Altosight | AI Custom Web Scraping Data
✦ Altosight provides global web scraping data services with AI-powered technology that bypasses CAPTCHAs, blocking mechanisms, and handles dynamic content.
We extract data from marketplaces like Amazon, aggregators, e-commerce, and real estate websites, ensuring comprehensive and accurate results.
✦ Our solution offers free unlimited data points across any project, with no additional setup costs.
We deliver data through flexible methods such as API, CSV, JSON, and FTP, all at no extra charge.
― Key Use Cases ―
➤ Price Monitoring & Repricing Solutions
🔹 Automatic repricing, AI-driven repricing, and custom repricing rules 🔹 Receive price suggestions via API or CSV to stay competitive 🔹 Track competitors in real-time or at scheduled intervals
➤ E-commerce Optimization
🔹 Extract product prices, reviews, ratings, images, and trends 🔹 Identify trending products and enhance your e-commerce strategy 🔹 Build dropshipping tools or marketplace optimization platforms with our data
➤ Product Assortment Analysis
🔹 Extract the entire product catalog from competitor websites 🔹 Analyze product assortment to refine your own offerings and identify gaps 🔹 Understand competitor strategies and optimize your product lineup
➤ Marketplaces & Aggregators
🔹 Crawl entire product categories and track best-sellers 🔹 Monitor position changes across categories 🔹 Identify which eRetailers sell specific brands and which SKUs for better market analysis
➤ Business Website Data
🔹 Extract detailed company profiles, including financial statements, key personnel, industry reports, and market trends, enabling in-depth competitor and market analysis
🔹 Collect customer reviews and ratings from business websites to analyze brand sentiment and product performance, helping businesses refine their strategies
➤ Domain Name Data
🔹 Access comprehensive data, including domain registration details, ownership information, expiration dates, and contact information. Ideal for market research, brand monitoring, lead generation, and cybersecurity efforts
➤ Real Estate Data
🔹 Access property listings, prices, and availability 🔹 Analyze trends and opportunities for investment or sales strategies
― Data Collection & Quality ―
► Publicly Sourced Data: Altosight collects web scraping data from publicly available websites, online platforms, and industry-specific aggregators
► AI-Powered Scraping: Our technology handles dynamic content, JavaScript-heavy sites, and pagination, ensuring complete data extraction
► High Data Quality: We clean and structure unstructured data, ensuring it is reliable, accurate, and delivered in formats such as API, CSV, JSON, and more
► Industry Coverage: We serve industries including e-commerce, real estate, travel, finance, and more. Our solution supports use cases like market research, competitive analysis, and business intelligence
► Bulk Data Extraction: We support large-scale data extraction from multiple websites, allowing you to gather millions of data points across industries in a single project
► Scalable Infrastructure: Our platform is built to scale with your needs, allowing seamless extraction for projects of any size, from small pilot projects to ongoing, large-scale data extraction
― Why Choose Altosight? ―
✔ Unlimited Data Points: Altosight offers unlimited free attributes, meaning you can extract as many data points from a page as you need without extra charges
✔ Proprietary Anti-Blocking Technology: Altosight utilizes proprietary techniques to bypass blocking mechanisms, including CAPTCHAs, Cloudflare, and other obstacles. This ensures uninterrupted access to data, no matter how complex the target websites are
✔ Flexible Across Industries: Our crawlers easily adapt across industries, including e-commerce, real estate, finance, and more. We offer customized data solutions tailored to specific needs
✔ GDPR & CCPA Compliance: Your data is handled securely and ethically, ensuring compliance with GDPR, CCPA and other regulations
✔ No Setup or Infrastructure Costs: Start scraping without worrying about additional costs. We provide a hassle-free experience with fast project deployment
✔ Free Data Delivery Methods: Receive your data via API, CSV, JSON, or FTP at no extra charge. We ensure seamless integration with your systems
✔ Fast Support: Our team is always available via phone and email, resolving over 90% of support tickets within the same day
― Custom Projects & Real-Time Data ―
✦ Tailored Solutions: Every business has unique needs, which is why Altosight offers custom data projects. Contact us for a feasibility analysis, and we’ll design a solution that fits your goals
✦ Real-Time Data: Whether you need real-time data delivery or scheduled updates, we provide the flexibility to receive data when you need it. Track price changes, monitor product trends, or gather...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This traffic-count data is provided by the City of Pittsburgh's Department of Mobility & Infrastructure (DOMI). Counters were deployed as part of traffic studies, including intersection studies, and studies covering where or whether to install speed humps. In some cases, data may have been collected by the Southwestern Pennsylvania Commission (SPC) or BikePGH.
Data is currently available for only the most-recent count at each location.
Traffic count data is important to the process for deciding where to install speed humps. According to DOMI, they may only be legally installed on streets where traffic counts fall below a minimum threshhold. Residents can request an evaluation of their street as part of DOMI's Neighborhood Traffic Calming Program. The City has also shared data on the impact of the Neighborhood Traffic Calming Program in reducing speeds.
Different studies may collect different data. Speed hump studies capture counts and speeds. SPC and BikePGH conduct counts of cyclists. Intersection studies included in this dataset may not include traffic counts, but reports of individual studies may be requested from the City. Despite the lack of count data, intersection studies are included to facilitate data requests.
Data captured by different types of counting devices are included in this data. StatTrak counters are in use by the City, and capture data on counts and speeds. More information about these devices may be found on the company's website. Data includes traffic counts and average speeds, and may also include separate counts of bicycles.
Tubes are deployed by both SPC and BikePGH and used to count cyclists. SPC may also deploy video counters to collect data.
