changed admissions methods over the past few years. Admissions methods are only reported for grades K-12. "3K and Pre-Kindergarten data are reported at the site level. See below for definitions of site types included in this report. Additionally, please note that this report excludes all students at District 75 sites, reflecting slightly lower enrollment than our total of 60,265 students
The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.
The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.
National
The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.
Sample survey data
SAMPLE SIZE AND ALLOCATION
The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).
THE FRAME AND SAMPLE SELECTION
The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.
SAMPLE OUTCOME
The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.
Face-to-face
The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.
a) Household questionnaire
The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.
Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.
b) Individual questionnaire
The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers
The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever
From 2014 to 2015, with the aim of collecting data to monitor progress across Rwanda’s health programs and policies, the Government of Rwanda (GOR) conducted the Rwanda Demographic and Health Survey (RDHS) through the Ministry of Health (MOH) and the National Institute of Statistics of Rwanda (NISR) with the members of the national steering committee to the DHS and the technical assistance of ICF International.
The main objectives of the 2014-15 RDHS were to: • Collect data at the national level to calculate essential demographic indicators, especially fertility and infant and child mortality, and analyze the direct and indirect factors that relate to levels and trends in fertility and child mortality • Measure levels of knowledge and use of contraceptive methods among women and men • Collect data on family health, including immunization practices; prevalence and treatment of diarrhea, acute upper respiratory infections, and fever among children under age 5; antenatal care visits; assistance at delivery; and postnatal care • Collect data on knowledge, prevention, and treatment of malaria, in particular the possession and use of treated mosquito nets among household members, especially children under age 5 and pregnant women • Collect data on feeding practices for children, including breastfeeding • Collect data on the knowledge and attitudes of women and men regarding sexually transmitted infections (STIs) and HIV and evaluate recent behavioral changes with respect to condom use • Collect data for estimation of adult mortality and maternal mortality at the national level • Take anthropometric measurements to evaluate the nutritional status of children, men, and women • Assess the prevalence of malaria infection among children under age 5 and pregnant women using rapid diagnostic tests and blood smears • Estimate the prevalence of HIV among children age 0-14 and adults of reproductive age • Estimate the prevalence of anemia among children age 6-59 months and adult women of reproductive age • Collect information on early childhood development • Collect information on domestic violence
National coverage
The survey covered all de jure household members (usual residents), all women age 15-49 years and all men age 15-59 who were usual residents in the household.
Sample survey data [ssd]
Sample Design The sampling frame used for the 2014-15 RDHS was the 2012 Rwanda Population and Housing Census (RPHC). The sampling frame consisted of a list of enumeration areas (EAs) covering the entire country, provided by the National Institute of Statistics of Rwanda, the implementing agency for the RDHS. An EA is a natural village or part of a village created for the 2012 RPHC; these areas served as counting units for the census.
The 2014-15 RDHS followed a two-stage sample design and was intended to allow estimates of key indicators at the national level as well as for urban and rural areas, five provinces, and each of Rwanda's 30 districts (for some limited indicators). The first stage involved selecting sample points (clusters) consisting of EAs delineated for the 2012 RPHC. A total of 492 clusters were selected, 113 in urban areas and 379 in rural areas.
The second stage involved systematic sampling of households. A household listing operation was undertaken in all of the selected EAs from July 7 to September 6, 2014, and households to be included in the survey were randomly selected from these lists. Twenty-six households were selected from each sample point, for a total sample size of 12,792 households. However, during data collection, one of the households was found to actually be two households, which increased the total sample to 12,793. Because of the approximately equal sample sizes in each district, the sample is not self-weighting at the national level, and weighting factors have been added to the data file so that the results will be proportional at the national level.
All women age 15-49 who were either permanent residents of the household or visitors who stayed in the household the night before the survey were eligible to be interviewed. In half of the households, all men age 15-59 who either were permanent household residents or were visiting the night before the survey were eligible to be interviewed.
