100+ datasets found
  1. World Happiness Index and Inflation Dataset

    • kaggle.com
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agra Fintech (2025). World Happiness Index and Inflation Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/11174951
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Agra Fintech
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Context

    Happiness and well-being are essential indicators of societal progress, often influenced by economic conditions such as GDP and inflation. This dataset combines data from the World Happiness Index (WHI) and inflation metrics to explore the relationship between economic stability and happiness levels across 148 countries from 2015 to 2023. By analyzing key economic indicators alongside social well-being factors, this dataset provides insights into global prosperity trends.

    Content

    This dataset is provided in CSV format and includes 16 columns, covering both happiness-related features and economic indicators such as GDP per capita, inflation rates, and corruption perception. The main columns include:

    Happiness Score & Rank (World Happiness Index ranking per country) Economic Indicators (GDP per capita, inflation metrics) Social Factors (Freedom, Social Support, Generosity) Geographical Information (Country & Continent)

    Acknowledgements

    The dataset is created using publicly available data from World Happiness Report, Gallup World Poll, and the World Bank. It has been structured for research, machine learning, and policy analysis purposes.

    Inspiration

    How do economic factors like inflation, GDP, and corruption affect happiness? Can we predict a country's happiness score based on economic conditions? This dataset allows you to analyze these relationships and build models to predict well-being trends worldwide.

  2. T

    Norway Inflation Rate

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Norway Inflation Rate [Dataset]. https://tradingeconomics.com/norway/inflation-cpi
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Jun 10, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1950 - May 31, 2025
    Area covered
    Norway
    Description

    Inflation Rate in Norway increased to 3 percent in May from 2.50 percent in April of 2025. This dataset provides - Norway Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  3. T

    United States Core Inflation Rate MoM

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Core Inflation Rate MoM [Dataset]. https://tradingeconomics.com/united-states/core-inflation-rate-mom
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 28, 1957 - May 31, 2025
    Area covered
    United States
    Description

    Core Inflation Rate MoM in the United States decreased to 0.10 percent in May from 0.20 percent in April of 2025. This dataset includes a chart with historical data for the United States Core Inflation Rate MoM.

  4. Consumer price inflation consumption segment indices and price quotes

    • ons.gov.uk
    • cy.ons.gov.uk
    csv
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Consumer price inflation consumption segment indices and price quotes [Dataset]. https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindicescpiandretailpricesindexrpiitemindicesandpricequotes
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Price quote data (for locally collected data only) and consumption segment indices that underpin consumer price inflation statistics, giving users access to the detailed data that are used in the construction of the UK’s inflation figures. The data are being made available for research purposes only and are not an accredited official statistic. From October 2024, private school fees and part-time education classes have been included in the consumption segment indices file. For more information on the introduction of consumption segments, please see the Consumer Prices Indices Technical Manual, 2019. Note that this dataset was previously called the consumer price inflation item indices and price quotes dataset.

  5. T

    Canada Inflation Rate

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Canada Inflation Rate [Dataset]. https://tradingeconomics.com/canada/inflation-cpi
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1915 - May 31, 2025
    Area covered
    Canada
    Description

    Inflation Rate in Canada remained unchanged at 1.70 percent in May. This dataset provides - Canada Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  6. T

    INFLATION RATE by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). INFLATION RATE by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/inflation-rate?continent=america
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for INFLATION RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  7. w

    Monthly food price inflation estimates by country - Afghanistan, Armenia,...

    • microdata.worldbank.org
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bo Pieter Johannes Andrée (2025). Monthly food price inflation estimates by country - Afghanistan, Armenia, Bangladesh...and 33 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/4509
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Bo Pieter Johannes Andrée
    Time period covered
    2008 - 2025
    Area covered
    Bangladesh
    Description

    Abstract

    Food price inflation is an important metric to inform economic policy but traditional sources of consumer prices are often produced with delay during crises and only at an aggregate level. This may poorly reflect the actual price trends in rural or poverty-stricken areas, where large populations reside in fragile situations. This data set includes food price estimates and is intended to help gain insight in price developments beyond what can be formally measured by traditional methods. The estimates are generated using a machine-learning approach that imputes ongoing subnational price surveys, often with accuracy similar to direct measurement of prices. The data set provides new opportunities to investigate local price dynamics in areas where populations are sensitive to localized price shocks and where traditional data are not available.

    Geographic coverage notes

    The data cover the following areas: Afghanistan, Armenia, Bangladesh, Burkina Faso, Burundi, Cameroon, Central African Republic, Chad, Congo, Dem. Rep., Congo, Rep., Gambia, The, Guinea, Guinea-Bissau, Haiti, Indonesia, Iraq, Kenya, Lao PDR, Lebanon, Liberia, Libya, Malawi, Mali, Mauritania, Mozambique, Myanmar, Niger, Nigeria, Philippines, Senegal, Somalia, South Sudan, Sri Lanka, Sudan, Syrian Arab Republic, Yemen, Rep.