NOTE: The data in this dataset has not updated since 2021 because of a broken data feed. We're working to fix it.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Santa Barbara Channel map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Santa Barbara Channel map area data layers. Data layers are symbolized as shown on the associated map sheets.
In 2024, children in the United Kingdom spent an average of *** minutes per day on TikTok. This was followed by Instagram, as children in the UK reported using the app for an average of ** minutes daily. Children in the UK aged between four and 18 years also used Facebook for ** minutes a day on average in the measured period. Mobile ownership and usage among UK children In 2021, around ** percent of kids aged between eight and 11 years in the UK owned a smartphone, while children aged between five and seven having access to their own device were approximately ** percent. Mobile phones were also the second most popular devices used to access the web by children aged between eight and 11 years, as tablet computers were still the most popular option for users aged between three and 11 years. Children were not immune to the popularity acquired by short video format content in 2020 and 2021, spending an average of ** minutes per day engaging with TikTok, as well as over ** minutes on the YouTube app in 2021. Children data protection In 2021, ** percent of U.S. parents and ** percent of UK parents reported being slightly concerned with their children’s device usage habits. While the share of parents reporting to be very or extremely concerned was considerably smaller, children are considered among the most vulnerable digital audiences and need additional attention when it comes to data and privacy protection. According to a study conducted during the first quarter of 2022, ** percent of children’s apps hosted in the Google Play Store and ** percent of apps hosted in the Apple App Store transmitted users’ locations to advertisers. Additionally, ** percent of kids’ apps were found to collect persistent identifiers, such as users’ IP addresses, which could potentially lead to Children’s Online Privacy Protection Act (COPPA) violations in the United States. In the United Kingdom, companies have to take into account several obligations when considering online environments for children, including an age-appropriate design and avoiding sharing children’s data.
In November 2024, Google.com was the most popular website worldwide with 136 billion average monthly visits. The online platform has held the top spot as the most popular website since June 2010, when it pulled ahead of Yahoo into first place. Second-ranked YouTube generated more than 72.8 billion monthly visits in the measured period. The internet leaders: search, social, and e-commerce Social networks, search engines, and e-commerce websites shape the online experience as we know it. While Google leads the global online search market by far, YouTube and Facebook have become the world’s most popular websites for user generated content, solidifying Alphabet’s and Meta’s leadership over the online landscape. Meanwhile, websites such as Amazon and eBay generate millions in profits from the sale and distribution of goods, making the e-market sector an integral part of the global retail scene. What is next for online content? Powering social media and websites like Reddit and Wikipedia, user-generated content keeps moving the internet’s engines. However, the rise of generative artificial intelligence will bring significant changes to how online content is produced and handled. ChatGPT is already transforming how online search is performed, and news of Google's 2024 deal for licensing Reddit content to train large language models (LLMs) signal that the internet is likely to go through a new revolution. While AI's impact on the online market might bring both opportunities and challenges, effective content management will remain crucial for profitability on the web.
Our consumer data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.
Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.
Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:
Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).
Consumer Graph Use Cases:
360-Degree Customer View:Get a comprehensive image of customers by the means of internal and external data aggregation.
Data Enrichment:Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment
Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.
Advertising & Marketing:Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.
Using Factori Consumer Data graph you can solve use cases like:
Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.
Lookalike Modeling
Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers
And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data
Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries. The online data files begin with 1929 and are at the time of this writing at the Version 8 software level. Over 9000 stations' data are typically available. The daily elements included in the dataset (as available from each station) are: Mean temperature (.1 Fahrenheit) Mean dew point (.1 Fahrenheit) Mean sea level pressure (.1 mb) Mean station pressure (.1 mb) Mean visibility (.1 miles) Mean wind speed (.1 knots) Maximum sustained wind speed (.1 knots) Maximum wind gust (.1 knots) Maximum temperature (.1 Fahrenheit) Minimum temperature (.1 Fahrenheit) Precipitation amount (.01 inches) Snow depth (.1 inches) Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel Cloud Global summary of day data for 18 surface meteorological elements are derived from the synoptic/hourly observations contained in USAF DATSAV3 Surface data and Federal Climate Complex Integrated Surface Hourly (ISH). Historical data are generally available for 1929 to the present, with data from 1973 to the present being the most complete. For some periods, one or more countries' data may not be available due to data restrictions or communications problems. In deriving the summary of day data, a minimum of 4 observations for the day must be present (allows for stations which report 4 synoptic observations/day). Since the data are converted to constant units (e.g, knots), slight rounding error from the originally reported values may occur (e.g, 9.9 instead of 10.0). The mean daily values described below are based on the hours of operation for the station. For some stations/countries, the visibility will sometimes 'cluster' around a value (such as 10 miles) due to the practice of not reporting visibilities greater than certain distances. The daily extremes and totals--maximum wind gust, precipitation amount, and snow depth--will only appear if the station reports the data sufficiently to provide a valid value. Therefore, these three elements will appear less frequently than other values. Also, these elements are derived from the stations' reports during the day, and may comprise a 24-hour period which includes a portion of the previous day. The data are reported and summarized based on Greenwich Mean Time (GMT, 0000Z - 2359Z) since the original synoptic/hourly data are reported and based on GMT.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
rxivist.org allowed readers to sort and filter the tens of thousands of preprints posted to bioRxiv and medRxiv. Rxivist used a custom web crawler to index all papers posted to those two websites; this is a snapshot of Rxivist the production database. The version number indicates the date on which the snapshot was taken. See the included "README.md" file for instructions on how to use the "rxivist.backup" file to import data into a PostgreSQL database server.