In the subsample of households not selected for the male survey, anemia and malaria testing were performed among eligible women who consented to being tested. With the parent's or guardian's consent, children aged 6-59 months were tested for anemia and malaria in this subsample. Height and weight information was collected from eligible women, and children (age 0-5) in the same subsample. In the subsample of households selected for male survey, blood spot samples were collected for laboratory testing of HIV from eligible women and men who consented. Height and weight information was collected from eligible men. In one-third of the same subsample (or 15 percent of the entire sample), blood spot samples were collected for laboratory testing of children age 0-14 for HIV.
The domestic violence module was implemented in the households selected for the male survey: The domestic violence module for men was implemented in 50 percent of the household selected for male survey and domestic violence for women was conducted in the remaining 50 percent of household selected for male survey (or 25 percent of the entire sample, each).
For further details on sample selection, see Appendix A of the final report.
Face-to-face [f2f]
Three types of questionnaires were used in the 2014-15 RDHS: the Household Questionnaire, the Woman’s Questionnaire, and the Man’s Questionnaire. They are based on questionnaires developed by the worldwide DHS Program and on questionnaires used during the 2010 RDHS. To reflect relevant issues in population and health in Rwanda, the questionnaires were adapted during a series of technical meetings with various stakeholders from government ministries and agencies, nongovernmental organizations, and international donors. The questionnaires were translated from English into Kinyarwanda.
The Household Questionnaire was used to list all of the usual members and visitors in the selected households as well as to identify women and men eligible for individual interviews. Basic information was collected on the characteristics of each person listed, including relationship to the head of the household, sex, residence status, age, and marital status along with survival status of children’s parents, education, birth registration, health insurance coverage, and tobacco use.
The Woman’s Questionnaire was administered to all women age 15-49 living in the sampled households.
The Man’s Questionnaire was administered to all men age 15-59 living in every second household in the sample. It was similar to the Woman’s Questionnaire but did not include questions on use of contraceptive methods or birth history; pregnancy and postnatal care; child immunization, health, and nutrition; or adult and maternal mortality.
The processing of the 2014-15 RDHS data began as soon as questionnaires were received from the field. Completed questionnaires were returned to NISR headquarters. The numbers of questionnaires and blood samples (DBS and malaria slides) were verified by two receptionists. Questionnaires were then checked, and open-ended questions were coded by four editors who had been trained for this task and who had also attended the questionnaire training sessions for the field staff. Blood samples (DBS and malaria slides) with transmittal sheets were sent respectively to the RBC/NRL and Parasitological and Entomology Laboratory to be screened for HIV and tested for malaria.
Questionnaire data were entered via the CSPro computer program by 17 data processing personnel who were specially trained to execute this activity. Data processing was coordinated by the NISR data processing officer. ICF International provided technical assistance during the entire data processing period.
Processing the data concurrently with data collection allowed for regular monitoring of team performance and data quality. Field check tables were generated regularly during data processing to check various data quality parameters. As a result, feedback was given on a regular basis, encouraging teams to continue in areas of high quality and to correct areas of needed improvement. Feedback was individually tailored to each team. Data entry, which included 100 percent double entry to minimize keying errors, and data editing were completed on April 26, 2015. Data cleaning and finalization were completed on May 15, 2015.
A total of 6,249 men age 15-59 were identified in this subsample of households. Of these men, 6,217 completed individual interviews, yielding a response rate of 99.5 percent.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2014-15 Rwanda
This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
The Ministry of Health and Social Welfare (MOHSW) initiated the 2004 Lesotho Demographic and Health Survey (LDHS) to collect population-based data to inform the Health Sector Reform Programme (2000-2009). The 2004 LDHS will assist in monitoring and evaluating the performance of the Health Sector Reform Programme since 2000 by providing data to be compared with data from the first baseline survey, which was conducted when the reform programme began. The LDHS survey will also provide crucial information to help define the targets for Phase II of the Health Sector Reform Programme (2005-2008). Additionally, the 2004 LDHS results will serve as the main source of key demographic indicators in Lesotho until the 2006 population census results are available.