  8. T

    South Korea Inflation Rate

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). South Korea Inflation Rate [Dataset]. https://tradingeconomics.com/south-korea/inflation-cpi
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1966 - May 31, 2025
    Area covered
    South Korea
    Description

    Inflation Rate in South Korea decreased to 1.90 percent in May from 2.10 percent in April of 2025. This dataset provides the latest reported value for - South Korea Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  9. w

    Dataset of news about Inflation (Finance)-Germany-History

    • workwithdata.com
    Updated May 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of news about Inflation (Finance)-Germany-History [Dataset]. https://www.workwithdata.com/datasets/news?f=1&fcol0=page_name&fop0=%3D&fval0=Inflation+%28Finance%29-Germany-History
    Explore at:
    Dataset updated
    May 16, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Germany
    Description

    This dataset is about news. It has 34 rows and is filtered where the keywords includes Inflation (Finance)-Germany-History. It features 10 columns including source, publication date, section, and news link.

  10. Bureau of Labor Statistics Unemployment and Inflation

    • redivis.com
    application/jsonl +7
    Updated Dec 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Columbia Data Platform Demo (2020). Bureau of Labor Statistics Unemployment and Inflation [Dataset]. https://redivis.com/datasets/ymdq-1a9mgdxff
    Explore at:
    arrow, avro, csv, parquet, spss, application/jsonl, stata, sasAvailable download formats
    Dataset updated
    Dec 14, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Columbia Data Platform Demo
    Time period covered
    Jan 1, 1939 - Dec 31, 2020
    Description

    Abstract

    This dataset includes economic statistics on inflation, prices, unemployment, and pay & benefits provided by the Bureau of Labor Statistics (BLS)

    Documentation

    Update frequency: Monthly Dataset source: U.S. Bureau of Labor Statistics Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset. See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/bls-public-data/bureau-of-labor-statistics

  11. IMF Africa Inflation Database - Dataset - ADH Data Portal

    • ckan.africadatahub.org
    Updated Aug 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    africadatahub.org (2022). IMF Africa Inflation Database - Dataset - ADH Data Portal [Dataset]. https://ckan.africadatahub.org/dataset/imf-africa-inflation-database
    Explore at:
    Dataset updated
    Aug 29, 2022
    Dataset provided by
    Africa Data Hub
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    The IMF has a great inflation database, but it relies on countries to provide their latest data to the IMF, and as such, it can be temporarily out of date. This database will keep the IMF inflation database up to date for African countries by scraping data from individual countries' websites as soon as they release their data and combining it with the latest IMF data. This Africa inflation database powers the ADH Inflation Observer. All 3 datasets found here contain the same data, but in different shapes to suit different applications.

  12. T

    Nigeria Food Inflation

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Jun 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Nigeria Food Inflation [Dataset]. https://tradingeconomics.com/nigeria/food-inflation
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Jun 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1996 - May 31, 2025
    Area covered
    Nigeria
    Description

    Cost of food in Nigeria increased 21.14 percent in May of 2025 over the same month in the previous year. This dataset provides - Nigeria Food Inflation - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  13. G

    Consumer Price Index (CPI) statistics, measures of core inflation and other...

    • open.canada.ca
    • ouvert.canada.ca
    • +1more
    csv, html, xml
    Updated May 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2025). Consumer Price Index (CPI) statistics, measures of core inflation and other related statistics - Bank of Canada definitions [Dataset]. https://open.canada.ca/data/en/dataset/fa29f696-d7d1-47fe-82af-77dcce8ad830
    Explore at:
    html, csv, xmlAvailable download formats
    Dataset updated
    May 26, 2025
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    This table contains 11 series, with data from 1949 (not all combinations necessarily have data for all years). Data are presented for the current month and previous four months. Users can select other time periods that are of interest to them.

  14. d

    Strategic Measure_Cost of City Services per Capita Adjusted for Inflation...

    • catalog.data.gov
    • data.austintexas.gov
    • +2more
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.austintexas.gov (2025). Strategic Measure_Cost of City Services per Capita Adjusted for Inflation (General Fund only) [Dataset]. https://catalog.data.gov/dataset/strategic-measure-cost-of-city-services-per-capita-adjusted-for-inflation-general-fund-onl
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset provided by
    data.austintexas.gov
    Description

    This dataset has information about the cost of providing General Fund City services per capita of the Full Purpose City population (SD23 measure GTW.A.4). It provides expense information from the annual approved budget document (General Fund Summary and Budget Stabilization Reserve Fund Summary) and population information from the City Demographer's Full Purpose Population numbers. The Consumer Price Index information for Texas is available through the following Key Economic Indicators dataset: https://data.texas.gov/dataset/Key-Economic-Indicators/karz-jr5v. This dataset can be used to help understand the cost of city services over time. View more details and insights related to this dataset on the story page: https://data.austintexas.gov/stories/s/ixex-hibp

  15. T

    Namibia Inflation Rate

    • tradingeconomics.com
    • fr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Namibia Inflation Rate [Dataset]. https://tradingeconomics.com/namibia/inflation-cpi
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1973 - May 31, 2025
    Area covered
    Namibia
    Description

    Inflation Rate in Namibia decreased to 3.50 percent in May from 3.60 percent in April of 2025. This dataset provides the latest reported value for - Namibia Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  16. N

    Carbon, IN annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Carbon, IN annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/carbon-in-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Carbon, IN
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Carbon. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Carbon, the median income for all workers aged 15 years and older, regardless of work hours, was $42,266 for males and $31,500 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 25% between the median incomes of males and females in Carbon. With women, regardless of work hours, earning 75 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thetown of Carbon.