Please note this is a different repository than the one used for the Rxivist manuscript—that is in a separate Zenodo repository. You're welcome (and encouraged!) to use this data in your research, but please cite our paper, now published in eLife.
Previous versions are also available pre-loaded into Docker images, available at blekhmanlab/rxivist_data.
Version notes:
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
We used this dataset to assess the strength of isolation due to geographic and macroclimatic distance across island and mainland systems, comparing published measurements of phenotypic traits and neutral genetic diversity for populations of plants and animals worldwide. The dataset includes 112 studies of 108 species (72 animals and 36 plants) in 868 island populations and 760 mainland populations, with population-level taxonomic and biogeographic information, totalling 7438 records. Methods Description of methods used for collection/generation of data: We searched the ISI Web of Science in March 2017 for comparative studies that included data on phenotypic traits and/or neutral genetic diversity of populations on true islands and on mainland sites in any taxonomic group. Search terms were 'island' and ('mainland' or 'continental') and 'population*' and ('demograph*' or 'fitness' or 'survival' or 'growth' or 'reproduc*' or 'density' or 'abundance' or 'size' or 'genetic diversity' or 'genetic structure' or 'population genetics') and ('plant*' or 'tree*' or 'shrub*or 'animal*' or 'bird*' or 'amphibian*' or 'mammal*' or 'reptile*' or 'lizard*' or 'snake*' or 'fish'), subsequently refined to the Web of Science categories 'Ecology' or 'Evolutionary Biology' or 'Zoology' or 'Genetics Heredity' or 'Biodiversity Conservation' or 'Marine Freshwater Biology' or 'Plant Sciences' or 'Geography Physical' or 'Ornithology' or 'Biochemistry Molecular Biology' or 'Multidisciplinary Sciences' or 'Environmental Sciences' or 'Fisheries' or 'Oceanography' or 'Biology' or 'Forestry' or 'Reproductive Biology' or 'Behavioral Sciences'. The search included the whole text including abstract and title, but only abstracts and titles were searchable for older papers depending on the journal. The search returned 1237 papers which were distributed among coauthors for further scrutiny. First paper filter To be useful, the papers must have met the following criteria: Overall study design criteria: Include at least two separate islands and two mainland populations; Eliminate studies comparing populations on several islands where there were no clear mainland vs. island comparisons; Present primary research data (e.g., meta-analyses were discarded); Include a field study (e.g., experimental studies and ex situ populations were discarded); Can include data from sub-populations pooled within an island or within a mainland population (but not between islands or between mainland sites); Island criteria: Island populations situated on separate islands (papers where all information on island populations originated from a single island were discarded); Can include multiple populations recorded on the same island, if there is more than one island in the study; While we accepted the authors' judgement about island vs. mainland status, in 19 papers we made our own judgement based on the relative size of the island or position relative to the mainland (e.g. Honshu Island of Japan, sized 227 960 km² was interpreted as mainland relative to islands less than 91 km²); Include islands surrounded by sea water but not islands in a lake or big river; Include islands regardless of origin (continental shelf, volcanic); Taxonomic criteria: Include any taxonomic group; The paper must compare populations within a single species; Do not include marine species (including coastline organisms); Databases used to check species delimitation: Handbook of Birds of the World (www.hbw.com/); International Plant Names Index (https://www.ipni.org/); Plants of the World Online(https://powo.science.kew.org/); Handbook of the Mammals of the World; Global Biodiversity Information Facility (https://www.gbif.org/); Biogeographic criteria: Include all continents, as well as studies on multiple continents; Do not include papers regarding migratory species; Only include old / historical invasions to islands (>50 yrs); do not include recent invasions; Response criteria: Do not include studies which report community-level responses such as species richness; Include genetic diversity measures and/or individual and population-level phenotypic trait responses; The first paper filter resulted in 235 papers which were randomly reassigned for a second round of filtering. Second paper filter In the second filter, we excluded papers that did not provide population geographic coordinates and population-level quantitative data, unless data were provided upon contacting the authors or could be obtained from figures using DataThief (Tummers 2006). We visually inspected maps plotted for each study separately and we made minor adjustments to the GPS coordinates when the coordinates placed the focal population off the island or mainland. For this study, we included only responses measured at the individual level, therefore we removed papers referring to demographic performance and traits such as immunity, behaviour and diet that are heavily reliant on ecosystem context. We extracted data on population-level mean for two broad categories of response: i) broad phenotypic measures, which included traits (size, weight and morphology of entire body or body parts), metabolism products, physiology, vital rates (growth, survival, reproduction) and mean age of sampled mature individuals; and ii) genetic diversity, which included heterozygosity,allelic richness, number of alleles per locus etc. The final dataset includes 112 studies and 108 species. Methods for processing the data: We made minor adjustments to the GPS location of some populations upon visual inspection on Google Maps of the