The LDHS was conducted using a representative sample of women and men of reproductive age.
The specific objectives were to: - Provide data at national and district levels that allow the determination of demographic indicators, particularly fertility and childhood mortality rates; - Measure changes in fertility and contraceptive use and at the same time analyse the factors that affect these changes, such as marriage patterns, desire for children, availability of contraception, breastfeeding patterns, and important social and economic factors; - Examine the basic indicators of maternal and child health in Lesotho, including nutritional status, use of antenatal and maternity services, treatment of recent episodes of childhood illness, and immunisation coverage for children; - Describe the patterns of knowledge and behaviour related to the transmission of HIV/AIDS, other sexually transmitted infections, and tuberculosis; - Estimate adult and maternal mortality ratios at the national level; - Estimate the prevalence of anaemia among children, women and men, and the prevalence of HIV among women and men at the national and district levels.
National
Sample survey data
The sample for the 2004 LDHS covered the household population. A representative probability sample of more than 9,000 households was selected for the 2004 LDHS sample. This sample was constructed to allow for separate estimates for key indicators in each of the ten districts in Lesotho, as well as for urban and rural areas separately.
The survey utilized a two-stage sample design. In the first stage, 405 clusters (109 in the urban and 296 in the rural areas) were selected from a list of enumeration areas from the 1996 Population Census frame. In the second stage, a complete listing of households was carried out in each selected cluster. Households were then systematically selected for participation in the survey.
All women age 15-49 who were either permanent household residents in the 2004 LDHS sample or visitors present in the household on the night before the survey were eligible to be interviewed. In addition, in every second household selected for the survey, all men age 15-59 years were eligible to be interviewed if they were either permanent residents or visitors present in the household on the night before the survey. In the households selected for the men's survey, height and weight measurements were taken for eligible women and children under five years of age. Additionally, eligible women, men, and children under age five were tested in the field for anaemia, and eligible women and men were asked for an additional blood sample for anonymous testing for HIV.
Note: See detailed sample implementation in the APPENDIX A of the final 2004 Lesotho Demographic and Health Survey Final Report.
Face-to-face
Three questionnaires were used for the 2004 LDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. To reflect relevant issues in population and health in Lesotho, the questionnaires were adapted during a series of technical meetings with various stakeholders from government ministries and agencies, nongovernmental organizations and international donors. The final draft of the questionnaire was discussed at a large meeting of the LDHS Technical Committee organized by the MOHSW and BOS. The adapted questionnaires were translated from English into Sesotho and pretested during June 2004.
The Household Questionnaire was used to list all of the usual members and visitors in the selected households. The main purpose of the Household Questionnaire was to identify women and men who were eligible for the individual interview. Some basic information was also collected on the characteristics of each person listed, including age, sex, education, residence and emigration status, and relationship to the head of the household. For children under 18, survival status of the parents was determined. The Household Questionnaire also collected information on characteristics of the household’s dwelling unit, such as the source of water, type of toilet facilities, materials used for the floor of the house, ownership of various durable goods, and access to health facilities. For households selected for the male survey subsample, the questionnaire was used to record height, weight, and haemoglobin measurements of women, men and children, and the respondents’ decision about whether to volunteer to give blood samples for HIV.
The Women’s Questionnaire was used to collect information from all women age 15-49. The women were asked questions on the following topics: - Background characteristics (education, residential history, media exposure, etc.) - Birth history and childhood mortality - Knowledge and use of family planning methods - Fertility preferences - Antenatal and delivery care - Breastfeeding and infant feeding practices - Vaccinations and childhood illnesses - Marriage and sexual activity - Woman’s work and husband’s background characteristics - Awareness and behaviour regarding AIDS, other sexually transmitted infections (STIs), and tuberculosis (TB) - Maternal mortality
The Men’s Questionnaire was administered to all men age 15-59 living in every other household in the 2004-05 LDHS sample. The Men’s Questionnaire collected much of the same information found in the Women’s Questionnaire, but was shorter because it did not contain a detailed reproductive history or questions on maternal and child health, nutrition, and maternal mortality.