    - Full-time workers, aged 15 years and older: In Carbon, among full-time, year-round workers aged 15 years and older, males earned a median income of $51,324, while females earned $43,750, resulting in a 15% gender pay gap among full-time workers. This illustrates that women earn 85 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the town of Carbon.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Carbon.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Carbon median household income by race. You can refer the same here

  17. N

    Federal Way, WA annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Federal Way, WA annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/federal-way-wa-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Federal Way, Washington
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Federal Way. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Federal Way, the median income for all workers aged 15 years and older, regardless of work hours, was $49,179 for males and $34,280 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 30% between the median incomes of males and females in Federal Way. With women, regardless of work hours, earning 70 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thecity of Federal Way.

    - Full-time workers, aged 15 years and older: In Federal Way, among full-time, year-round workers aged 15 years and older, males earned a median income of $64,318, while females earned $58,010, resulting in a 10% gender pay gap among full-time workers. This illustrates that women earn 90 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Federal Way.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Federal Way.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Federal Way median household income by race. You can refer the same here

  18. N

    Pound, VA annual median income by work experience and sex dataset: Aged 15+,...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Pound, VA annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a5318433-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pound, Virginia
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Pound. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Pound, the median income for all workers aged 15 years and older, regardless of work hours, was $25,741 for males and $21,667 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 16% between the median incomes of males and females in Pound. With women, regardless of work hours, earning 84 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thetown of Pound.

    - Full-time workers, aged 15 years and older: In Pound, among full-time, year-round workers aged 15 years and older, males earned a median income of $46,466, while females earned $29,345, leading to a 37% gender pay gap among full-time workers. This illustrates that women earn 63 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Pound offers better opportunities for women in non-full-time positions.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Pound median household income by race. You can refer the same here

  19. T

    Iceland Inflation Rate

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Iceland Inflation Rate [Dataset]. https://tradingeconomics.com/iceland/inflation-cpi
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 30, 1989 - Jun 30, 2025
    Area covered
    Iceland
    Description

    Inflation Rate in Iceland increased to 4.20 percent in June from 3.80 percent in May of 2025. This dataset provides - Iceland Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  20. N

    Tarlton, OH annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Tarlton, OH annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a53abdc2-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tarlton
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Tarlton. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Tarlton, the median income for all workers aged 15 years and older, regardless of work hours, was $46,500 for males and $35,739 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 23% between the median incomes of males and females in Tarlton. With women, regardless of work hours, earning 77 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thevillage of Tarlton.

    - Full-time workers, aged 15 years and older: In Tarlton, among full-time, year-round workers aged 15 years and older, males earned a median income of $58,654, while females earned $36,591, leading to a 38% gender pay gap among full-time workers. This illustrates that women earn 62 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Tarlton offers better opportunities for women in non-full-time positions.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Tarlton median household income by race. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Agra Fintech (2025). World Happiness Index and Inflation Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/11174951
Organization logo

World Happiness Index and Inflation Dataset

A Comprehensive Dataset on Happiness, GDP, and Inflation Trends (2015-2023)

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Mar 26, 2025
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Agra Fintech
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Area covered
World
Description

Context

Happiness and well-being are essential indicators of societal progress, often influenced by economic conditions such as GDP and inflation. This dataset combines data from the World Happiness Index (WHI) and inflation metrics to explore the relationship between economic stability and happiness levels across 148 countries from 2015 to 2023. By analyzing key economic indicators alongside social well-being factors, this dataset provides insights into global prosperity trends.

Content

This dataset is provided in CSV format and includes 16 columns, covering both happiness-related features and economic indicators such as GDP per capita, inflation rates, and corruption perception. The main columns include:

Happiness Score & Rank (World Happiness Index ranking per country) Economic Indicators (GDP per capita, inflation metrics) Social Factors (Freedom, Social Support, Generosity) Geographical Information (Country & Continent)

Acknowledgements

The dataset is created using publicly available data from World Happiness Report, Gallup World Poll, and the World Bank. It has been structured for research, machine learning, and policy analysis purposes.

Inspiration

How do economic factors like inflation, GDP, and corruption affect happiness? Can we predict a country's happiness score based on economic conditions? This dataset allows you to analyze these relationships and build models to predict well-being trends worldwide.

Search
Clear search
Close search
Google apps
Main menu