correct overlay of the data point with the indicated island body or mainland. For each population we extracted four climate variables reflecting mean and variation in temperature and precipitation available in CliMond V1.2 (Kritikos et al. 2012) at 10 minutes resolution: mean annual temperature (Bio1), annual precipitation (Bio12), temperature seasonality (CV) (Bio4) and precipitation seasonality (CV) (Bio15) using the "prcomp function" in the stats package in R. For populations where climate variables were not available on the global climate maps mostly due to small island size not captured in CliMond, we extracted data from the geographically closest grid cell with available climate values, which was available within 3.5 km away from the focal grid cell for all localities. We normalised the four climate variables using the "normalizer" package in R (Vilela 2020), and we performed a Principal Component Analysis (PCA) using the psych package in R (Revelle 2018). We saved the loadings of the axes for further analyses. References:
Bruno Vilela (2020). normalizer: Making data normal again.. R package version 0.1.0. Kriticos, D.J., Webber, B.L., Leriche, A., Ota, N., Macadam, I., Bathols, J., et al.(2012). CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol., 3, 53--64. Revelle, W. (2018) psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois, USA, https://CRAN.R-project.org/package=psych Version = 1.8.12. Tummers, B. (2006). DataThief III. https://datathief.org/
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
[Note: Integrated as part of FoodData Central, April 2019.] The database consists of several sets of data: food descriptions, nutrients, weights and measures, footnotes, and sources of data. The Nutrient Data file contains mean nutrient values per 100 g of the edible portion of food, along with fields to further describe the mean value. Information is provided on household measures for food items. Weights are given for edible material without refuse. Footnotes are provided for a few items where information about food description, weights and measures, or nutrient values could not be accommodated in existing fields. Data have been compiled from published and unpublished sources. Published data sources include the scientific literature. Unpublished data include those obtained from the food industry, other government agencies, and research conducted under contracts initiated by USDA’s Agricultural Research Service (ARS). Updated data have been published electronically on the USDA Nutrient Data Laboratory (NDL) web site since 1992. Standard Reference (SR) 28 includes composition data for all the food groups and nutrients published in the 21 volumes of "Agriculture Handbook 8" (US Department of Agriculture 1976-92), and its four supplements (US Department of Agriculture 1990-93), which superseded the 1963 edition (Watt and Merrill, 1963). SR28 supersedes all previous releases, including the printed versions, in the event of any differences. Attribution for photos: Photo 1: k7246-9 Copyright free, public domain photo by Scott Bauer Photo 2: k8234-2 Copyright free, public domain photo by Scott Bauer Resources in this dataset:Resource Title: READ ME - Documentation and User Guide - Composition of Foods Raw, Processed, Prepared - USDA National Nutrient Database for Standard Reference, Release 28. File Name: sr28_doc.pdfResource Software Recommended: Adobe Acrobat Reader,url: http://www.adobe.com/prodindex/acrobat/readstep.html Resource Title: ASCII (6.0Mb; ISO/IEC 8859-1). File Name: sr28asc.zipResource Description: Delimited file suitable for importing into many programs. The tables are organized in a relational format, and can be used with a relational database management system (RDBMS), which will allow you to form your own queries and generate custom reports.Resource Title: ACCESS (25.2Mb). File Name: sr28db.zipResource Description: This file contains the SR28 data imported into a Microsoft Access (2007 or later) database. It includes relationships between files and a few sample queries and reports.Resource Title: ASCII (Abbreviated; 1.1Mb; ISO/IEC 8859-1). File Name: sr28abbr.zipResource Description: Delimited file suitable for importing into many programs. This file contains data for all food items in SR28, but not all nutrient values--starch, fluoride, betaine, vitamin D2 and D3, added vitamin E, added vitamin B12, alcohol, caffeine, theobromine, phytosterols, individual amino acids, individual fatty acids, or individual sugars are not included. These data are presented per 100 grams, edible portion. Up to two household measures are also provided, allowing the user to calculate the values per household measure, if desired.Resource Title: Excel (Abbreviated; 2.9Mb). File Name: sr28abxl.zipResource Description: For use with Microsoft Excel (2007 or later), but can also be used by many other spreadsheet programs. This file contains data for all food items in SR28, but not all nutrient values--starch, fluoride, betaine, vitamin D2 and D3, added vitamin E, added vitamin B12, alcohol, caffeine, theobromine, phytosterols, individual amino acids, individual fatty acids, or individual sugars are not included. These data are presented per 100 grams, edible portion. Up to two household measures are also provided, allowing the user to calculate the values per household measure, if desired.Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/ Resource Title: ASCII (Update Files; 1.1Mb; ISO/IEC 8859-1). File Name: sr28upd.zipResource Description: Update Files - Contains updates for those users who have loaded Release 27 into their own programs and wish to do their own updates. These files contain the updates between SR27 and SR28. Delimited file suitable for import into many programs.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore Pacifica map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Pacifica map area data layers. Data layers are symbolized as shown on the associated map sheets.