Geographic coordinates were collected for each EA in the 2004 LDHS.
The processing of the 2004 LDHS results began shortly after the fieldwork commenced. Completed questionnaires were returned periodically from the field to BOS headquarters, where they were entered and edited by data processing personnel who were specially trained for this task. The data processing personnel included two supervisors, two questionnaire administrators/office editors-who ensured that the expected number of questionnaires from each cluster was received-16 data entry operators, and two secondary editors. The concurrent processing of the data was an advantage because BOS was able to advise field teams of problems detected during the data entry. In particular, tables were generated to check various data quality parameters. As a result, specific feedback was given to the teams to improve performance. The data entry and editing phase of the survey was completed in May 2005.
Response rates are important because high non-response may affect the reliability of the results. A total of 9,903 households were selected for the sample, of which 9,025 were found to be occupied during data collection. Of the 9,025 existing households, 8,592 were successfully interviewed, yielding a household response rate of 95 percent.
In these households, 7,522 women were identified as eligible for the individual interview. Interviews were completed with 94 percent of these women. Of the 3,305 eligible men identified, 85 percent were successfully interviewed. The response rate for urban women and men is somewhat higher than for rural respondents (96 percent compared with 94 percent for women and 88 percent compared with 84 percent for men). The principal reason for non-response among eligible women and men was the failure to find individuals at home despite repeated visits to the household. The lower response rate for men reflects the more frequent and longer absences of men from the household, principally because of employment and life style.
Response rates for the HIV testing component were lower than those for the interviews.
See summarized response rates in Table 1.2 of the Final Report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2004 Lesotho Demographic and Health Survey (LSDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2004 LSDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Reference Layer: Popular Demographics in the United States_This feature layer provides Esri 2018 demographic estimates for popular variables including: 2018 Total Population, 2018 Household Population, 2018 Median Age, 2018 Median Household Income, 2018 Per Capita Income, 2018 Diversity Index and many more. Data is available from country, state, county, ZIP Code, tract, and block group level with adjustable scale visibility. It is intended as a sample feature service to demonstrate smart mapping capabilities with Esri's Demographic data. Example feature views and web maps built from this layer include:Predominant Generations in the United StatesUnemployment in the United StatesMedian Home Value and IncomePopulation Growth or Decline?For more information, visit the Updated Demographics documentation. For a full list of variables, click the Data tab. Note: This layer will not being continuously updated or maintained. Note: This data has been filtered from a national dataset: https://bcgis.maps.arcgis.com/home/item.html?id=2718975e52e24286acf8c3882b7ceb18 to only show Broward County Statistics
Sourcing accurate and up-to-date demographic data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.
GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent demographic datasets across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.
With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:
Premium demographics data for Asia and MENA includes the latest estimates (updated annually) on:
Primary Use Cases for GapMaps Demographic Data:
Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.
Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)
Tenant Recruitment
Target Marketing
Market Potential / Gap Analysis
Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
Customer Profiling
Target Marketing
Market Share Analysis
Population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2023 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries as of July 1, 2023. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/)released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Fields:CT20: 2020 Census tractFIP22: 2023 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2023) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP23CSA: 2020 census tract with 2023 city FIPs for incorporated cities and unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP23_AGE_0_4: 2023 population 0 to 4 years oldPOP23_AGE_5_9: 2023 population 5 to 9 years old POP23_AGE_10_14: 2023 population 10 to 14 years old POP23_AGE_15_17: 2022 population 15 to 17 years old POP23_AGE_18_19: 2023 population 18 to 19 years old POP23_AGE_20_44: 2023 population 20 to 24 years old POP23_AGE_25_29: 2023 population 25 to 29 years old POP23_AGE_30_34: 2023 population 30 to 34 years old POP23_AGE_35_44: 2023 population 35 to 44 years old POP23_AGE_45_54: 2023 population 45 to 54 years old POP23_AGE_55_64: 2023 population 55 to 64 years old POP23_AGE_65_74: 2023 population 65 to 74 years old POP23_AGE_75_84: 2023 population 75 to 84 years old POP23_AGE_85_100: 2023 population 85 years and older POP23_WHITE: 2023 Non-Hispanic White POP23_BLACK: 2023 Non-Hispanic African AmericanPOP23_AIAN: 2023 Non-Hispanic American Indian or Alaska NativePOP23_ASIAN: 2023 Non-Hispanic Asian POP23_HNPI: 2023 Non-Hispanic Hawaiian Native or Pacific IslanderPOP23_HISPANIC: 2023 HispanicPOP23_MALE: 2023 Male POP23_FEMALE: 2023 Female POV23_WHITE: 2023 Non-Hispanic White below 100% Federal Poverty Level POV23_BLACK: 2023 Non-Hispanic African American below 100% Federal Poverty Level POV23_AIAN: 2023 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV23_ASIAN: 2023 Non-Hispanic Asian below 100% Federal Poverty Level POV23_HNPI: 2023 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV23_HISPANIC: 2023 Hispanic below 100% Federal Poverty Level POV23_TOTAL: 2023 Total population below 100% Federal Poverty Level POP23_TOTAL: 2023 Total PopulationAREA_SQMil: Area in square mile.POP23_DENSITY: 2023 Population per square mile.POV23_PERCENT: 2023 Poverty rate/percentage.How this data created?Population by age groups, ethnic groups and gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Notes:1. Population and poverty data estimated as of July 1, 2023. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundaries are as of July 1, 2023.
https://www.icpsr.umich.edu/web/ICPSR/studies/8310/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8310/terms
This data collection provides information on the characteristics of the housing inventory in 12 Standard Metropolitan Statistical Areas (SMSAs). Data include year the structure was built, type and number of living quarters, occupancy status, presence of commercial establishments on the property, presence of a garage, and property value. Additional data focus on kitchen and plumbing facilities, type of heating fuel used, source of water, sewage disposal, and heating and air conditioning equipment. Information about housing expenses includes mortgage or rent payments, utility costs, garbage collection fees, property insurance, and real estate taxes as well as repairs, additions, or alterations to the property. Similar data are provided for housing units previously occupied by respondents who had recently moved. Indicators of housing and neighborhood quality are also supplied. Housing quality variables include privacy of bedrooms, condition of kitchen facilities, basement or roof leakage, presence of cracks or holes in walls, ceilings, or floor, reliability of plumbing and heating equipment, and concealed electrical wiring. The presence of storm doors and windows and insulation was also noted. Neighborhood quality variables indicate presence of and objection to street noise, odors, crime, litter, and rundown and abandoned structures, as well as the adequacy of street lighting, public transportation, public parks, schools, shopping facilities, and police and fire protection. Extensive information on the ability of handicapped persons to move around their homes is also provided. Respondents were asked if they needed special equipment, or the help of another person to move around. They were also asked about the presence or need for housing features to aid their movement, such as ramps, braille lettering, elevators, and extra wide doors. In addition to housing characteristics, demographic data for household members are provided, including sex, age, race, income, marital status, and household relationship. Additional data are available for the household head, including Hispanic origin, length of residence, and travel-to-work information.