https://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-licensehttps://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-license
On October 15, 2013, Louisville Mayor Greg Fischer announced the signing of an open data policy executive order in conjunction with his compelling talk at the 2013 Code for America Summit. In nonchalant cadence, the mayor announced his support for complete information disclosure by declaring, "It's data, man."Sunlight Foundation - New Louisville Open Data Policy Insists Open By Default is the Future Open Data Annual ReportsSection 5.A. Within one year of the effective Data of this Executive Order, and thereafter no later than September 1 of each year, the Open Data Management Team shall submit to the Mayor an annual Open Data Report.The Open Data Management team (also known as the Data Governance Team is currently led by the city's Data Officer Andrew McKinney in the Office of Civic Innovation and Technology. Previously (2014-16) it was led by the Director of IT.Full Executive OrderEXECUTIVE ORDER NO. 1, SERIES 2013AN EXECUTIVE ORDERCREATING AN OPEN DATA PLAN. WHEREAS, Metro Government is the catalyst for creating a world-class city that provides its citizens with safe and vibrant neighborhoods, great jobs, a strong system of education and innovation, and a high quality of life; andWHEREAS, it should be easy to do business with Metro Government. Online government interactions mean more convenient services for citizens and businesses and online government interactions improve the cost effectiveness and accuracy of government operations; andWHEREAS, an open government also makes certain that every aspect of the built environment also has reliable digital descriptions available to citizens and entrepreneurs for deep engagement mediated by smart devices; andWHEREAS, every citizen has the right to prompt, efficient service from Metro Government; andWHEREAS, the adoption of open standards improves transparency, access to public information and improved coordination and efficiencies among Departments and partner organizations across the public, nonprofit and private sectors; andWHEREAS, by publishing structured standardized data in machine readable formats the Louisville Metro Government seeks to encourage the local software community to develop software applications and tools to collect, organize, and share public record data in new and innovative ways; andWHEREAS, in commitment to the spirit of Open Government, Louisville Metro Government will consider public information to be open by default and will proactively publish data and data containing information, consistent with the Kentucky Open Meetings and Open Records Act; andNOW, THEREFORE, BE IT PROMULGATED BY EXECUTIVE ORDER OF THE HONORABLE GREG FISCHER, MAYOR OF LOUISVILLE/JEFFERSON COUNTY METRO GOVERNMENT AS FOLLOWS:Section 1. Definitions. As used in this Executive Order, the terms below shall have the following definitions:(A) “Open Data” means any public record as defined by the Kentucky Open Records Act, which could be made available online using Open Format data, as well as best practice Open Data structures and formats when possible. Open Data is not information that is treated exempt under KRS 61.878 by Metro Government.(B) “Open Data Report” is the annual report of the Open Data Management Team, which shall (i) summarize and comment on the state of Open Data availability in Metro Government Departments from the previous year; (ii) provide a plan for the next year to improve online public access to Open Data and maintain data quality. The Open Data Management Team shall present an initial Open Data Report to the Mayor within 180 days of this Executive Order.(C) “Open Format” is any widely accepted, nonproprietary, platform-independent, machine-readable method for formatting data, which permits automated processing of such data and is accessible to external search capabilities.(D) “Open Data Portal” means the Internet site established and maintained by or on behalf of Metro Government, located at portal.louisvilleky.gov/service/data or its successor website.(E) “Open Data Management Team” means a group consisting of representatives from each Department within Metro Government and chaired by the Chief Information Officer (CIO) that is responsible for coordinating implementation of an Open Data Policy and creating the Open Data Report.(F) “Department” means any Metro Government department, office, administrative unit, commission, board, advisory committee, or other division of Metro Government within the official jurisdiction of the executive branch.Section 2. Open Data Portal.(A) The Open Data Portal shall serve as the authoritative source for Open Data provided by Metro Government(B) Any Open Data made accessible on Metro Government’s Open Data Portal shall use an Open Format.Section 3. Open Data Management Team.(A) The Chief Information Officer (CIO) of Louisville Metro Government will work with the head of each Department to identify a Data Coordinator in each Department. Data Coordinators will serve as members of an Open Data Management Team facilitated by the CIO and Metro Technology Services. The Open Data Management Team will work to establish a robust, nationally recognized, platform that addresses digital infrastructure and Open Data.(B) The Open Data Management Team will develop an Open Data management policy that will adopt prevailing Open Format standards for Open Data, and develop agreements with regional partners to publish and maintain Open Data that is open and freely available while respecting exemptions allowed by the Kentucky Open Records Act or other federal or state law.Section 4. Department Open Data Catalogue.(A) Each Department shall be responsible for creating an Open Data catalogue, which will include comprehensive inventories of information possessed and/or managed by the Department.(B) Each Department’s Open Data catalogue will classify information holdings as currently “public” or “not yet public”; Departments will work with Metro Technology Services to develop strategies and timelines for publishing open data containing information in a way that is complete, reliable, and has a high level of detail.Section 5. Open Data Report and Policy Review.(A) Within one year of the effective date of this Executive Order, and thereafter no later than September 1 of each year, the Open Data Management Team shall submit to the Mayor an annual Open Data Report.(B) In acknowledgment that technology changes rapidly, in the future, the Open Data Policy should be reviewed and considered for revisions or additions that will continue to position Metro Government as a leader on issues of openness, efficiency, and technical best practices.Section 6. This Executive Order shall take effect as of October 11, 2013.Signed this 11th day of October, 2013, by Greg Fischer, Mayor of Louisville/Jefferson County Metro Government.GREG FISCHER, MAYOR
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For the evaluation of OS fingerprinting methods, we need a dataset with the following requirements:
First, the dataset needs to be big enough to capture the variability of the data. In this case, we need many connections from different operating systems.
Second, the dataset needs to be annotated, which means that the corresponding operating system needs to be known for each network connection captured in the dataset. Therefore, we cannot just capture any network traffic for our dataset; we need to be able to determine the OS reliably.
To overcome these issues, we have decided to create the dataset from the traffic of several web servers at our university. This allows us to address the first issue by collecting traces from thousands of devices ranging from user computers and mobile phones to web crawlers and other servers. The ground truth values are obtained from the HTTP User-Agent, which resolves the second of the presented issues. Even though most traffic is encrypted, the User-Agent can be recovered from the web server logs that record every connection’s details. By correlating the IP address and timestamp of each log record to the captured traffic, we can add the ground truth to the dataset.
For this dataset, we have selected a cluster of five web servers that host 475 unique university domains for public websites. The monitoring point recording the traffic was placed at the backbone network connecting the university to the Internet.
The dataset used in this paper was collected from approximately 8 hours of university web traffic throughout a single workday. The logs were collected from Microsoft IIS web servers and converted from W3C extended logging format to JSON. The logs are referred to as web logs and are used to annotate the records generated from packet capture obtained by using a network probe tapped into the link to the Internet.
The entire dataset creation process consists of seven steps:
The packet capture was processed by the Flowmon flow exporter (https://www.flowmon.com) to obtain primary flow data containing information from TLS and HTTP protocols.
Additional statistical features were extracted using GoFlows flow exporter (https://github.com/CN-TU/go-flows).
The primary flows were filtered to remove incomplete records and network scans.
The flows from both exporters were merged together into records containing fields from both sources.
Web logs were filtered to cover the same time frame as the flow records.
Web logs were paired with the flow records based on shared properties (IP address, port, time).
The last step was to convert the User-Agent values into the operating system using a Python version of the open-source tool ua-parser (https://github.com/ua-parser/uap-python). We replaced the unstructured User-Agent string in the records with the resulting OS.
The collected and enriched flows contain 111 data fields that can be used as features for OS fingerprinting or any other data analyses. The fields grouped by their area are listed below:
basic flow properties - flow_ID;start;end;L3 PROTO;L4 PROTO;BYTES A;PACKETS A;SRC IP;DST IP;TCP flags A;SRC port;DST port;packetTotalCountforward;packetTotalCountbackward;flowDirection;flowEndReason;
IP parameters - IP ToS;maximumTTLforward;maximumTTLbackward;IPv4DontFragmentforward;IPv4DontFragmentbackward;
TCP parameters - TCP SYN Size;TCP Win Size;TCP SYN TTL;tcpTimestampFirstPacketbackward;tcpOptionWindowScaleforward;tcpOptionWindowScalebackward;tcpOptionSelectiveAckPermittedforward;tcpOptionSelectiveAckPermittedbackward;tcpOptionMaximumSegmentSizeforward;tcpOptionMaximumSegmentSizebackward;tcpOptionNoOperationforward;tcpOptionNoOperationbackward;synAckFlag;tcpTimestampFirstPacketforward;
HTTP - HTTP Request Host;URL;
User-agent - UA OS family;UA OS major;UA OS minor;UA OS patch;UA OS patch minor;
TLS - TLS_CONTENT_TYPE;TLS_HANDSHAKE_TYPE;TLS_SETUP_TIME;TLS_SERVER_VERSION;TLS_SERVER_RANDOM;TLS_SERVER_SESSION_ID;TLS_CIPHER_SUITE;TLS_ALPN;TLS_SNI;TLS_SNI_LENGTH;TLS_CLIENT_VERSION;TLS_CIPHER_SUITES;TLS_CLIENT_RANDOM;TLS_CLIENT_SESSION_ID;TLS_EXTENSION_TYPES;TLS_EXTENSION_LENGTHS;TLS_ELLIPTIC_CURVES;TLS_EC_POINT_FORMATS;TLS_CLIENT_KEY_LENGTH;TLS_ISSUER_CN;TLS_SUBJECT_CN;TLS_SUBJECT_ON;TLS_VALIDITY_NOT_BEFORE;TLS_VALIDITY_NOT_AFTER;TLS_SIGNATURE_ALG;TLS_PUBLIC_KEY_ALG;TLS_PUBLIC_KEY_LENGTH;TLS_JA3_FINGERPRINT;
Packet timings - NPM_CLIENT_NETWORK_TIME;NPM_SERVER_NETWORK_TIME;NPM_SERVER_RESPONSE_TIME;NPM_ROUND_TRIP_TIME;NPM_RESPONSE_TIMEOUTS_A;NPM_RESPONSE_TIMEOUTS_B;NPM_TCP_RETRANSMISSION_A;NPM_TCP_RETRANSMISSION_B;NPM_TCP_OUT_OF_ORDER_A;NPM_TCP_OUT_OF_ORDER_B;NPM_JITTER_DEV_A;NPM_JITTER_AVG_A;NPM_JITTER_MIN_A;NPM_JITTER_MAX_A;NPM_DELAY_DEV_A;NPM_DELAY_AVG_A;NPM_DELAY_MIN_A;NPM_DELAY_MAX_A;NPM_DELAY_HISTOGRAM_1_A;NPM_DELAY_HISTOGRAM_2_A;NPM_DELAY_HISTOGRAM_3_A;NPM_DELAY_HISTOGRAM_4_A;NPM_DELAY_HISTOGRAM_5_A;NPM_DELAY_HISTOGRAM_6_A;NPM_DELAY_HISTOGRAM_7_A;NPM_JITTER_DEV_B;NPM_JITTER_AVG_B;NPM_JITTER_MIN_B;NPM_JITTER_MAX_B;NPM_DELAY_DEV_B;NPM_DELAY_AVG_B;NPM_DELAY_MIN_B;NPM_DELAY_MAX_B;NPM_DELAY_HISTOGRAM_1_B;NPM_DELAY_HISTOGRAM_2_B;NPM_DELAY_HISTOGRAM_3_B;NPM_DELAY_HISTOGRAM_4_B;NPM_DELAY_HISTOGRAM_5_B;NPM_DELAY_HISTOGRAM_6_B;NPM_DELAY_HISTOGRAM_7_B;
ICMP - ICMP TYPE;
The details of OS distribution grouped by the OS family are summarized in the table below. The Other OS family contains records generated by web crawling bots that do not include OS information in the User-Agent.