"Enrollment counts are based on the October 31 Audited Register for the 2017-18 to 2019-20 school years. To account for the delay in the start of the school year, enrollment counts are based on the November 13 Audited Register for 2020-21 and the November 12 Audited Register for 2021-22. * Please note that October 31 (and November 12-13) enrollment is not audited for charter schools or Pre-K Early Education Centers (NYCEECs). Charter schools are required to submit enrollment as of BEDS Day, the first Wednesday in October, to the New York State Department of Education." Enrollment counts in the Demographic Snapshot will likely exceed operational enrollment counts due to the fact that long-term absence (LTA) students are excluded for funding purposes. Data on students with disabilities, English Language Learners, students' povery status, and students' Economic Need Value are as of the June 30 for each school year except in 2021-22. Data on SWDs, ELLs, Poverty, and ENI in the 2021-22 school year are as of March 7, 2022. 3-K and Pre-K enrollment totals include students in both full-day and half-day programs. Four-year-old students enrolled in Family Childcare Centers are categorized as 3K students for the purposes of this report. All schools listed are as of the 2021-22 school year. Schools closed before 2021-22 are not included in the school level tab but are included in the data for citywide, borough, and district. Programs and Pre-K NYC Early Education Centers (NYCEECs) are not included on the school-level tab. Due to missing demographic information in rare cases at the time of the enrollment snapshot, demographic categories do not always add up to citywide totals. Students with disabilities are defined as any child receiving an Individualized Education Program (IEP) as of the end of the school year (or March 7 for 2021-22). NYC DOE "Poverty" counts are based on the number of students with families who have qualified for free or reduced price lunch, or are eligible for Human Resources Administration (HRA) benefits. In previous years, the poverty indicator also included students enrolled in a Universal Meal School (USM), where all students automatically qualified, with the exception of middle schools, D75 schools and Pre-K centers. In 2017-18, all students in NYC schools became eligible for free lunch. In order to better reflect free and reduced price lunch status, the poverty indicator does not include student USM status, and retroactively applies this rule to previous years. "The school’s Economic Need Index is the average of its students’ Economic Need Values. The Economic Need Index (ENI) estimates the percentage of students facing economic hardship. The 2014-15 school year is the first year we provide ENI estimates. The metric is calculated as follows: * The student’s Economic Need Value is 1.0 if: o The student is eligible for public assistance from the NYC Human Resources Administration (HRA); o The student lived in temporary housing in the past four years; or o The student is in high school, has a home language other than English, and entered the NYC DOE for the first time within the last four years. * Otherwise, the student’s Economic Need Value is based on the percentage of families (with school-age children) in the student’s census tract whose income is below the poverty level, as estimated by the American Community Survey 5-Year estimate (2020 ACS estimates were used in calculations for 2021-22 ENI). The student’s Economic Need Value equals this percentage divided by 100.
Due to differences in the timing of when student demographic, address and census data were pulled, ENI values may vary, slightly, from the ENI values reported in the School Quality Reports.
In previous years, student census tract data was based on students’ addresses at the time of ENI calculation. Beginning in 2018-19, census tract data is based on students’ addresses as of the Audited Register date of the given school year.
In previous years, the most recent new entry date was used for students with multiple entry dates into the NYCDOE. Beginning in 2018-19, students’ earliest entry date is used in ENI calculations.
Beginning in 2018-19, students missing ENI data are imputed with the average ENI at their school. " In order to maintain student privacy, schools with % Poverty and ENI values below 5% or above 95% have had their exact values for each category replaced with "Below 5%" and "Above 95%", respectively. Before the start of the 2017-18 school year, the New York State Education Department implemented a new data matching process that refined the methods to identify families eligible for free lunch. This new matching system provides a more efficient and accurate process for matching students across a range of forms that families already complete. This new matching process yielded an increase in the number of students directly certified for free lunch (in other words, matched to another government program) and therefore increased the direct certification rate. As such, the increase in the percent of students in poverty and the Economic Need Index for the 2017-18 school year and later reflects this new matching process, which allows the City to better identify students eligible for free lunch. Approximately 25% of charter schools in NYC do not use NYC DOE School Food to provide meal services. The NYC DOE Office of School Food does not collect documentation on students’ eligibility for Free or Reduced Price Lunch from schools that do not utilize NYC DOE School Food. As a result, the Poverty figures may be understated for approximately 25% of charter schools. New York State Education Department begins administering assessments to be identified as an English Language Learner (ELL) in Kindergarten, but students in Pre-K are still included in the denominator for the ELL calculations. Also, Pre-K NYC Early Education Centers do not use NYC DOE School Food to provide meal services, but are included in the denominator for Poverty calculations.
Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.