OS Family
Number of flows
Other
42474
Windows
40349
Android
10290
iOS
8840
Mac OS X
5324
Linux
1589
Ubuntu
653
Fedora
88
Chrome OS
53
Symbian OS
1
Slackware
1
Linux Mint
1
In 2014 and 2015, the Arid Lands Initiative developed “Conservation Scorecards” for their Priority Core Areas (PCAs) and Priority Linkage Areas (PLAs). To create the scorecards, we collected numerous existing geospatial datasets that could help provide decision support for ALI land managers, then summarized them to the geometry of PCAs and PLAs (e.g., took the spatial mean of a Landscape Condition Model). To better understand the analysis, please read the report, “Assessing the Condition and Resilience of Collaborative Conservation Priority Areas in the Columbia Plateau Ecoregion,” available here: https://www.sciencebase.gov/catalog/item/54ee1862e4b02d776a684a11. The PCA scorecards pdfs are attached to this report as an appendix, and the PLA scorecards are included in a short addendum report, available here: https://www.sciencebase.gov/catalog/item/561fdbfae4b03ee62faa909cIt is important to note that many of these models have since been updated by the data creators (e.g., The Nature Conservancy’s Climate Change Resilience model) and are therefore out of data. The original, older layers are provided here simply for the convenience of interested people with GIS capabilities who wish to further explore the input data, and also for analytical transparency. If anyone wishes to do additional analysis with this data, they are strongly encouraged to obtain up to date data sets from the data creators. The metadata for each layer indicates whether or not it is likely to have been updated (some are finalized), and also provides links to the appropriate data access websites.We did not receive permission to redistribute a few of the scorecard input layers, so they are not included. These are: “Probability of burning” (FSIM fire simulation model); “Future fire frequency” (MC2 vegetation model); and “Vegetation instability” (MC2 vegetation model). We also did not include the layers used to calculate the “Contribution to ALI targets” metrics because they are already available on ScienceBase, here: https://www.sciencebase.gov/catalog/item/526ea571e4b044919baed939. All data sets were clipped to the ALI’s analysis area and were projected to Web Mercator, in case the ALI ever wishes to make web services from these layers.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Ventura map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Ventura map area data layers. Data layers are symbolized as shown on the associated map sheets.
AN EXECUTIVE ORDERCREATING AN OPEN DATA PLAN. WHEREAS, Metro Government is the catalyst for creating a world-class city that provides its citizens with safe and vibrant neighborhoods, great jobs, a strong system of education and innovation, and a high quality of life; andWHEREAS, it should be easy to do business with Metro Government. Online government interactions mean more convenient services for citizens and businesses and online government interactions improve the cost effectiveness and accuracy of government operations; andWHEREAS, an open government also makes certain that every aspect of the built environment also has reliable digital descriptions available to citizens and entrepreneurs for deep engagement mediated by smart devices; andWHEREAS, every citizen has the right to prompt, efficient service from Metro Government; andWHEREAS, the adoption of open standards improves transparency, access to public information and improved coordination and efficiencies among Departments and partner organizations across the public, nonprofit and private sectors; andWHEREAS, by publishing structured standardized data in machine readable formats the Louisville Metro Government seeks to encourage the local software community to develop software applications and tools to collect, organize, and share public record data in new and innovative ways; andWHEREAS, in commitment to the spirit of Open Government, Louisville Metro Government will consider public information to be open by default and will proactively publish data and data containing information, consistent with the Kentucky Open Meetings and Open Records Act; andNOW, THEREFORE, BE IT PROMULGATED BY EXECUTIVE ORDER OF THE HONORABLE GREG FISCHER, MAYOR OF LOUISVILLE/JEFFERSON COUNTY METRO GOVERNMENT AS FOLLOWS:Section 1. Definitions. As used in this Executive Order, the terms below shall have the following definitions:(A) “Open Data” means any public record as defined by the Kentucky Open Records Act, which could be made available online using Open Format data, as well as best practice Open Data structures and formats when possible. Open Data is not information that is treated exempt under KRS 61.878 by Metro Government.(B) “Open Data Report” is the annual report of the Open Data Management Team, which shall (i) summarize and comment on the state of Open Data availability in Metro Government Departments from the previous year; (ii) provide a plan for the next year to improve online public access to Open Data and maintain data quality. The Open Data Management Team shall present an initial Open Data Report to the Mayor within 180 days of this Executive Order.(C) “Open Format” is any widely accepted, nonproprietary, platform-independent, machine-readable method for formatting data, which permits automated processing of such data and is accessible to external search capabilities.(D) “Open Data Portal” means the Internet site established and maintained by or on behalf of Metro Government, located at portal.louisvilleky.gov/service/data or its successor website.(E) “Open Data Management Team” means a group consisting of representatives from each Department within Metro Government and chaired by the Chief Information Officer (CIO) that is responsible for coordinating implementation of an Open Data Policy and creating the Open Data Report.(F) “Department” means any Metro Government department, office, administrative unit, commission, board, advisory committee, or other division of Metro Government within the official jurisdiction of the executive branch.Section 2. Open Data Portal.(A) The Open Data Portal shall serve as the authoritative source for Open Data provided by Metro Government(B) Any Open Data made accessible on Metro Government’s Open Data Portal shall use an Open Format.Section 3. Open Data Management Team.(A) The Chief Information Officer (CIO) of Louisville Metro Government will work with the head of each Department to identify a Data Coordinator in each Department. Data Coordinators will serve as members of an Open Data Management Team facilitated by the CIO and Metro Technology Services. The Open Data Management Team will work to establish a robust, nationally recognized, platform that addresses digital infrastructure and Open Data.(B) The Open Data Management Team will develop an Open Data management policy that will adopt prevailing Open Format standards for Open Data, and develop agreements with regional partners to publish and maintain Open Data that is open and freely available while respecting exemptions allowed by the Kentucky Open Records Act or other federal or state law.Section 4. Department Open Data Catalogue.(A) Each Department shall be responsible for creating an Open Data catalogue, which will include comprehensive inventories of information possessed and/or managed by the Department.(B) Each Department’s Open Data catalogue will classify information holdings as currently “public” or “not yet public”; Departments will work with Metro Technology Services to develop strategies and timelines for publishing open data containing information in a way that is complete, reliable, and has a high level of detail.Section 5. Open Data Report and Policy Review.(A) Within one year of the effective date of this Executive Order, and thereafter no later than September 1 of each year, the Open Data Management Team shall submit to the Mayor an annual Open Data Report.(B) In acknowledgment that technology changes rapidly, in the future, the Open Data Policy should be reviewed and considered for revisions or additions that will continue to position Metro Government as a leader on issues of openness, efficiency, and technical best practices.Section 6. This Executive Order shall take effect as of October 11, 2013.Signed this 11th day of October, 2013, by Greg Fischer, Mayor of Louisville/Jefferson County Metro Government.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Sur to Point Arguello map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Sur to Point Arguello map area data layers. Data layers are symbolized as shown on the associated map sheets.
Altosight | AI Custom Web Scraping Data
✦ Altosight provides global web scraping data services with AI-powered technology that bypasses CAPTCHAs, blocking mechanisms, and handles dynamic content.
We extract data from marketplaces like Amazon, aggregators, e-commerce, and real estate websites, ensuring comprehensive and accurate results.
✦ Our solution offers free unlimited data points across any project, with no additional setup costs.
We deliver data through flexible methods such as API, CSV, JSON, and FTP, all at no extra charge.
― Key Use Cases ―
➤ Price Monitoring & Repricing Solutions
🔹 Automatic repricing, AI-driven repricing, and custom repricing rules 🔹 Receive price suggestions via API or CSV to stay competitive 🔹 Track competitors in real-time or at scheduled intervals
➤ E-commerce Optimization
🔹 Extract product prices, reviews, ratings, images, and trends 🔹 Identify trending products and enhance your e-commerce strategy 🔹 Build dropshipping tools or marketplace optimization platforms with our data
➤ Product Assortment Analysis
🔹 Extract the entire product catalog from competitor websites 🔹 Analyze product assortment to refine your own offerings and identify gaps 🔹 Understand competitor strategies and optimize your product lineup
➤ Marketplaces & Aggregators
🔹 Crawl entire product categories and track best-sellers 🔹 Monitor position changes across categories 🔹 Identify which eRetailers sell specific brands and which SKUs for better market analysis
➤ Business Website Data
🔹 Extract detailed company profiles, including financial statements, key personnel, industry reports, and market trends, enabling in-depth competitor and market analysis
🔹 Collect customer reviews and ratings from business websites to analyze brand sentiment and product performance, helping businesses refine their strategies
➤ Domain Name Data
🔹 Access comprehensive data, including domain registration details, ownership information, expiration dates, and contact information. Ideal for market research, brand monitoring, lead generation, and cybersecurity efforts
➤ Real Estate Data
🔹 Access property listings, prices, and availability 🔹 Analyze trends and opportunities for investment or sales strategies
― Data Collection & Quality ―
► Publicly Sourced Data: Altosight collects web scraping data from publicly available websites, online platforms, and industry-specific aggregators
► AI-Powered Scraping: Our technology handles dynamic content, JavaScript-heavy sites, and pagination, ensuring complete data extraction
► High Data Quality: We clean and structure unstructured data, ensuring it is reliable, accurate, and delivered in formats such as API, CSV, JSON, and more
► Industry Coverage: We serve industries including e-commerce, real estate, travel, finance, and more. Our solution supports use cases like market research, competitive analysis, and business intelligence
► Bulk Data Extraction: We support large-scale data extraction from multiple websites, allowing you to gather millions of data points across industries in a single project
► Scalable Infrastructure: Our platform is built to scale with your needs, allowing seamless extraction for projects of any size, from small pilot projects to ongoing, large-scale data extraction
― Why Choose Altosight? ―
✔ Unlimited Data Points: Altosight offers unlimited free attributes, meaning you can extract as many data points from a page as you need without extra charges
✔ Proprietary Anti-Blocking Technology: Altosight utilizes proprietary techniques to bypass blocking mechanisms, including CAPTCHAs, Cloudflare, and other obstacles. This ensures uninterrupted access to data, no matter how complex the target websites are
✔ Flexible Across Industries: Our crawlers easily adapt across industries, including e-commerce, real estate, finance, and more. We offer customized data solutions tailored to specific needs
✔ GDPR & CCPA Compliance: Your data is handled securely and ethically, ensuring compliance with GDPR, CCPA and other regulations
✔ No Setup or Infrastructure Costs: Start scraping without worrying about additional costs. We provide a hassle-free experience with fast project deployment
✔ Free Data Delivery Methods: Receive your data via API, CSV, JSON, or FTP at no extra charge. We ensure seamless integration with your systems
✔ Fast Support: Our team is always available via phone and email, resolving over 90% of support tickets within the same day
― Custom Projects & Real-Time Data ―
✦ Tailored Solutions: Every business has unique needs, which is why Altosight offers custom data projects. Contact us for a feasibility analysis, and we’ll design a solution that fits your goals
✦ Real-Time Data: Whether you need real-time data delivery or scheduled updates, we provide the flexibility to receive data when you need it. Track price changes, monitor product trends, or gather...